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Abstract

The problem of variable selection is one of the most pervasive
model selection problems in statistical applications. Often referred
to as the problem of subset selection, it arises when one wants to
model the relationship between a variable of interest and a subset of
potential explanatory variables or predictors, but there is uncertainty
about which subset to use. This vignette reviews some of the key de-
velopments which have led to the wide variety of approaches for this
problem.

1 Introduction

Suppose Y a variable of interest, and X1, . . . ,Xp a set of potential
explanatory variables or predictors, are vectors of n observations. The
problem of variable selection, or subset selection as it is often called,
arises when one wants to model the relationship between Y and a
subset of X1, . . . ,Xp, but there is uncertainty about which subset
to use. Such a situation is particularly of interest when p is large
and X1, . . . ,Xp is thought to contain many redundant or irrelevant
variables.
The variable selection problem is most familiar in the linear re-

gression context where attention is restricted to normal linear models.
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Letting γ index the subsets of X1, . . . ,Xp and letting qγ be the size of
the γth subset, the problem is to select and fit a model of the form

Y = Xγβγ + ε (1)

where Xγ is an n x qγ matrix whose columns correspond to the
γth subset, βγ is a qγ x 1 vector of regression coefficients and ε ∼
Nn(0, σ2I). More generally, the variable selection problem is a special
case of the model selection problem, where each model under consid-
eration corresponds to a distinct subset of X1, . . . ,Xp. Typically, a
single model class is simply applied to all possible subsets. For exam-
ple, a wide variety of relationships can be considered with generalized
linear models where g(E(Y )) = α+Xγβγ for some link function g, (see
the vignettes by Christensen and McCulloch). Moving further away
from the normal linear model, one might instead consider relating Y
and subsets of X1, . . . ,Xp with nonparametric models such as CART
or MARS.
The fundamental developments in variable selection seem to have

occurred either directly in the context of the linear model (1) or in
the context of general model selection frameworks. Historically, the
focus began with the linear model in the 1960s when the first wave of
important developments occurred and computing was expensive. The
focus on the linear model still continues, in part because its analytic
tractability greatly facilitates insight, but also because many prob-
lems of interest can be posed as linear variable selection problems.
For example, for the problem of nonparametric function estimation,
Y represents the values of the unknown function, and X1, . . . ,Xp rep-
resent a linear basis such as a wavelet basis or a spline basis. However,
as advances in computing technology have allowed for the implemen-
tation of richer classes of models, treatments of the variable selection
problem by general model selection approaches are becoming more
prevalent.
One of the fascinating aspects of the variable selection problem is

the wide variety of methods that have been brought to bear on the
problem. Because of space limitations, it will of course be impossi-
ble to even mention them all, and so I have only focused on a few
to illustrate the general thrusts of developments. An excellent and
comprehensive treatment of variable selection methods prior to 1990
can be found in Miller (1990). As we will see, many promising new
approaches have appeared over the last decade.
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2 Getting a Grip on the Problem

A distinguishing feature of variable selection problems is their enor-
mous size. Even with moderate values of p, computing characteristics
for all 2p models is prohibitively expensive and some reduction of the
model space is needed. Focusing on the linear model (1), early sug-
gestions based such reductions on the residual sum of squares, which
provided a partial ordering of the models. Taking advantage of the
chain structure of subsets, branch and bound methods such as the
algorithm of Furnival and Wilson (1974) were proposed to logically
eliminate large numbers of models from consideration. When feasible,
attention was often restricted to the “best subsets” of each size. Other-
wise, reduction was obtained with variants of stepwise methods that
sequentially add or delete variables based on greedy considerations,
e.g. Efromyson (1966). Even with today’s advances in computing
technology, these methods continue to be the standard workhorses for
reduction. Extensions beyond the linear model are straightforward;
for example, in generalized linear models by substituting the deviance
for the residual sum of squares.
Once attention was reduced to a manageable set of models, cri-

teria were needed to select a subset model. The earliest develop-
ments of such selection criteria, again in the the linear model context,
were based on attempts to minimize the mean square error of predic-
tion. Different criteria corresponded to different assumptions about
which predictor values to use, and whether they were fixed or ran-
dom, see Hocking (1976) and Thompson (1978) and the references
therein. Perhaps the most familiar of those criteria is Mallows Cp =
(RSSγ/σ̂2

FULL+2qγ − n), where RSSγ is the residual sum-of squares
for the γth model and σ̂2

