
Bayesian Stochastic Search for VAR Model Restrictions

January 2005, Revised November 2006 1

Edward George, Department of Statistics, The Wharton School, University of Pennsylvania

Dongchu Sun, Department of Statistics, University of Missouri-Columbia

Shawn Ni, Department of Economics, University of Missouri-Columbia

Abstract

We propose a Bayesian stochastic search approach to selecting restrictions for Vector Autoregres-

sive (VAR) models. For this purpose, we develop a Markov Chain Monte Carlo (MCMC) algorithm

that visits high posterior probability restrictions on the elements of both the VAR regression co-

efficients and the error variance matrix. Numerical simulations show that stochastic search based

on this algorithm can be effective at both selecting a satisfactory model and improving forecasting

performance. To illustrate the potential of our approach, we apply our stochastic search to VAR

modelling of inflation transmission from Producer Price Index (PPI) components to the Consumer

Price Index (CPI).
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1 Introduction

Econometricians constantly face the challenge of building models that are both general enough to

analyze complicated problems and restrictive enough to yield sharp finite sample inferences. This

task can sometimes be accomplished by using an overparametrized model, namely a model with more

parameters than can be reasonably estimated with the data at hand, and then seeking plausible

restrictions that allow adequate inference. We propose a Bayesian stochastic search approach for

selecting such restrictions for Vector Autoregression (VAR) modeling settings.

In a VAR model, the variable of interest yt, a p-dimensional column vector, is determined by

y′t = z′tC +
L∑

j=1

y′t−jAj + ε′t, (1)

for t = 1, · · · , T, where the exogenous variable zt is an h-dimensional vector, the lag L is a known

positive integer, the regression coefficients C and Aj are h×p and p×p unknown matrices, the error

terms ε1, · · · , εT are independent identically distributed Np(0,Σ), and the covariance matrix Σ is

an unknown p × p positive definite matrix. VAR models have been widely used for characterizing

multivariate time series data and for macroeconomic forecasting. The absence of restrictions on the

regression coefficients and the covariance matrix in (1) results in a very large number of parameters

relative to the data at hand. With a limited number of observations such “over-parameterization”

typically has adverse consequences on the precision of inference and the reliability of prediction.

To obtain restrictions on over-parameterized models, several approaches based on researchers’

knowledge have been employed in the econometrics literature. For example, in traditional simultane-

ous equations (SE) settings, economists have used economic theory to justify parameter restrictions,

restrictions often considered “incredible” and yielding unsatisfactory results, (see Sims (1980)). In

fact, the checkered performance of large scale SE models has led to the development and popularity

of VAR models.

For VAR modeling, the Bayesian approach can be used to incorporate knowledge about parameter

values via prior distributions. Indeed, information about the pattern of macroeconomic data and on

structural economic models has been utilized for VAR prior elicitation and model restrictions. For

example, Doan et al. (1984) suggested a Minnesota prior that shrinks the VAR parameters towards

a random walk model. Although such priors may be suitable in some cases, their effectiveness may

sometimes be limited. McNees (1986) compared the forecasting performance of Litterman’s Bayesian

VAR with some popular SE models across various small sample macroeconomic problems and found

that no single approach was superior across all settings.
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Ingram & Whiteman (1994) and DeJong et al. (2000), among others, developed methods of

using dynamic general equilibrium models for prior elicitation. Several authors (e.g., Sims (1986),

Blanchard (1989), Gordon & Leeper (1994), and Sims & Zha (1998)) have proposed using identified

VARs of the form

y′tA0 = z′tCA0 +
L∑

j=1

y′t−jAjA0 + ε′tA0, (2)

where A0 is such that the covariance of structural shocks ε′tA0 is the identity I and so satisfies

Σ = A−1
0

′

A−1
0 . (3)

Such identified Bayesian VARs set particular elements of the decomposition of the precision matrix

to zero on the ground of formal or informal economic theory (see Sims (1986) for justifications of

such approaches). In contrast, SE models restrict A0 and Aj but not the error covariance structure.

However, both approaches are based on an implicit assumption that the relevant restrictions are

known. At least for some economic problems, current theoretical knowledge does not warrant such

confidence.

An alternative to restriction preselection in over-parametrized models is to use restrictions that

are supported by the data itself. This may be accomplished by using a comprehensive hierarchical

model that treats each possible set of restrictions as a distinct submodel, and then uses priors to

describe the uncertainty across all submodels. Under such a setup, the posterior distribution will

then increase the prior weights on those restrictions that are best supported by the data. Although

it is typically not feasible to exhaustively calculate all submodel posterior probabilities, many of the

higher posterior probability submodels can be found by stochastic search using MCMC algorithms.

This is precisely the approach we propose for the selection of VAR model restrictions. This approach

is fundamentally different from previous VAR modeling approaches because it does not apriori rule

out submodels (of the VAR under consideration). Instead, it allows for the comparison of submodels

based on the data.

When the number of parameters in a VAR model for macroeconomic data is large relative to the

number of observations, asymptotic theory will typically be an unreliable guide for the finite sample

estimation properties. An advantage of the Bayesian approach is that it produces finite sample

inferences on the parameters of interest while simultaneously allowing for both model and parameter

uncertainty. This is especially important when model uncertainty is a more serious concern than

parameter uncertainty, as is often the case.

Models such as (2) are useful for testing existing theory and for discovering patterns in data that

3



may motivate new theory. In many applications, we expect our approach to suggest that many, if

not most, coefficients are close to zero, thereby enabling researchers to focus on the more realistic

submodels. And the relative probabilities of the selected submodels will provide them with further

guidance. As will be seen, our approach allows the flexibility to consider either A0 restrictions or

VAR regression coefficient restrictions, or both. In the VAR framework, Hsiao (1981) proposed a

frequentist procedure to reduce the lag length of one of the variables in a bi-variate VAR. Such lag

selection is easily accommodated as a special case of our approach.

The main challenge for restriction selection in our setting lies in the large number of potential

submodels. For example, the variable selection problem for univariate regression with h explanatory

variables involves comparing 2h competing submodels, an infeasible computation even for moderate h.

In this context, George & McCulloch (1993) proposed SSVS (Stochastic Search Variable Selection),

a Bayesian MCMC stochastic search algorithm that greatly reduced the amount of computation - see

George (2000) for a survey of recent developments in the area. Our approach, an extension of SSVS for

VAR restriction selection, faces additional challenges. First, it involves consideration of all possible

restrictions on the off-diagonal elements of A0. Second, for a model with p endogenous variables,

h exogenous variables (including a constant) and L lags, there are 2(h+Lp)p+p(p−1)/2 competing

submodels, which can be many more than the 2h univariate regression submodels. Furthermore,

serial correlation among the VAR variables biases the MLE in finite samples, making selection even

more difficult. The key to tackling these restriction selection challenges is the development of priors

and algorithms that allow for efficient simulation of MCMC samples from the posterior.

To illustrate that our approach has the potential to select effective restrictions in settings where

a VAR model is adequate, we simulate numerical examples in which we generate data from known

submodels. We then compare the performance on this simulated data of the MLE, the benchmark

Bayesian VARs without restriction selection (i.e., conventional Bayesian VARs), and the Bayesian

VARs using our restriction selection approach. In some of these examples, our approach achieves

a very high success rate in selecting the exactly correct data-generating model. And even when

the correct model is not selected, our approach still obtained improvements in terms of the MSE of

point forecasts. We also find that the Kullback-Liebler distance is substantial between the predictive

density averaged over the visited models and that of the benchmark VAR.

SSVS is but one approach in a voluminous theoretical and empirical statistical literature on

Bayesian model selection, starting with Jeffreys (1961) who proposed the use of posterior odds for

model selection and the use of correction factors to mitigate the dangers of chance selection with
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multiple alternatives. References to many of the vast number of developments since Jeffreys’ work,

can be found in Zellner et al. (2001) and Clyde & George (2004).

It should be emphasized that our proposed restriction selection approach for overparametrized

VARs is only meant for those settings where a restricted VAR would ultimately be a satisfactory

model for the data. With their strong assumptions of linearity, fixed parameters, constant error term

covariance and normality of errors, VAR models may be inadequate for economic problems where

flexibilities such as nonlinearity and time varying parameters are needed. Indeed, the forecasting

performance of VARs has not been so good on some economic problems as shown McNees (1986).

At the very least, the adequacy of a VAR model should be checked at the outset. As pointed out by

Zellner & Palm (1975), the adequacy of a formulation such as (2) can be determined by checking the

impled forms of the transfer functions and final equations using the data, a generalization of the well-

known univariate Box-Jenkins model identification procedures. An alternative developed by Zellner

and Palm is the SEMTSA (Structural Econometric Modelling Time Series Analysis) approach, which

connects the univariate time series ARIMA (Box-Jenkins) model and multivariate structural models

for estimation and forecast using cross-country and cross-sectoral data. The SEMTSA approach

starts with a multivariate ARMA model that include exogenous and endogenous variables and re-

stricts the structure of the individual process of the endogenous variables based on economic theories.

