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Estimating Coefficients in Linear Models:
It Don't Make No Nevermind

Howard Wainer
Deparimens of Behavioral Science, University of Chicago

It Is proved that wnder very gemeral clrcumstances coefficents in maultipie
regression models can be replaced with equal weights with almost no loss in
accuracy on the original data sample, It is then shown that these equal weights
will heve greater robustness than least squares regression coefficients, The im-
plications for problems of prediction are discussed.

In the two decades since Meehl’s (1954}
book on the respective accuracy of clinical
versus clerical prediction, little practical con-
sequence has been cbserved, Diagnoses are
still made by clinicians, net by clerks; college
admissions are still done by committee, not
by computer. This is true despite the consid-
erable strength of Meehl’s argument that hu-
mans are very poor at combining information
eptimally and that regression models evi-
dently combine information rather well. These
- points were underlined in some recent work
by Dawes and Corrigan (1974), in which
they found again that human predictors do
poorly when compared with regression mod-
els. Strikingly, they found that for some rea-
son, linear models with random regression
weights alse do betier than do bumans. Even
more striking, when all regression weights
were set equal to one another they found still
higher correlation with criterion on a validat-
ing sample. The obvicus question here is
Why? Is it because humans are so terrible at
combining information that almost any rule
works better, or is il some artifact of linear
regression?

Support for the latter interpretation is
seen in an early paper by Wilks (1938, p.
27, Theorem 1), in which he proved, under a
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set of reasonably gesmeral conditions, that
with a sufficiently large number of intercor-
related predictor variables, virtually eny com-
bination of them will yield the same predic-
tion! Or, as Henry Eaiser (1970) once said
about & similar problem in factor analysis,
“It.don’t make no nevermind” (p. 403). The
conditions for this surprising result to hold
are essentially those which anyone attempt-
ing to build a prediction model would accede
to readily: {a) All predictor variables shouid
be oriented properly (if you don’t know what
direction the criterion variable lies with re-

spect to a predictor, that predictor shouldn't

be uvsed}; and (b) the predictor variables
should be intercorrelated positively.

In the further exploration of this area,
Einborn and Hogarth {1075} showed that
equal regression weights would be 2 reason-
able choice in Wilks’ weight set and thai
they bave a number of attractive side bene-
fits. They are easy to estimate, and they do
not “use up” any degrees of freedom in their
estimation. They are insensitive io outlers,
and nonnormality in the original sample does
not perturb their values in 2 way that im-
pairs their accuracy on a validating sample.
And, perhaps because of these characteristics,
equal weights are very robust, often giving
higher correlation with criterion on validation
than least squares estimates of the regression
coefficients and” aimost mever giving drasti-
cally inferior results.

Summarizing then, we have the following
results: '

1. Humans are inferior 1o Hnear models in
their ability to optimally combine informa-
tion,
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Z. Humans are inferior to linear models
sven when the regression coefficients are
chosen in a very crude way {e.g., set them
equal).

3. Equally welighted linear models are not
very inferior to least sguares regression
weights and indeed are frequently superior,

The question remains though, Why are
equal regression weights so good? The hints
obtained from Wilks (1938) and Einhorn and
Hogarth (1973) indicate that it is some prop-
erty of regression and not that hbumans are so
inepi that any consistent rule is superior. 1
think that this notion is correct and can be
proved under reasonably general assumptions.
To do this I borrow heavily from the recent
work of Green (Note 1}, Let me start by
stating what will become the end of the ar-
gument in the form of a theorem,

Eouar Wricets THIOREM

When % linearly independent predictor
variables x; (=i, ..., &) with zersc mean
and unii variance are used io predict a varia-
ble v, which is also scaled to zerc mean and
unit variance, and when the population values
of the standardized least sguares regression
coefficients are §8; (d=1, ... &}, then the
expected loss of variance explained using
equal .5} weights will be less than %/96 if
ail Bs are uniformiy distributed on the inter-
val [.25,.75].

This expected loss s diminished consider-
ably if the x/s are not independent. In this
case denote the variance-covariance matrix of
the %5 by R.