FULL is the usual unbiased estimate of σ2

based on the full model. Motivated as an unbiased estimate of predic-
tive accuracy of the γth model, Mallows (1973) recommended the use
of Cp plots to help gauge subset selection, see also Mallows (1995).
Although he specifically warned against minimum Cp as a selection
criterion (because of selection bias), minimum Cp continues to used
as a criterion (and attributed to Mallows to boot!)
Two of the other most popular criteria, motivated from very dif-

ferent points of view, are AIC (for Akaike Information Criterion) and
BIC (for Bayesian Information Criterion). Letting �̂γ denote the max-
imum log likelihood of the γth model, AIC selects the model which
maximizes (�̂γ − qγ), whereas BIC selects the model which maximizes
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(�̂γ − (log n)qγ/2). Akaike motivated AIC from an information the-
oretic point of view (see the vignette by Soofi), as the minimization
of the Kullback-Leibler distance between the distributions of Y under
the γth model and under the true model. To lend further support,
an asymptotic equivalence of AIC and cross validation was shown
by Stone (1977). In contrast, Schwarz (1978) motivated BIC from a
Bayesian point of view, by showing that it was asymptotically equiva-
lent (as n → ∞) to selection based on Bayes factors. BIC was further
justified from a coding theory point of view by Rissanen (1978).
Comparisons of the relative merits of AIC and BIC based on as-

ymptotic consistency (as n → ∞) have flourished in the literature.
As it turns out, BIC is consistent when the true model is fixed,
(Haughton 1998), whereas AIC is consistent if the dimensionality of
the true model increases with n (at an appropriate rate), Shibata
(1981). Stone (1979) provides an illuminating discussion of these two
points of view.
For the linear model (1), many of the popular selection criteria are

special cases of a penalized sum-of squares criterion, providing a uni-
fied framework for comparisons. Assuming σ2 known to avoid compli-
cations, this general criterion selects the subset model that minimizes

(RSSγ/σ̂2 + F qγ) (2)

where F is a preset “dimensionality penalty”. Intuitively, (2) penalizes
RSSγ/σ̂2 by F times qγ , the dimension of the γth model. AIC and
minimum Cp are essentially equivalent, corresponding to F = 2, and
BIC is obtained by setting F = log n. By imposing a smaller penalty,
AIC and minimum Cp will select larger models than BIC (unless n
is very small).

3 Taking Selection Into Account

Further insight into the choice of F above is obtained when all the
predictors are orthogonal, in which case (2) simply selects all those
predictor with t-statistics t for which t2 > F . When X1, . . . ,Xp are
in fact all unrelated to Y (i.e. the full model regression coefficients are
all zero), AIC and minimum Cp are clearly too liberal and tend to
include a large proportion of irrelevant variables. A natural conserva-
tive choice for F is suggested by the fact that, under this null model,
the expected value of the largest squared t-statistic is approximately
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2 log p when p is large. This suggests the choice F = 2 log p, which
corresponds to the risk inflation criterion (RIC) proposed by Foster
and George (1994) and the universal threshold for wavelets proposed
by Donoho and Johnstone (1994). Both of these papers motivate
F = 2 log p as yielding the smallest possible, maximum inflation in
predictive risk due to selection (as p → ∞), a minimax decision the-
ory point of view. Motivated by similar considerations, Tibshirani
mad Knight (1999) recently proposed the covariance inflation crite-
rion (CIC), a nonparametric method of selection based on adjusting
the bias of in-sample performance estimates. Yet another promising
adjustment based on a generalized degrees of freedom concept was
proposed by Ye (1998).
Many other interesting criteria corresponding to different choices

of F in (2) have been proposed in the literature, see for example
Hurvitz and Tsai (1989, 1998), Rao and Wu (1989), Wei (1992), Shao
(1997), Zheng and Loh (1997) and the references therein. One of the
drawbacks of using a fixed choice of F , is that models of a particular
size are favored; small F favors large models and large F favors small
models. Adaptive choices of F to mitigate this problem have been
recommended by Benjamini and Hochberg (1995), Clyde and George
(1999,2000), George and Foster (2000), and Johnstone and Silverman
(1998).
An alternative to explicit criteria of the form (2), is selection based

on predictive error estimates obtained by intensive computing meth-
ods such as the bootstrap (e.g. Efron (1983), Gong (1986)) and cross-
validation (e.g. Shao (1993), Zhang (1993)). An interesting variant
of these is the little bootstrap, Brieman (1992), which estimates the
predictive error of selected models by mimicking replicate data com-
parison. The little bootstrap compares favorably to selection based
on minimum Cp or the conditional bootstrap, whose performances are
seriously denigrated by selection bias.
Another drawback of traditional subset selection methods, which

is beginning to receive more attention, is their instability relative to
small changes in the data. Two novel alternatives which mitigate some
of this instability for linear models are the nonnegative garrotte (Brie-
man 1995) and the lasso (Tibshirani 1996). Both of these procedures
replace the full model least squares criterion by constrained optimiza-
tion criteria. As the constraint is tightened, estimates are zeroed out,
and a subset model is identified and estimated.
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4 Bayesian Methods Emerge