Such a macroeconomic framework includes additional features such as indicators that are good pre-

dictors of turning points of business cycles and building blocks based on Marshallian equilibrium

setting of disaggregated sectoral data. As shown in Zellner & Palm (2004), the SEMTSA framework

can deliver better forecasting performance than unrestricted VARs.

Although we have used the VAR framework to illustrate our approach, the main ideas of Bayesian

stochastic search selection restriction can be extended to more complicated fameworks such as

SEMTSA. Although submodel prior probabilities in structural model settings might be more grounded

in economic theory than in VAR settings, for example a large prior probability of including a price pa-

rameter in a demand equation, the technical aspects of our approach would be the same. Indeed, the

MCMC stochastic search for high probability restrictions in a SEMTSA formulation would proceed

in the same was as in our VAR formulation. Though straightforward in principle, such extensions to

more sophisticated frameworks is left for future work.

The paper is organized as follows. Section 2 defines notation and our hierarchical priors. Section

3 derives conditional posterior distributions and lays out the Bayesian algorithms. Section 4 reports

simulation results of numerical examples. Section 5 applies our method to a real problem. Section 6
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offers concluding remarks.

2 The Model and Prior

2.1 Likelihood and decomposition of the precision matrix

Define x′

t = (z′t,y
′

t−1, · · · ,y′t−L). We then rewrite the VAR model (1) in familiar matrix form

Y = XΦ + ε, (4)

where

Y =




y′1
...

y′T


 , X =




x′

1
...

x′

T


 , Φ =




C

A1

...

AL



, ε =




ε′1
...

ε′T


 . (5)

Here Y and ε are T × p matrices, Φ is a (h + Lp) × p matrix, x′

t is a 1 × (h+ Lp) row vector, and

X is a T × (h+ Lp) matrix of observations.

Conditional on the initial value x1, which we assume throughout to be available, the likelihood

function of (Φ,Σ) is

f(Y | Φ,Σ) ∝ |Σ|−T/2etr
{
−1

2
(Y −XΦ)Σ−1(Y −XΦ)′

}
, (6)

where etr(A) ≡ exp(Trace(A)). Letting

S(Φ) = (Y −XΦ)′(Y −XΦ), (7)

a commonly used estimate of (Φ,Σ) is the maximum likelihood estimate (MLE):

Φ̂M = (X ′X)−1X ′Y , Σ̂M =
1

T
S(Φ̂M ). (8)

Here S(Φ̂M ) is the sum of squares of MLE residuals. We assume that the sample size T is large

enough so that the MLEs of Φ and Σ exist with probability one.

Identifying restrictions for a VAR model may be obtained by restricting the elements of Φ and

Σ. Restrictions on Σ are typically obtained by restricting the elements of a re-parametrization of Σ,

and this is how we shall proceed. Motivated by condition (3) of the identified VAR, our focus will

be on restricting the elements of the p× p upper-triangular matrix Ψ satisfying

Σ−1 = ΨΨ′. (9)
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Note that the elements of the precision matrix Σ−1 (Σ−1 = (σij)) are natural quantities of interest

because −σij/
√
σiiσjj is a partial correlation coefficient. For example, if σ12 = 0, the first two

components of the errors are independent given the rest of the components. Letting ψij denote the

(i, j)th entry of Ψ, we assume without loss of generality that the diagonal elements satisfy ψii > 0.

Such a matrix Ψ without restriction on ψij is called normalized and just-identified by Sims & Zha

(1998).

Substantial progress has been made on Bayesian VAR modeling by imposing restrictions on the

Ψ matrix. Sims & Zha (1998), and Waggoner & Zha (2003) proposed Bayesian analysis based on

normal priors on Ψ and Φ. In each study, the authors assumed a given form for Ψ disallowing for

the possibility that alternative models could be supported by the data. Further, their approach did

not restrict attention to normalized Ψ, making MCMC posterior evaluation more difficult. Wag-

goner & Zha (2003) proposed a Gibbs sampler to simulate the columns of Ψ from an orthonormal

basis. In this paper, we focus on the selection of normalized VAR models for two reasons. First,

such a structure induces analytically convenient conditional posteriors forms. Second, and more

importantly, it assures that selected models are globally identified. An arbitrary Ψ with p(p− 1)/2

or more restrictions does not necessarily have a one-to-one mapping with the Σ matrix via (9). Due

to the nonlinear nature of the mapping (9), one can only derive local rank conditions for identifica-

tion of Ψ. Verifying the validity of the conditions for parameters in the posterior space is difficult.

Furthermore, even when the local rank condition is satisfied, the mapping from Σ to Ψ may still be

non-unique. An example of multiple mappings from Σ to Ψ given by Bekker & Pollock (1986) is

shown to satisfy the local identifying condition by Amisano & Giannini (1997). Once we restrict the

Ψ matrix to be upper-triangular, the mapping (9) is unique. Noting that Ψ satisfies (3), we use A0

and Ψ interchangeably throughout the rest of the paper.

An alternative re-parametrization for Σ that has been succesfully exploited by Pourahmadi

(1999), Smith & Kohn (2002) among others is the Cholesky factorization

Σ−1 = Γ′Λ−1Γ (10)

where Γ is a lower triangular matrix with 1’s on the diagonal and Λ is a diagonal matrix of the

eigenvalues of Σ. In particular, Smith & Kohn (2002), who developed an alternative approach to

finding parsimony in Σ−1, used the likelihood function to the power of the reciprocal of the sample

size as the prior on the elements of the Cholesky decomposition of the covariance matrix. Their

impressive approach allows for simpler posterior computation than does our approach. However, as

will be seen, our element-wise normal-inverse gamma prior is more flexible and allows researchers
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to incorporate elementwise prior information on the decomposed covariance matrix (e.g., based on

identification schemes of a structural VAR). Yet other approaches to finding parsimony can be

obtained by rewriting the covariance decomposition as a recursive regression model, 2 see Pourahmadi

(1999). The details and advantages of such approaches are given in an appendix.

As will be seen, our MCMC stochastic search algorithm for restrictions on Σ−1 has some appealing

properties. By construction, every simulated Σ−1 is positive definite. The simulation is iterative in

the column components of A0. Under our priors, all conditional posteriors are standard distributions

so that our MCMC can be carried out entirely with Gibbs sampling algorithms that appear to be

rapidly convergent.

2.2 Priors

In the traditional multivariate regression literature, Bayesian analysis of VAR models typically fo-

cuses on Φ or Σ as a whole, without component-wise specifications. For example, for priors on Σ, the

most common ones are the informative Wishart and the noninformative Jeffreys prior (See Geisser

(1965), Zellner & Tiao (1964)) or reference prior of Yang & Berger (1994). In the identified VAR

model, restrictions are placed on the components of A0. Sims & Zha (1998) assigned a multivariate

normal prior to the vectorized A0 matrix and simulated the posteriors. In the following, we propose

an alternative approach of imposing priors on the components of A0 that utilizes the structure of

the matrix and allows for easier Bayesian computation.

Let n = (h + Lp)p, the total number of unknown regression coefficients. Denote φ = vec(Φ) =

(φ1, φ2, · · · , φn)′. For j = 2, · · · , p, let ηj = (ψ1j , · · · , ψj−1,j)
′. Write η = (η′

2, · · · ,η′p)′ and ψ =

(ψ11, · · · , ψpp)
′. We now propose hierarchical priors for (φ,η,ψ). These priors are controlled by hy-

perparameters for which we suggest default settings when prior information is unavailable. Through-

out we use (· | ·) to denote conditional distribution and [· | ·] to denote conditional density.

(i) Priors on φ = vec(Φ) = (φ1, φ2, · · · , φn)′. Of the n = (h+Lp)p elements in φ, assume that

m are subject to restriction and the n −m others are always included in the model. The prior for

the elements that are included in every model is

φnon ∼ Nn−m(φnon,Mnon), (11)

where φnon,Mnon are hyperparameters. Natural choices for these hyperparameters are φnon = 0

and Mnon = cI with c large to reduce prior influence on φnon.