Proof

Before going io the multivariate case de-
scribed in the above theorem, it is instructive
1o follow Green {Note 1) and examine the
bivariate case. Let us define # to be the
proportion of total wvariance which is not
explained using a regression coefficient g, but
which is explained using 8. It will be heipful
to further define the following:

9= B [

5= g, 23

and
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Note that since v — F = 9 = § -+ { — 4§ and
variance of independent variables is additive,
we have

0y = Ty + 05T

The left side of the equation i the amount of
variance ieft unexplained by the use of e
This is equal to the amount originally unex-
plained plus #, or

{1~ ) P gy o2 g ®, I3
But

gwﬁz =1 ?’2:
so that Equation 3 reduces to
# = g5 3t

Note from Eguations 1 and Z that ¢4~ §
= {8 — a)zx, so that

P

gt = (B — alv.l. r4]
Let uz call the difference between the true
regression coefficient § and the value being
used the error, or y = § — g, which implies
that Equation 4 becomes
G2 = le, .
But since ¢,° = 1, this yields the interesting
resuli that
# =~

[5]

To more easily see the implications of

.thiz, let us examine the situation when v =

.9. When the variables are standardized, this
implies that the regression weight will also be
9. We have explained 81% of the variance,
leaving omly 19% unexplained. If we are
interested in seeing how much of a deviation
from the optimal regression weight of 9 is
possible and still reduce our accuracy by mno
more than 19 of the total variance, we can
use Equation 5. It tells us that if # = 01,
then y? is also .01 or that y = =1, Or it tells
us that € can range from .8 to 1 and still lose
no more than 1% of the variance, In Green’s
(Note 1) words, this is an indication of the
“flabbiness of regression.” If ¢ ranges freely
within the interval .8 to 1, the expected loss
ig given by

g
E {loss) = 2 [ o2 dry
o
= 2 {,1)3/3 = 002/3 = .00067.
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With the above demonstration available to
clarify intuition, it is now possible to go for-
ward to prove the theorem, The multivariate
form of Equation 3 is given by

yRy= 6",

where ¢ is a k-element vector of differences
between the population value of the Tegres-
sion coefficients and the value 2 being used
for them. Note that if R = 1, as in the theo-
rem, the total effect of these errors can be
obtained by merely summing the effect of
each of the errors, To follow the conditions
of the theorem, we see that the expected loss

for any element of a, if all a/s are set equal

to .5 and if all 8/s range uniformly in the
interval [.25, .75, is given by

25 201747 1
e Idny = =
E {loss) = 2 j: yidey 3 % -

Therefore the expected loss for'a Z-predictor
case In which all predictor variables szre
linearly independent is £/96. The theorem is
thus proved. It is obvious that if R »£ i, then
the expected loss will not merely be the sum
of the individual losses but will instead be
some smaller number. In fact, it will be re-
lated to the eigenvalues of R in 2 manner
described in detail elsewhere {Green, Note
1).

The implications of this theorem are obvi-
ous; even when the correct regression weights
are known, the expecied loss in accuracy
caused by the use of equal weights is very
modest indeed. The reguirements of this
theorem are fairly general in that requiring
the weights io be in the range specified is no
real restriction, and orienting predictor varia-
bles properly is a task of no great difficulty,
A predictor whose relation to the criterion
variable is unknown with respect to direction
sheuldn’t be used. The same is true for varia-
bles whose relative influence is so small that
their regression coefficients are very small, If
vou have a variable whose regression coeffi-

cient is greater tham .75, the criterion of _

interest is very predictable and you probably
don’t need schemes like the one proposed here.
Note that the theorem is easily generalized
with respect to the allowable interval for the
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regression weights. The same result obtains
for any interval so long as the difference be-
tween the largest and smallest regression
weight is 5.

Let us go 2 bit further and ask why equal
weighting schemes in regression do so well on
validation relative to least squares weights,
Once again I start the argument with a
theorem, which can be thought of as 2 corol-
lary to the previous theorem.

Generalizability of Fit Theorem

If the /s are not known and are sstimated
by the fallible values &, (i == 1, . ., &), which
are uniformly distributed on the interval [.25,
-73], then we can expect that equal weights
will do no worse on a validation sample than
they did on the original one relative to the
&5, In fact, we expect that, relative to the
&¢'s, the performance of the equal weights wiil
improve,

Proof

Before the above theorem can be proved,
it is important to review why a shrinkage of
accuracy is usually observed when a regres- -
sion model whose parameters were estimated
on one datz sample is tried on 2 neuiral or
validation sample. This shrinkage is due to
two possible factors, either of which can yield
shrinkage but which usually occur in combi-
nation. First, it is usval to overfit the original
data, thus fitting some of the noise. This
results in an overestimate of the goodness of
fit of the model and is termed cepitalization
on chance. Of course, the excess goodness of
fit disappears when the model is tred on 2
neutral sample. A second factor is the pres-
ence of outliers (data points whick deviate
from multivariate normality) in the original
sample. These points typically have an undue
influence on the estimates of the parameter
values. Once again, these outliers are mnot
usually represented in the same way on the
validation data and so a reduction of accu-
racy ofcurs.