The fully Bayesian approach to variable selection is as follows, (George
1999). For a given set of models M1, . . . ,M2p , where Mγ corresponds
to the γth subset of X1, . . . ,Xp, one puts priors π(βγ |Mγ) on the para-
meters of eachMγ , and a prior on the set of models π(M1), . . . , π(M2p).
Selection is then based on the posterior model probabilities π(Mγ |Y ),
which are obtained in principle by Bayes Theorem.
Although this Bayesian approach appears to provide a comprehen-

sive solution to the variable selection problem, the difficulties of prior
specification and posterior computation are formidable when the set
of models is large. Even when p is small and subjective considerations
are not out of the question (Garthwaite and Dickey 1995), prior spec-
ification requires considerable effort. Instead many of the Bayesian
proposals have focused on semi-automatic methods which attempt to
minimize prior dependence. Indeed, this is part of the appeal of BIC,
which avoids prior specification altogether, and its properties continue
to be investigated and justified, Kass and Wasserman (1995), Raftery
(1996) and Pauler (1998). Other examples of Bayesian treatments
which avoid the prior selection difficulties in variable selection include
the early proposal of Lindley (1968) to use uniform priors and a cost
function for selection, the default Bayes factor criteria of O’Hagan
(1995) and Berger and Pericchi (1996ab), and the predictive criteria
of Geisser and Eddy (1979), San Martini and Spezzaferri (1984) and
Laud and Ibrahim (1995).
In contrast to the development of Bayesian approaches that avoid

the difficulties of prior specification, the advent of Markov chain Monte
Carlo (MCMC) (see the vignette by Cappe and Robert) has focused
attention on Bayesian variable selection with fully specified proper
parameter priors. Bypassing the difficulties of computing the entire
posterior, MCMC algorithms can instead be used to stochastically
search for the high posterior probability models. The idea is that
by simulating a Markov chain, which is converging to the posterior
distribution, the high probability models should tend to appear more
often, and hence sooner. The resulting implementations are stepwise
algorithms that are stochastically guided by the posterior, rather than
by the greedy considerations of conventional stepwise methods. Such
a Bayesian package is complete, it offers posterior probability as a
selection criteria, associated MCMC algorithms for search, and Bayes
estimates for the selected model.
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The last decade has seen an explosion of research on this Bayesian
variable selection approach. These developments have included pro-
posals for new prior specifications that induce increased posterior
probability on the more promising models, for new MCMC imple-
mentations which are more versatile and offer improved performance,
and for extensions to a wide variety of model classes. Another closely
related development in this context has been the emergence of model
averaging as an alternative to variable selection. Under the Bayesian
variable selection formulation, the posterior mean is an adaptive con-
vex combination of all the individual model estimates, i.e. a model
average. Although model averaging almost always improves on vari-
able selection in terms of prediction, its drawback is that it does not
lead to a reduced set of variables. Some, but by no means all, of the
key developments of these Bayesian approaches to variable selection
and model averaging can be found in George and McCulloch (1993),
Draper (1995), Green (1995), George and McCulloch (1997), Clyde,
Parmigiani and Vidakovic (1998), Clyde (1999), Hoeting, Madigan,
Raftery and Volinsky (1999) and the references therein.

5 What’s next

Today, variable selection procedures are an integral part of virtually
all widely used statistics package, and their use will only increase as
the information revolution brings us larger data sets with more and
more variables. The demand for variable selection will be strong and
it will continue to be a basic strategy for data analysis.
Although a wide variety of variable selection methods have been

proposed, there is still plenty of work to be done. To begin with,
many of the recommended procedures have been given a only a nar-
row theoretical motivation, and their operational properties need more
systematic investigation before they can be used with confidence. For
example, small sample justification is needed in addition to asymptotic
considerations, and frequentist justification is needed for Bayesian pro-
cedures. While there has been clear progress on the problems of selec-
tion bias, clear solutions are still needed, especially for the problems
of inference after selection, see Zhang (1992). Another intriguing av-
enue for research is variable selection using multiple model classes,
see Donoho and Johnstone (1995). New problems will also appear as
demand increases for data mining of massive data sets. For example,
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considerations of scalability and computational efficiency will become
paramount in such a context. I suppose all of this is good news, but
there is also danger lurking ahead.
With the availability of so many variable selection procedures and

so many different justifications, it has becomes increasingly easy to
be misled and to mislead. Faced with too many choices and too little
guidance, practitioners continue to turn to the old standards such as
stepwise selection based on AIC or minimum Cp, followed by a report
of the conventional estimates and inferences. The justification of as-
ymptotic consistency will not help the naive user who should be more
concerned with selection bias and the instability of the procedures.
Eventually, the responsibility for the poor performance of such pro-
cedures will fall on the statistical profession, and consumers will turn
elsewhere for guidance, e.g. Dash and Liu (1997). Our enthusiasm
for the development of promising new procedures must be carefully
tempered by with cautionary warnings of their potential pitfalls.
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