2We thank the associate edior and a referee for pointing this out.
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Denoting them elements considered for restriction by φm = (φs1, · · · , φsm), let γ = (γ1, γ2, · · · , γm)

be a vector of 0-1 variables and let D = diag(h1, · · · , hm) where

hi =




τ0i, if γi = 0,

τ1i, if γi = 1

with preselected constants τ0i < τ1i. Letting R be a preselected correlation matrix, the prior we

consider for φm, conditional on γ, is

(φm | γ) ∼ Nm(0,DRD), (12)

Note that under this prior, each element of φm has the distribution

(φsi | γi) ∼ (1 − γi)N(0, τ 2
0i) + γiN(0, τ2

1i). (13)

The prior (12) is controlled by the hyperparameters (τ0i, τ1i), i = 1, . . . ,m and R. For selecting

(τ0i, τ1i), which controls the mixture variances in (13), the basic idea is to set τ0i small and τ1i large

so that φsi will be restricted to be small when γi = 0 and unrestricted when γi = 1. In this way,

γ identifies restrictions on φ. Although the choice τ0i = 0 forces the hard restriction φsi = 0, it

may be more realistic to use a small nonzero value of τ0i, which also accommodates the possibility

of a small nonzero φsi that is unimportant and can be ignored. A rough strategy is to set τ0i

such that the effect of φsi on Y would be inconsequential when |φsi| ≤ 3τ0i, and to set τ1i so that

N(0, τ2
1i) would allocate substantial probability to all reasonable values of φsi. Alternatively, a default

semiautomatic approach would be to set τki = ckσ̂φsi
, where σ̂φsi

is the standard error associated

with the unconstrained least squares estimate of φsi, with values of c0 < c1 such as c0 = 1/10

and c1 = 10. These recommendations follow the considerations of George & McCulloch (1993) and

George & McCulloch (1997) who provide further guidance for such choices. Finally, a natural default

choice for R is I, under which the components of φm are apriori independent.

Combining the priors for φnon and φm, which we treat as independent of each other, we have

(φ | γ) ∼ N(φ
(γ)
0 , M (γ)).

For the unrestricted elements of φ, the corresponding elements of φ
(γ)
0 and M (γ) are given by (11).

For the other elements of φ, the corresponding elements of φ
(γ)
0 and M (γ) are given by (12).

(ii) Priors on γ = (γ1, γ2, · · · , γm). We assume the elements of γ are independent Bernoulli

pi ∈ (0, 1) random variables so that

P (γi = 1) = pi, P (γi = 0) = 1 − pi, i = 1, . . . ,m. (14)
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For each i, pi reflects the prior belief that φsi should be restricted. In the absence of such prior

information a natural default choice is pi ≡ .5. Alternatively one may prefer to set these pi larger

to guard against chance restriction selection due to multiplicities in the spirit of Jeffreys (1961, pp

253–255).

(iii) Priors on η = (ψ12, ψ13, ψ23, · · · , ψp−1,p)
′. For j = 2, · · · , p, let ωj = (ω1j , · · · , ωj−1,j)

′ be

a vector of 0-1 variables, and let Dj = diag(h1j , · · · , hj−1,j) where

hij =




κ0ij , if ωij = 0,

κ1ij , if ωij = 1.

with preselected constants κ0ij < κ1ij . Letting Rj be a preselected (j − 1) × (j − 1) correlation

matrix, the prior we consider for ηj, conditional on ωj , is

(ηj | ωj)
ind∼ Nj−1(0, DjRjDj), for j = 2, · · · , p. (15)

Under this prior, each element of ηj has distribution

(ψij | ωij) ∼ (1 − ωij)N(0, κ2
0ij) + ωijN(0, κ2

1ij), for i = 1, · · · , j − 1. (16)

The prior (15) is controlled by the hyperparameters (κ0ij , κ1ij), i = 1, . . . ,m, andRj , j = 2, . . . , p.

For selecting (κ0ij , κ1ij), which controls the mixture variances in (16), the basic idea is to set κ0ij

small and κ1ij large so that ψij will be restricted to be small when ωij = 0 and unrestricted when

ωij = 1. In this way, ω identifies restrictions on η. Settings for (κ0ij , κ1ij) can be chosen using

similar considerations for setting (τ0i, τ1i) as discussed in (ii) above. Finally, a natural default choice

for Rj is I(j−1)×(j−1), under which the components of ηj are apriori independent.

(iv) Priors on ω = (ω′

2, · · · ,ω′

p)
′. We assume the elements of ω are independent Bernoulli

qij ∈ (0, 1) random variables so that

P (ωij = 1) = qij, P (ωij = 0) = 1 − qij, i = 1, · · · , p, j = 1, · · · , p− 1. (17)

For each (i, j), qij reflects the prior belief that ψij should be restricted. In the absence of such prior

information a natural default choice is qij ≡ .5. Alternatively one may prefer to set these qij larger

to guard against chance restriction selection due to multiplicities in the spirit of Jeffreys (1961, pp

253–255).

(v) Priors on ψ = (ψ11, · · · , ψpp)
′. Assume that ψ2

ii
ind∼ gamma (ai, bi) distributions. Here

(ai, bi) are positive constants. So for i = 1, · · · , p, ψii has the prior density

[ψii] =
2bai

i

Γ(ai)
ψ

2(ai−1)
ii exp(−biψ2

ii), for ψii > 0. (18)

10



In the absence of prior information about ψii, a natural default choice is to render this prior nonin-

fluential with the hyperparameters (ai, bi) set to small values such as (.01, .01).

3 Stochastic Search for VAR Restrictions

Combining the likelihood function with a particular prior density defines a posterior probability dis-

tribution over the unknown parameters and the restriction indices γ and ω. The marginal posterior

distributions of γ and ω thus summarize all post-data restriction uncertainty. Although exhaustive

calculation of these posteriors is not feasible even in moderately sized problems, it is possible to sim-

ulate a Markov chain sample from these posteriors using MCMC methods. Because higher posterior

probability values will appear more often in such samples, the simulation of these Markov chains

is effectively a stochastic search for the higher posterior probability restrictions, i.e., those that are

more highly supported by the data. To carry out this MCMC search in our setting, we propose

an extension of the Gibbs sampling approach of George & McCulloch (1993). This simply entails

sequential substitution sampling from the full conditional posterior distributions of all the unknown

parameters and restriction indices. We now proceed to describe these conditional distributions and

the resulting MCMC algorithms. We first discuss stochastic search algorithms for Φ restrictions and

for Ψ restrictions separately, and then consider them together.

3.1 Restriction search for Ψ

In some (but not all) VAR modelling applications, economists begin with reasonably good prior

knowledge of the nature of the VAR regression coefficient matrix Φ, and so are interested only in

selecting restrictions for Ψ. For instance, macroeconomic time series such as stock price indices are

known to exhibit approximately random walk behavior (which is a basis of the well-known Minnesota

prior on Φ). Incorporating such prior information may improve the Bayesian inference on Φ as well

as Ψ.

When restrictions are not considered for Φ, we let the prior on φ = vec(Φ) be

φ ∼ N(φ0, Ξ0) (19)

instead of the mixture prior described in Section 2.2. The restriction index γ is thus ignored in this

setting. The conditional posterior distribution of φ given (Ψ;Y ) under this prior is

(φ | Ψ;Y ) ∼ N(φ̂, Ξ̂), (20)
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where

Ξ̂ =
{
ΨΨ′ ⊗ (X ′X) + Ξ−1

0

}
−1
, (21)

φ̂ = Ξ̂
{
ΨΨ′ ⊗ (X ′X)φ̂M + Ξ−1

0 φ0

}
. (22)

To derive the other conditional distributions under the remaining Section 2.2 priors, note that

the likelihood function (6) of (φ,Ψ) can also be rewritten as

f(Y | φ,Ψ) ∝ |Ψ|T etr
{
−1

2
Ψ′S(Φ)Ψ

}
, (23)

where S(Φ) is given by (7) and write S(Φ) = (sij). For j = 2, · · · , p, define sj = (s1j , · · · , sj−1,j)
′. Let

Sj be the upper-left j × j submatrix of S(Φ). Define v1 = s11 and vi = |Si|/|Si−1| for i = 2, · · · , p.
It is well known that vi = sii − s′iS−1

i−1si > 0 for i = 2, · · · , p. Thus (23) equals

f(Y | φ,Ψ) ∝
p∏

i=1

ψT
ii exp

[
−1

2

{ p∑

i=1

ψ2
iivi +

p∑

j=2

(ηj + ψjjS
−1
j−1sj)

′Sj−1(ηj + ψjjS
−1
j−1sj)

}]
. (24)

This expression allows us to derive the conditional posteriors of Ψ and ω.

Fact 1 (a) For given (φ,ω,ψ;Y ), the posterior distributions of η2, · · · ,ηp are independent, and

(ηj | φ,ω,ψ;Y ) ∼ Nj−1(µj ,∆j), (25)

where

µj = −ψjj{Sj−1 + (DjRjDj)
−1}−1sj , (26)

∆j = {Sj−1 + (DjRjDj)
−1}−1. (27)

(b) For given (φ,ω;Y ), the posterior distributions of ψ2
11, · · · , ψ2

pp are independent and

(ψ2
ii | φ,ω;Y ) ∼ gamma(ai +

1

2
T,Bi), (28)

where

Bi =




b1 + 1

2s11, if i = 1,

bi + 1
2

{
sii − s′i[Si−1 + (DiRiDi)

−1]−1si

}
, if i = 2, · · · , p.