" The use of equal weights avoids both of
these problems. First, since equal weights are
not estimated with the data, there is little
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likelihood of capitalization on chance. Sec-
ond, the exisience of cutliers in the original
datz set has mo influence ou the estimates
and so cannot possibly pull them away from
the correct values., Thus, the proof of the
generalizability of fit theorem is as follows:
Two circumstances can have occurred which
will reduce the accuracy of the least squares
fit on the validation sample relative to the
original sample. Neither of these circum-
stances can affect the asccuracy of eqgual
weights; therefore, we expect thai their ac-
curacy will not decrease on the validation
sample. If neither of the two things which
can reduce the accuracy of least squares
weights occurs, then the relationship between
the least squares weights and the equal
weights which was observed on the original
sample will hold on the validation sample. If,
however, anything goes wrong, then the equal
weight model will improve relative to the
jeast squares weights on validation, Fre-
quently this improvement is substantial. Just
how substantial depends on the seriousness
of the deviation from theoretical assumptions
in the original sample.

We can summarize that if resulis as good
as those demonstrated with the equal weighls
theorem arve possible in the original sample,
it is no wonder that om & neuiral sample
{when the least sguares estimates of the re-
gression weights no longer have the benefits
of capitalization on chance} equal weights are
more robust. The robustness of equal weights
is especially striking when the least squares
weights are perturbed because of sharp devi-
ations from muliivariate normality, Thus,
Green’s {Note 1) findings complement those
of Einhorz and Hogarth (1973).

Note that at no time did I make any men-
tion of sample size. In fact, in the equal
weights theoremm I assumed that the regres-
sion weights that were being ignored were
the correct population values. Even in this
case equal weights result In little loss. In this
conclusion 1 differ from Einhorn and Hogarth
(1975), who do not support equal weights
when large samples are available which allow
the rejection of the hypothesis of egual
weights at some statistically significant level.
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If the least sguares weights are not perfect,
equal weights will do very well indeed rela~
tive to least sguares estimates, but even
when estimates of the B, are perfect, equal
welghting schemes do not yield a serious
decrement in accuracy.

The conclusion to be drawn is very clear
and coincides exactly with that of Dawes and
Corrigan (1974). When vou are interested
solely in prediction, it is a very rare sitea-
tion that calls for regression weights which
are unequal. This is particularly true in the
behavioral sciences, in which relative predic-
tion is the most typical kind of problem. The
solution is them: {a) orlent all predictor
variables in the proper fashion, discarding
equivocal omes; (b) scale them 2l into
standardized form; and (¢} add them up. To
aveid devilish repercussions, let me explicate
these steps & bit. Step 2 Is equivalent to
assigning a weight of +1, 0, or ~1 to each
variable while keeping watch that the inter-
correlations of the weighted variables are all
positive. A way of doing this would be o
caloulate least squares regression weights,
dropping variables with small weights that
have low correlation with criterion. If amy
large negative weights appear, those variables
should be changed in sign and the least
squares regression repeated; if megative
weights persist, there might be a suppression
effect that needs to be examined. ,

Steps b and ¢ are siraightforward. The
following of these steps does not, in any way,
enter into the truth of the egual weights
theorem: it only poinits a way for ome o
be sure that the conditions of the theorem
are upheld in data. Lest the stance taken in
this paper be viewed as revolutiomary and
extreme, let me quote Green's (Note 2) com-
ment: 4

test makers have been using this method ever since
the Army Alpha, That is, all items are scored in
the positive direction, poor items are discarded, and
the test score is simply the sum of the item scores.
Most attempts at differential item weighting show
relntively little improvemen: over simple -scoring.

The equal weighis theorem metely proves
what many have believed ail along; that is,
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that the resulting prediction is apl to be very
close io the optimal one, were the optimal
weights known, and often better than one
which does not use optimal weights. Note also
that this sort of scheme works well even when
an operational criterion is not available.

An example of & possible use of this
method is found in Wainer (1974), in which
a Hinear model using equal weights is used to
predict individual voting hehavior of US.
Senators. '
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