(29)

(c) For j = 2, · · · , p and i = 1, · · · , j − 1, denote ω(−ij) = (ω1j, · · · , ωi−1,j, ωi+1,j, · · · , ωj−1,j)
′. For

given (φ,ψ,ω(−ij),ωk, k 6= j;Y ), ωij ∼ Bernoulli(uij1/(uij1 + uij2)), where

uij1 = [ηj | ω(−ij), ωij = 1]qij , (30)

uij2 = [ηj | ω(−ij), ωij = 0](1 − qij). (31)
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If Rj = Ij−1 in prior (15), for fixed j = 2, · · · , p and given (φ,ψ,ωk, k 6= j;Y ), ω1j, · · · , ωj−1,j are

independent. (ωij | φ,ψ,ωk, k 6= j;Y )
ind∼ Bernoulli (ũij1/(ũij1 + ũij2)), where

ũij1 =
1

κ1ij
exp

(
−

ψ2
ij

2κ2
1ij

)
qij, (32)

ũij2 =
1

κ0ij
exp

(
−

ψ2
ij

2κ2
0ij

)
(1 − qij). (33)

The proof of Fact 1 is in the appendix. Combining the above conditional distributions, the

MCMC stochastic search algorithm for sampling from the full posterior distribution [ψ,η,φ,ω;Y ] is

obtained as follows. Given initial values ψ0,η0,φ0,ω0, the kth cycle is obtained from ψ(k−1), η(k−1),

φ(k−1), ω(k−1) by sequentially simulating the steps:

1. draw (ψ(k) | φ(k−1),ω(k−1);Y ) from the gamma distribution (28);

2. draw (η(k) | ψ(k),φ(k−1),ω(k−1);Y ) from the normal distribution (25);

3. draw (ω(k) | η(k)) from the Bernoulli distribution (30);

4. draw (φ(k) | Σ(k),ω(k);Y ) from the normal distribution (20), where Σ(k) is computed from

ψ(k) and η(k).

3.2 Restriction search for Φ

We now consider stochastic search for restrictions only on the regression coefficients Φ. A special

example of such restrictions in applications is the specification of VAR lags. Researchers often

discover that quantities of interest change dramatically when the VAR lag is increased from L to

L + 1. The sensitivity of VAR estimates to lag specification highlights the familiar bias-variance

tradeoff: if the specified lag is too short the results may be very misleading, but if the specified lag

is too long the large number of parameters may result in erratic estimates. Furthermore, researchers

may find it desirable in some cases to include only some of the lag coefficients Aj (1 ≤ j ≤ L), or to

include only some of the elements in Aj but not the entire matrix. Our restriction research allows

for more than just lag specification, and can meet such needs.

In a study related to the selection of regression coefficients, Brown et al. (1998) extended the

approach of George & McCulloch (1993) to a multivariate regression setting. However, their multi-

variate model has a practical focus different from VARs. They also treated the covariance matrix Σ

as a nuisance parameter and integrated it out with respect to a conjugate normal-inverse Wishart

prior.

13



We now proceed to obtain the conditional distributions for the Gibbs sampler in this setting.

When restrictions are not considered for Ψ, we let the prior on η be

ηj
ind∼ Nj−1(0, Ωj−1), for j = 2, · · · , p (34)

instead of the mixture prior described in Section 2.2. Note that the restriction index ω is thus

ignored in this context. The conditional posterior of (ηj | ψjj,φ;Y ) is a normal distribution

N(−ψjj(Sj−1 + Ω−1
j−1)

−1sj−1,j, (Sj−1 + Ω−1
j−1)

−1).

For Φ̂M given in (8), denote φ̂M = vec(Φ̂M ). The likelihood function (6) of (φ,Ψ) can be

rewritten as

f(Y | φ,Ψ) ∝ |Ψ|T exp
[
−1

2
(φ− φ̂M)′{ΨΨ′ ⊗ (X ′X)}(φ− φ̂M ) − 1

2
tr{ΨΨ′S(Φ̂M )}

]
. (35)

The full conditional posteriors of φ, η, ψ, γ using the remaining Section 2.2 priors are obtained as

follows.

Fact 2 (a) The conditional posterior distribution

(φ | γ,η,ψ;Y ) ∼ Nm(µ,∆), (36)

where

µ = {(ΨΨ′) ⊗ (X ′X) + (M (γ))−1}−1({(ΨΨ′) ⊗ (X ′X)}φ̂M + (M (γ))−1φ
(γ)
0 );

∆ = {(ΨΨ′) ⊗ (X ′X) + (M (γ))−1}−1.

(b) Denote γ(−i) = (γ1, · · · , γi−1, γi+1, · · · , γm). Then under prior (12),

(γi | φ,γ(−i),η,ψ;Y ) ∼ Bernoulli(ui1/(ui1 + ui2)),

where

ui1 = [φ | γ(−i), γi = 1]pi, (37)

ui2 = [φ | γ(−i), γi = 0](1 − pi). (38)

If R = Im in prior (12), then given (φ,ηj , ψii, 1 ≤ i ≤ p;Y ), γi
ind∼ Bernoulli (ũi1/(ũi1 + ũi2)), where

ũi1 =
1

τ0i
exp

(
− φ2

i

2τ2
0i

)
pi, (39)

ũi2 =
1

τ1i
exp

(
− φ2

i

2τ2
1i

)
(1 − pi). (40)
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Proof. Part (a) is standard. For part (b), note that as in George & McCulloch (1993), the

conditional distribution (γi | φ,γ(−i),η,ψ;Y ) is not dependent on Y due to the hierarchial structure

of the model parameters.

Combining the above conditional distributions, the MCMC stochastic search algorithm for sam-

pling from the full posterior distribution [ψ,η,φ,γ;Y ] is obtained as follows. Given initial values

ψ0,η0,φ0,γ0, the kth cycle is obtained from ψ(k−1),η(k−1),φ(k−1),γ(k−1) by sequentially simulating

the steps:

1. draw (ψ(k) | φ(k−1);Y ) from the gamma distribution

(ψ2
ii | φ;Y ) ∼ gamma(ai +

1

2
T,Bi), (41)

where

Bi =




b1 + 1

2s11, if i = 1,

bi + 1
2

{
sii − s′i−1,i(Si−1 + Ω−1

i−1)
−1si−1,i

}
, if i = 2, · · · , p;

(42)

2. draw (η(k) | ψ(k),φ(k−1);Y ) from normal distribution

(ηi | ψii;Si) ∝ N(−ψii(Si−1 + Ω−1
i−1)

−1si−1,i, (Si−1 + Ω−1
i−1)

−1); (43)

3. draw (φ(k) | γ(k−1),Σ(k);Y ) from normal distribution (36) where Σ(k) is computed from ψ(k)

and η(k) ;

4. draw (γ(k) | φ(k)) from Bernoulli distribution (37).

3.3 Restriction search for Φ and Ψ

We now consider joint restriction search for both Φ and Ψ. For the MCMC sampling algorithm,

we need the full conditional distributions for θ ≡ (φ,γ,η,ω,ψ) given Y which can be obtained as

before. Note that the joint posterior of (φ,γ,ω,ψ) is

[φ,ψ,η;γ,ω;Y ] ∝ f(Y | φ,Ψ)[φ | γ][γ][η | ω][ω][ψ].

These conditional distributions and the MCMC algorithm are given in the appendix.

The stochastic search results for VAR restrictions can be used in a variety of ways. To begin

with, the most frequently visited restrictions tend to have higher posterior probability and hence are

promising candidates for further analysis. For these candidates, the method proposed by Chib (1995)
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can be used to calculate marginal likelihoods and posterior odds ratios. If each set of restrictions is

viewed as a VAR identification scheme, then odds ratios provide a natural test of identifying schemes.

As opposed to the commonly used F tests for Φ identification, odds ratios for the most frequently

visited restrictions offer a promising Bayesian alternative.

The stochastic search results can also be used to obtain improved VAR forecasts as compared

for example to the benchmark VAR forecasts that impose no restrictions Φ and Ψ. In Section

4, we compare these estimates in simulated examples. For evaluation, we use average MSE to

compare point forecasts and Kullback-Liebler divergence to compare predictive density estimates.

The technical details of average MSE and Kullback-Liebler divergence are given in the appendix.

4 Simulated Numerical Examples

We use two simulated numerical examples to illustrate the performance of the stochastic search

algorithm. For each example, we simulate 100 samples of size T = 50, and for each sample we

conduct stochastic search by simulating a Markov Chain of 50, 000 cycles (after 10, 000 burn-in

cycles). Simulation results change little when the Markov Chain length was reduced to 20, 000 cycles,

suggesting that the Markov chains converge rather quickly. The stochastic search is evaluated in two

ways, the effectiveness in finding the true data generating model and the forecast performance.

The stochastic search for restrictions is conducted in two steps. First, for each sample we run the

appropriate MCMC search algorithm laid out earlier in the paper. We report averages over all the

runs over all the samples of the restriction indices γ, ω and the parameter matrices Ψ, Φ. Three

types of estimators are compared: (1) MLE; (2) UB, which is based on the benchmark unrestricted

Bayesian VAR; (3) RB, which is obtained by averaging the restricted Bayesian VAR models that

are visited over the stochastic search. Our second criterion is predictive performance. We report the

relative performance of average MSE of the three estimates listed above. We also report the Kullback-

Liebler difference between the UB predictive density and the RB predictive density described in the

appendix.
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Example 1 Consider a six-variable VAR with one lag and with parameters

Φ =




1 1 1 1 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




and Ψ =




1 .5 .5 .5 .5 .5

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




. (44)

In all Bayesian models, the intercept term is assigned a normal prior with a zero mean and a

variance of 25. For the UB estimators, the Minnesota prior (which is centered at a random walk

on each variable) is applied to Φ with the covariance matrix of the prior being diagonal and with

variance of 25. For the restriction priors from Section 2.2 for RB, the hyperparameters were set at

pi = .5, qij = 0.5, a = b = .01, R = I, Rj = Ij , (τ0i, τ1i) = (0.1, 5) and (κ0ij , κ1ij) = (0.1, 5).

The average of the MLEs for Ψ and Φ over the 100 samples are

Φ̂MLE =




1.28 .76 .74 1.04 .92 .80

.80 .12 .13 .12 .13 .13

.04 .75 .02 .05 .01 .05

.04 .04 .74 .04 .04 .02

.02 .03 .04 .74 .04 .06

.06 .02 .03 .02 .74 .02

.04 .05 .04 .04 .03 .72




, Ψ̂MLE =




1.85 .38 .38 .39 .39 .38

.00 1.20 -.16 -.15 -.13 -.18

.00 .00 1.16 -.18 -.16 -.18

.00 .00 .00 1.15 -.18 -.22

.00 .00 .00 .00 1.10 -.24

.00 .00 .00 .00 .00 1.05




.

Although the Minnesota prior on Φ shrinks the posterior of the parameter matrix towards random

walk models, such shrinkage is limited due to the large variance of the prior. Thus, as we would

expect, the values for the MLEs and the UB estimates are similar. As we will see, the forecasting

performance of the UB estimator is also is similar to that of the MLE.

We next turn to the joint restriction search for Ψ and Φ. The average of the restriction indices

γ and ω over all stochastic searches over all 100 samples are

γ̂ =




1.00 1.00 1.00 1.00 1.00 1.00

1.00 0.04 .05 .05 .05 .05

.04 1.00 .04 .04 .04 .04

.04 .05 1.00 .05 .04 .04

.04 .04 .04 1.00 .04 .05

.04 .04 .04 .04 1.00 .04

.04 .04 .04 .04 .04 1.00




, ω̂ =




1.00 .58 .55 .53 .52 .50

.00 1.00 .08 .08 .07 .08

.00 .00 1.00 .07 .08 .08

.00 .00 .00 1.00 .08 .10

.00 .00 .00 .00 1.00 .09

.00 .00 .00 .00 .00 1.00




.

These γ̂ and ω̂ averages illustrate how often the stochastic search is visiting the correct restrictions. In

Table 1, we report how often over all cycles and all samples the visited restriction indices completely
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Table 1: The frequency of matching the exactly correct restrictions

Φ Restrictions Ψ Restrictions Φ and Ψ Restrictions

30.9% 1.7% 0.6%

matched every element of the true model. For the joint restriction search for Ψ and Φ, a perfect

match was obtained about 0.6% of the time. Although this may appear small, it is quite reasonable

if we note that (with intercepts always included) the number of parameters subject to selection is

6 × 6 + 6(6 − 1)/2 = 51 yielding 251 restriction candidates. Thus, the chance of randomly picking

the true model is much less than 0.6%. Table 1 indicates that in this example, matching the correct

Ψ index is less likely than matching the correct Φ index. Since the MLE of Ψ is quite biased, the

posteriors of some of the off-diagonal elements of Ψ are not centered at the true values. When we

impose no restrictions on the regression coefficients Φ, the chance that the correct Ψ is matched out

of the 215 possible models is 1.7%, which is relatively large. However, with all elements of Ψ included,

the stochastic search matches the correct index for Φ 30.9% of the time, which is remarkable given

that there are 236 restriction candidates.

For each sample, the average RB posterior mean estimates of Ψ and Φ are

Φ̂ =




1.11 .95 .93 1.12 1.05 .98

.87 .06 .07 .06 .07 .06

.03 .80 .03 .04 .02 .04

.02 .04 .81 .04 .04 .03

.02 .03 .03 .80 .03 .04

.03 .03 .03 .03 .81 .03

.02 .04 .03 .03 .03 .79




and Ψ̂ =




1.09 .42 .40 .41 .39 .38

.00 1.08 -0.04 -0.03 -0.03 -0.04

.00 .00 1.08 -0.03 -0.03 -0.03

.00 .00 .00 1.11 -0.03 -0.04

.00 .00 .00 .00 1.10 -0.04

.00 .00 .00 .00 .00 1.10




.

We next examine the one-step ahead forecasting MSE improvement over the MLE of the UB and RB

posterior mean estimates of Φ. Table 2 shows that there is little improvement by the UB estimates

over the MLE. This result is expected given the diffuse nature of the UB prior. The RB estimator

performs substantially better than the UB estimator, suggesting that good restrictions were often

selected. Note that a 66% improvement means that the forecast error of restricted VAR is only

one-third of that of the unrestricted VAR. This is consistent with the previous observation that our

selection procedure often closely reflected the correct restriction indices.

Our second measure of predictive performance, the KL distance between the UB predictive density

and the RB predictive density is reported in Table 3 for the 100 samples. The consistently large
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Table 2: Forecast improvement over the MLE

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

UB 8.5% 3.7% 5.2% 2.9% 6.3% 6.6%

ARB 65.5% 53.5% 61.5% 46.5% 67.3% 62.4%

Table 3: KL distance between the UB and ARB predictive densities

Mean SD Min Max

44.36 10.66 20.15 71.64

KL distance shows that the RB predictive density is substantially better. The stochastic search

restrictions have overcome over-fitting and resulted in better predictive performance.

We now consider stochastic search for restrictions for Φ and Ψ separately. One of our goals

is to shed light on whether the restriction search for Ψ influences the restriction search for Φ and

vice versa. Using the same data as before, but considering restriction only for Φ, the average of

the stochastic search values of the restriction index γ are almost the same as what we previously

observed. Again using the same data, but now considering restriction only for Ψ, then the averages

of the Φ posterior mean estimates are close to that of the MLE. Furthermore, the average restriction

index ω under restriction search for Ψ only is not as good as under the joint search. This suggests

that restriction of the regression coefficients Φ helps in selecting the correct restrictions for Ψ.

Example 2 In Example 1, we saw that when restrictions are appropriately imposed on Φ, stochas-

tic search procedures improve on benchmark UB procedures. In this example, we see that even when

selection is ineffective in selecting the correct restrictions on Φ, the stochastic search results can still

be used to obtain substantial forecasting improvements. Consider a four-variable VAR with two lags

19



and parameters

Φ =




1 1 1 1

.45 0 0 0

0 .50 0 0

0 0 .55 0

0 0 0 .60

.40 0 0 0

0 .40 0 0

0 0 .40 0

0 0 0 .40




and Ψ =




1 .5 .5 .5

0 1 0 0

0 0 1 0

0 0 0 1




. (45)

Proceeding as we did in Example 1, the average of the MLEs of Ψ and Φ are

Φ̂MLE =




2.32 2.03 1.72 -.25

.31 .02 .04 .04

.01 .36 .02 -.02

-.03 .03 .44 .08

-.03 .01 .05 .54

.27 .04 .03 .12

.02 .25 .01 .02

.03 .01 .26 .05

.04 .01 .03 .40




and Ψ̂MLE =




1.56 .43 .46 .45

0 1.09 -.22 -.17

0 0 1.07 -.25

0 0 0 1.02



.

The average of the restriction indices γ and ω are

γ̂ =




1.00 1.00 1.00 1.00

.87 .06 .06 .06

.05 0.87 .05 .05

.04 .05 .93 .06

.03 .03 .04 .97

.15 .05 .06 .07

.05 .13 .05 .05

.04 .05 .16 .05

.03 .03 .04 .42




and ω̂ =




1.00 .53 .56 .49

.00 1.00 .08 .06

.00 .00 1.00 .07

.00 .00 .00 1.00



.

From these averages, we can see that the restrictions on Φ visited by the stochastic search often

incorrectly exclude the lag 2 coefficients, although the restrictions on Ψ seem to accurately reflect the

nature of the true data-generating model. Consequently frequencies of selecting the data generating

parameter Φ in Table 4 are substantially lower than their Table 1 counterparts.
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Table 4: The frequency of matching the exactly correct restrictions

Φ Restrictions Ψ Restrictions Φ and Ψ Restrictions

0.02% 14.1% 0%

The averages of the posterior means of Ψ and Φ are

Ψ̂ =




1.03 .48 .51 .48

.00 1.04 -0.02 -0.02

.00 .00 1.08 -0.03

.00 .00 .00 1.06




and Φ̂ =




2.16 2.20 1.87 .41

.41 .02 .02 .03

.01 .44 .02 -.01

-.00 .01 .50 .04

.00 .01 .04 .59

.20 .01 .02 .06

.01 .16 .01 .00

.01 .02 .21 .02

.00 .02 .04 .38




.

In spite the fact that the restrictions on Φ were not selected as well as in Example 1, Table 5

shows that improvement in one-step ahead forecasting MSE by the RB estimators over the MLE and

UB estimators is still substantial here. Furthermore, Table 6 shows that the KL distance between

the UB and RB predictive densities is also substantial, although not as quite as large as in Table 3.

Table 5: Forecast improvement over the MLE

i = 1 i = 2 i = 3 i = 4

UB 3.4% 5.3% 1.5% 4.1%

RB 40.2% 47.8% 19.6% 44.5%

Table 6: KL distance between the UB and RB predictive densities

Mean SD Min Max

16.35 5.28 3.25 29.26
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5 An Empirical Analysis of PPI to CPI Inflation Transmission

We now apply the stochastic search approach to an empirical inquiry. The issue at hand is how

Producer Price Index (PPI) inflation is passed through different stages of production to Consumer

Price Index (CPI) inflation. The dynamics of inflation pass-through is a complicated matter. Until

now, the most common tool for examining the problem has been unrestricted VAR. As illustrated by

our numerical examples, restricted VAR models via stochastic search can provide sharper inference

and substantially improve forecasting over unrestricted VARs.

There are several explanations why PPI inflation of crude materials may lead CPI inflation.

Blomberg and Harris (1995) argued that the commodity market for crude materials is competitive

when prices quickly respond to new information on future demand and supply. In contrast, the prices

of final goods and consumer prices respond more slowly because of market rigidities such as menu

costs or long-term contractual arrangements. The existence of commodity markets makes it possible

for investors to hedge against inflation, bidding up commodity prices when investors anticipate a rise

in inflation. But the pass-through of crude material price inflation to CPI inflation is not definitive

for a number of reasons.

First, CPI and PPI differ in construction. CPI includes services, imports, distribution costs, and

sales taxes, while PPI does not. PPI includes capital equipment while CPI does not. Second, shifts

in relative demand of commodities and final goods, and tightening of monetary policy in response

to commodity price inflation, may weaken the link between the commodity price inflation and CPI

inflation. And even if inflation pass-through from crude materials to CPI does occur, it may be

a lengthy process. When input price increases, firms and industries may adjust prices after short

delays, but these short lags cumulate through a chain of production, resulting in a longer delay in

changes of aggregate output prices and consumer prices, (see Mattey (1981)). In addition to the

cumulative delays, there are also complications in whether and how price changes in a particular

component of PPI are passed to a similar component of CPI. It is also possible that because of

effects such as shocks in transportation costs, the CPI for a given component may change while

the PPI component does not. This all makes the overall response of CPI to PPI inflation unclear.

The theoretical ambiguities of PPI to CPI inflation transmission make it a very interesting empirical

question.

Existing empirical studies show that VAR estimates of the response of CPI inflation to commodity

price inflation are generally unstable over sample periods. Blomberg & Harris (1995) and Furlong

& Ingenito (1996) found that commodity price inflation in the 1970s and early 1980s led to CPI
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inflation, but this did not happen afterwards. Clark (1995) showed that the extent to which PPI

inflation predicts CPI inflation varies through time. Weinhagen (2002) studied price transmission

through various stages of production. He found that for the sample period of 1974 to 1989, inflation

of the PPI for crude materials and intermediate goods were good predictors of CPI inflation, but for

the period of 1990 to 2001 only inflation of the PPI for finished goods predicts CPI inflation. These

studies used benchmark VAR models without considering the restriction selection issue. It is widely

acknowledged that CPI inflation data shows an upward bias and that industry-level PPI and CPI

relationship may be nonlinear. VAR may be inadequate to model the nonlinear relationship and it

is useful for to consider more flexible modelling alternatives in future research.

In the following, we limit our scope to restrictions of a VAR of seven-variables, including the

monthly PPI and CPI inflation of the U.S. economy. Our primary interest lies in the contempora-

neous and lag transmission of PPI inflation in various stages of the supply chain. The variables are

PPI of foodstuff and feeds (FF), PPI of crude materials for processing (CM), PPI of intermediate

materials and supplies (IM), PPI of finished consumer goods (FC), CPI for urban consumers (CPI),

unemployment rate (UNEMP) and Federal Funds Rates (FFR). The unemployment rate is a mea-

sure of the state of the economy, and the Federal Funds rates capture the stance of monetary policy.

Motivated by the findings in the literature on the change of pattern of inflation transmission, we

will compare the results of the two sample periods, the first sample period is from January 1969 to

December 1980, the second sample period is from January 1981 to August 2005.

To allow for long delays in inflation transmission we use a VAR with a lag length of 12. We assume

that the intercept term is always included. The total number of parameters in Ψ is 28 and in Φ is

595. Given the limited number of sample observations, there is potential for substantial overfitting,

so restriction selection may be particularly valuable here. Given the large number of parameters, we

ran the MCMC for 20, 000 cycles excluding 10, 000 burn-in iterations. The MLEs of the components

of φ (the vectorized regression coefficient Φ) are plotted in Figure 1 and the posterior means of the

restriction indexes on the regression coefficients γ in Figure 2. The posterior means and standard

deviations of the components of φ are plotted in Figures 3 and 4 for the two samples.

The left column of Figure 1 plots the MLEs of the 85 parameters of φ in each equation for the

sample 1969 to 1980. The right column plots the same set of parameters for the sample 1981 to

2005. These two columns show markedly different patterns, indicating very different MLE estimates

for the two sample periods.

Figure 2 plots the model selection indexes of the regression coefficients for the two sample periods.
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The first parameter, the intercept is selected with probability one in all equations by design. For

the 1969-1980 sample, in the PPI FF and CM equations, the first lag of CPI and the fourth lag

of FC are selected with high frequencies. Figure 3 shows that these estimates are negative. The

difference between the restricted and unrestricted VARs Φ lies in the size of the coefficients. The

former is larger than the latter but often switch signs after each lag, showing a sign of overfitting.

For the sample 1969-1980, the model selection index of the CPI equation show that most of the lags

of the variables in the model are not useful to predicting CPI, except for the ninth lag of CPI. This

suggests that most variations in CPI for the sample period are unexpected. The inflation rate of

PPIs are not useful predictors of CPI inflation because the former are quite erratic while the latter is

quite stable. This conclusion differs from the earlier literature on the transmission of PPI shocks to

CPI, which are usually based on impulse responses of unrestricted VARs. The impulse responses are

nonlinear functions of the decomposition of the precision matrix, Ψ, and the regression coefficients.

The unrestricted VAR estimates of regression coefficients often show alternating signs from one lag

to another. For example, for the 1969-1980 sample the posterior mean (posterior standard deviation)

of the CPI equation of the first and second lags of the PPIs: the first lag of FF .076(.043), the second

lag of FF −.029(.044); first lag of CM −.091(.059), the second lag of CM .040(.059); first lag of ITM

−.018(.059), the second lag of ITM .010(.058). The estimates of these coefficients in the restricted

VAR are in much smaller scale. This pattern holds for both the pre 1980 and the post 1980 samples.

There is a strong correlation between the unexpected CPI inflation and shocks to some components

of PPI inflation. We will discuss this link in the Ψ matrix later. In the ITM equation, the second

lag of CPI is selected about half of the time and the estimate is positive.

The posterior mean of the restriction index matrix γ, the MLE and Bayesian estimate of φ all

indicate that there is limited pass-through of PPI inflation of foodstuff and feeds and PPI inflation of

crude materials to PPI of finished goods and CPI. There is also limited pass-through of PPI inflation

of intermediate materials to PPI of finished goods. For the sample 1969-1980 the estimates of Φ

show that the sum of the first four lags of FF in the CPI equation is .018 and the sum of the first

four lags of FC in the CPI equation is .105.

The UNEMP equation is close to a random walk, with the first lag of UNEMP being the only

important regressor. The FFR equation contains its own lag and the first lag of UNEMP, as well

as distant lags of CPI. This pattern suggests that for the earlier sample, variations in FFR was

largely endogenous in response to past fluctuations in unemployment rate and CPI. The notion of

endogenous FFR is confirmed by Figure 3, which shows that in the FFR equation the first lag of

UNEMP has a large negative estimate, the third lag of ITM as well as the fifth to seventh lags of
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CPI have large and positive estimates. FFR is persistent, as indicated by its positive own lag.

While the pattern that the restricted VARs differs from unrestricted VARs holds for the 1981-

2005 sample and the 1969-1980 sample, there are some differences in the estimates of restricted VARS

for the two samples. Comparison of the right columns in Figures 4 and 3 show that the regression

coefficients in the CF and CM equations are smaller for the 1981−2005 sample than the 1969−1980

sample. The estimated FFR equation is also different for the two samples. In the 1969−1980 sample,

FFR is negatively correlated with the lag of UNEMP, for the 1981 − 2005, FFR is much closer to a

random walk, and is not as strongly correlated with the lags of other variables.

For the 1969 − 1980 period, the posterior mean of the restriction index matrix ω is

ω̂ =




FF CM IM FC CPI UNEMP FFR

FF 1.000 1.000 .067 .146 .041 .031 .026

CM 1.000 0.357 .790 .039 .034 .028

IM 1.000 .195 .968 .117 .069

FC 1.000 .594 .063 .060

CPI 1.000 .303 .130

UNEMP 1.000 .645

FFR 1.000




.

Most of the upper-triangular elements of the index ω are close to zero. The significant (larger than

0.3 and in boldface) contemporaneous correlations are: FF with CM, CM with IM, IM with FC, IM

and FC with CPI, CPI with UNEMP, and UNEMP with FFR. The corresponding posterior mean

(posterior standard deviation in parentheses) of Ψ is

Ψ̂ =




.295 -1.739 -0.067 -.067 .060 .056 .020
(.019) (.136) (.112) (.150) (.077) (.065) (.063)

2.397 -.233 -.475 -.022 .000 .004
(.183) (.163) (.228) (.095) (.086) (.082)

2.421 -.139 -1.054 .081 -.036
(.186) (.226) (.339) (.181) (.127)

2.985 -.533 -.015 -.002
(.232) (.466) (.122) (.120)

6.579 -.337 -.014
(.567) (.619) (.288)

4.043 -.746
(.315) (.634)

1.335
(.110)




.

Consistent with the restriction selection result, most of the elements of Ψ are close to zero except for

the elements with substantial probability of being selected. We use ε = (εFF , εCM , εIM , εFC , εCPI ,

εUNEMP , εFFR)′ to denote the VAR residuals (which can be interpreted as unexpected inflations)

25



and u to denote the structural shock vector. The covariance of u is the identity matrix. The

point estimates of the Ψ matrix give restrictions on how regression residuals relate to one another.

For instance, the fifth column of Ψ implies that 6.579εCPI = −.060εCFF + .022εCM + 1.054εIM +

.533εFC + uCPI , suggesting unexpected CPI inflation roughly equals the sum of one-sixth of that of

intermediate materials PPI, one-twelveth of that of finished goods PPI, and an idiosyncratic shock

with a standard deviation of about .152%.

In comparison to the posterior mean estimator of Ψ, the MLE of Ψ shows much larger coeffi-

cients, which gives a much different picture of the relationship among unexpected inflations from the

Bayesian estimates. For example, the fifth column of Ψ of the MLE is

8.096εCPI = −1.898εFF − 1.789εCM + 4.189εIM + 4.592εFC + uCPI .

Clearly the Bayesian estimates suggest that the unexpected CPI inflation is close to a structural

shock, while the MLE shows a strong negative correlation between the unexpected CPI inflation

with the unexpected PPI inflation of foodstuff and feeds and with unexpected PPI inflation of crude

materials but a positive one with the unexpected PPI inflation of intermediate materials and finished

goods. These contemporaneous relationships are hard to explain given the literature discussed earlier

in this section. The Bayesian estimates obtained through restriction averaging make more economic

sense.

For the sample 1981 to 2005, the estimates of the contemporaneous relationship of VAR variables

are as follows. The posterior mean of the restriction index matrix ω is

ω̂ =




FF CM IM FC CPI UNEMP FFR

FF 1.000 0.062 .022 .024 .023 .020 .025

CM 1.000 .324 .027 .021 .023 .019

IM 1.000 1.000 .935 .074 .408

FC 1.000 1.000 .090 .060

CPI 1.000 .997 .416

UNEMP 1.000 1.000

FFR 1.000




.

The main difference between the pre and post 1981 sample is that post 1981 the shock in FF is no

longer correlated with unexpected CM, and unexpected FFR is much more strongly correlated with

unexpected shocks in other variables, IM, CPI, and UNEMP. This is in contrast to the random walk

pattern of the FFR regression coefficients in the post 1981 sample. An explanation to the change in

the lag and contemporaneous estimates is that the FFR has become the target variable of monetary

policy since the early 1980s and has responded more quickly to unexpected changes in the economy,
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whereas in the early sample its variations reflects more of passive adjustments to changes in other

macroeconomic variables. As in the pre-1981 sample, the following post-1981 posterior mean of Ψ

(with posterior standard deviation in parentheses) is quite different from the MLE.

Ψ̂ =




0.477 -.144 .029 -.044 .023 .014 -.058
(0.021) (.030) (.031) (.031) (.032) (.030) (.031)

.336 -.249 -.074 .016 .032 .009
(.015) (.025) (.027) (.029) (.024) (.029)

2.995 -2.386 -.867 -.050 -.287
(.141) (.227) (.317) (.121) (.294)

3.138 -1.241 .081 .027
(.146) (.234) (.125) (.115)

7.686 -1.815 -.431
(.369) (.461) (.567)

2.204 -4.610
(.097) (.261)

2.034
(.096)




.

The existing literature that are based on MLE or unrestricted VARs show erratic coefficients in

PPI and CPI inflation equations. In comparison, the Bayesian estimates based on stochastic search

are much more stable. The empirical application of the stochastic search approach yields additional

insights to the relationship between PPI and CPI inflations.

6 Concluding Remarks

Vector Autoregressive models have been widely used for macroeconomic forecasting and policy anal-

ysis. It is recognized that the conventional unconstrained VARs are over-parameterized. To remedy

this problem, we propose a Bayesian stochastic search for VAR model restrictions. For this pur-

pose, we develop an MCMC algorithm that visits high posterior probability elements of both the

VAR regression coefficients matrix and error variance matrix. Numerical simulations show that the

stochastic search algorithm is quite effective in visiting the data generating model in some cases and

can yield improved predictions even when it does not.

To illustrate the important practical potential of our approach, we apply the method for selection

among models of inflation transmission from the PPI of crude materials to the PPI of finished

goods and the CPI. We find that for the sample period from 1969 to 2005, the Bayesian estimates

of a conventional unconstrained VAR and a restricted VAR via stochastic search depict different

dynamics relationship of PPI and CPI inflations as well as different contemporaneous relationships

of unexpected inflations.
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A number of methodological issues remain. As is typical of stochastic search applications, the

number of restrictions actually visited by the MCMC simulation is only a small portion of all possible

restrictions. Because of the enormous number of potential restrictions for a typical VAR model, the

general issue of mixing should be investigated. Although the similar results we obtained over many

different runs are comforting, our limited investigations has not really shown that our stochastic

search will avoid getting stuck in a posterior mode. As we noted in the introduction, VAR models

may be too restrictive for some economic data. It is useful to examine the performance of the proposed

stochastic search method in more complicated models with time-varying regression coefficients and

variance parameters such as those examined by West & Harrison (1989) and applied by Quintana &

Putnam (1996).

7 Appendix: Technical Issues

7.1 An alternative framework for restriction selection for Ψ

The VAR model of p-column vector yt is

y′t = z′tC +
L∑

j=1

y′t−jAj + ε′t, (46)

for t = 1, · · · , T, where ε1, · · · , εT are independent identically distributed Np(0,Σ). To decompose Σ

in the framework of Pourahmadi (1999), consider the following regression:

εtj =
j−1∑

k=1

θjkεtk + ξtj (47)

where j = 1, · · · , p and t = 1, · · · , T , and where IE(ξtξ
′

t) = Λ = diag(λ1, · · · , λp). Writing (47) in

matrix form we obtain

Γεt = ξt, (48)

where εt = (εt1, · · · , εtp)′ and

Γ =




1 0 · · · 0

−θ21 1 · · · 0
...

. . .
. . .

...

−θp1 −θp2 · · · 1

.




(49)

From (48) it follows that lower triangular matrix Γ diagonalizes Σ.

ΓΣΓ′ = Λ. (50)
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The idea of the regression based decomposition of the covariance matrix is similar to the approach

taken in this paper, but there is a difference between the two approaches. Regression (47) involves the

errors of the VAR, which are not directly observable and need to be computed by through regression

coefficients C,A1, · · · ,AL in each MCMC cycle. If we conduct our SSVS restriction selection of

(47), we will develop a recursive structure of conditional posterior similar to what we did in this

paper. In particular, the conditional posterior column vectors of Γ′ are f(Γ′|Y ,θ), (θ represents the

other parameters in the model) can be rewritten as
∏

j f(γj|Sj ,λj), (Sj represents the jth principle

minor of S, the sq of MLE errors). The selection on Ψ in this paper is more straightforward than

conducting our SSVS restriction selection on (47) for Γ′.

7.2 Proof of Fact 1.

Proof. For i = 2, · · · , p, the conditional posterior density of (ψ2
ii, i = 1, · · · , p; ηj, j = 2, · · · , p)

given (φ,ω;Y ) is given by

[ψ2
ii, i = 1, · · · , p;ηj, j = 2, · · · , p | φ,ω;Y ]

∝
{ p∏

i=1

(ψ2
ii)

ai+
T

2
−1

}
exp

[
−1

2

{ p∑

i=1

ψ2
ii(wi + 2bi)

}]
exp

{
−1

2

p∑

i=2

η′iDiRiDiηi

}

× exp
{
−1

2

p∑

i=2

(ηi + ψiiS
−1
i−1si)

′Si−1(ηi + ψiiS
−1
i−1si)

}

=

{ p∏

i=1

(ψ2
ii)

ai+
T

2
−1

}
exp

{
−

p∑

i=1

ψ2
iiBi −

1

2

p∑

j=2

(ηj − µj)
′∆−1

j (ηj −µj)
}
,

where µj is defined in (26) and ∆j in (27). Part (a) is obvious. For part (b), the case when i = 1

clearly holds; when i = 2, · · · , p the result follows by integrating out ηj.

7.3 Algorithm with restrictions on both Φ and Ψ

Combining all the conditional distributions, the following MCMC stochastic search algorithm for

sampling from the full posterior distribution (ψ,η,φ,γ,ω;Y ) is obtained. Given initial values

ψ0,η0,φ0,γ0,ω0, the kth cycle is obtained from ψ(k−1),η(k−1),φ(k−1),γ(k−1),ω(k−1) by sequentially

simulating the steps:

1. draw (ψ(k) | φ(k−1),γ(k−1),ω(k−1);Y ) from the gamma distribution

(ψ2
ii | φ,γ,ω;Y ) ∼ gamma(ai +

1

2
T,Bi), (51)

29



where

Bi =




b1 + 1

2s11, if i = 1,

bi + 1
2

{
sii − s′i[Si−1 + (DiRiDi)

−1]−1si

}
, if i = 2, · · · , p.

(52)

2. draw (η(k) | ψ(k),φ(k−1),γ(k−1),ω(k−1);Y ) from normal distribution (53);

(ηj | φ,γ;ω,ψ;Y ) ∼ Nj−1(µj ,∆j), (53)

where

µj = −ψjj{Sj−1 + (DjRjDj)
−1}−1sj , (54)

∆j = {Sj−1 + (DjRjDj)
−1}−1. (55)

3. draw (ω(k) | η(k),ψ(k),φ(k−1),γ(k−1),ω(k−1);Y ) from Bernoulli distribution (30).

4. draw (φ(k) | γ(k−1),Σ(k),ω(k);Y ) from normal distribution (56), where Σ(k) is computed from

ψ(k) and η(k)

(φ | γ,η,ω,ψ;Y ) ∼ Nm(µ,∆), (56)

where

µ = {(ΨΨ′) ⊗ (X ′X) + (M (γ))−1}−1({(ΨΨ′) ⊗ (X ′X)}φ̂M + (M (γ))−1φ
(γ)
0 );

∆ = {(ΨΨ′) ⊗ (X ′X) + (M (γ))−1}−1.

5. draw (γ(k) | φ(k),ψ(k),η(k),ω(k);Y ) from Bernoulli distribution (37).

7.4 Average MSE for point forecasts

A standard frequentist criterion for forecast evaluation is the average quadratic deviation of the

forecast from the actual value. The j-step-ahead forecast error at period T can be decomposed into

two orthogonal parts:

yT+j − ŷT+j | Φ̂ = (yT+j − ŷT+j | Φ) + (ŷT+j | Φ− ŷT+j | Φ̂),

where ŷT+j | Φ and ŷT+j | Φ̂ are the forecasts conditional on observations up to period T . They can

be calculated from their corresponding VAR models by setting the error term to zero after period T .

The first term in the right-hand-side above is the sampling error, and the second term is the

forecasting error attributable to the deviation of the estimates from the true parameters. When the
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true parameters are known, as is the case in our Section 4 simulation examples, this second term can

be calculated for alternative estimators. For the comparison of forecasting procedures it suffices to

compare the mean squared errors (MSE) of the second term since the first term does not depend on

Φ̂. For N sample estimates Φ̂(1), . . . , Φ̂(N), the average one-step-ahead MSE is

ÎE(Φ− Φ̂)′x′

TxT (Φ− Φ̂) =
1

N

N∑

n=1

(Φ− Φ̂(n))′x
(n) ′

T x
(n)
T (Φ− Φ̂(n)).

7.5 Kullback-Liebler divergence for predictive densities

In VAR modelling applications, a predictive density provides a more comprehensive forecast than

simple point estimates. For a VAR model in matrix form (4), namely Y = XΦ + ε, this is the

problem of predicting a future observation Z based on historical data Y by an estimate of its density

f(Z | Y ,Φ,Σ). Here Z is a g× p matrix where g is the forecasting horizon. Let Φ = (c,B1, · · ·BL)

and z′j be the jth row of Z. If g ≥ L, then under (4)

(z1 | Φ,Σ;Y ) ∼ Np(c+B1yT +B2yT−1 + · · · +BLyT−L+1,Σ);

(z2 | z1,Φ,Σ;Y ) ∼ Np(c+B1z1 +B2yT + · · · +BLyT−L+2,Σ);

· · · ,

(zg | zg−1, · · · , z1,Φ,Σ;Y ) ∼ Np(c+B1zg−1 +B2zg−2 + · · · +BLzg−L,Σ).

The multi-step prediction of Z conditional on the model, parameters, and data can be written in a

hierarchical fashion. The case when g < L can be derived analogously. Thus the predictive density

f(Z | Φ,Σ;Y ) = f(zg, zg−1, · · · , z1 | Φ,Σ;Y ) can be obtained via the iterated expression

f(zg, zg−1, · · · , z1 | Φ,Σ;Y ) = f(zg | zg−1, · · · , zg−L,Φ,Σ;Y )f(zg−1 | zg−2, · · · , zg−L+1,Φ,Σ;Y )

· · · f(zL+1 | zL · · · , z1,Φ,Σ;Y ) · · · f(z2 | z1,Φ,Σ,Y )f(z1 | Φ,Σ;Y ).

Letting π(Σ,Φ | Mk) be the prior distribution on Σ,Φ under model Mk, the Bayes predictive

density estimate given Mk is given by

π(Z |Mk,Y ) =

∫
π(Z |Mk,Σ,Φ;Y )π(Σ,Φ |Mk,Y )d(Σ,Φ). (57)

And for model uncertainty further reflected by a prior π(Mk), k = 1, . . . ,K, the Bayes predictive

density estimate is

π(Z | Y ) =
K∑

k=1

π(Z |Mk,Y )π(Mk | Y ). (58)

The integration for marginal likelihood in (57) is costly, and given the number of candidate models,

the evaluation of the predictive density over the entire model space will not be feasible even in
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moderate sized problems. Fortunately, we can approximate the predictive density π(Z | Y ) in (58)

by the average of the conditional predictive densities visited by our MCMC stochastic search, namely

π̂(Z | Y ) =
1

A

A∑

i=1

π(Z |Mi(k),Σi(k),Φi(k);Y ), (59)

where i = 1, · · · , A are the MCMC cycles. (The notation Mi(k) means that model k is visited in

the ith cycle and (Σi(k),Φi(k)) the parameter (Σ,Φ) of model k in the ith cycle). Variation in the

number of MCMC cycles A gives rise to very similar results, indicating that our approximation is

reasonably good.

It follows from the basic results of Aitchison (1975), that the Bayes predictive density π(Z | Y )

minimizes the Bayes risk under Kullback-Leibler loss

EπEZKL(f ; f̂) = EπEZ

∫
log{f(Z | Φ,Σ;Y )/f̂(Z | Y )}f(Z | Φ,Σ,Y )dZ,

where the expectation here is over Z,Φ,Σ. This fact has used by Madigan & Raftery (1994) and

others to argue that under a prior which reflects model uncertainty it is wiser to average the predictive

density over the model space than to condition on any single model.

Finally, for our comparison of density predictors for Z in Section 4, we used the Kullback-Liebler

divergence between the predictive density obtained through averaging restricted models, πRB(Z | Y ),

and the predictive density obtained with the single unrestricted model, πUB(Z | Y ),

KL(πRB ;πUB) =

∫
log{πRB(Z | Y )/πUB(Z | Y )}πRB(Z | Y )dZ.
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Figure 1: the MLE of regression coefficient φ = vec(Φ) of the seven variable VAR of 12 lags. The
left column pertains to the sample 1969-1980. The right column pertains to the sample 1981-2005.
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Figure 2: Posterior mean of the model selection index corresponding to φ. The left column pertains
to the sample 1969-1980. The right column pertains to the sample 1981-2005.
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Figure 3: Plot of φ = vec(Φ), sample: 1969:1-1980:12. The left column: parameters of unrestricted
VAR. The right column: restricted VAR. In each graph in either column, the solid line is the poste-
rior mean of the parameters corresponding to the equation, the dashed line the posterior standard
deviation of parameters.
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Figure 4: Plot of φ = vec(Φ), sample: 1981:1-2005:8. The left column: parameters of unrestricted
VAR. The right column: restricted VAR. In each graph in either column, the solid line is the poste-
rior mean of the parameters corresponding to the equation, the dashed line the posterior standard
deviation of parameters.
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