Hypothesis Testing

Hypothesis	$\begin{array}{l} H_0: \mu = \mu_0 \\ Ha: \mu \neq \mu_0 \end{array}$	$H_0: \mu \le \mu_0$ $Ha: \mu > \mu_0$	$H_0: \mu \ge \mu_0$ $Ha: \mu < \mu_0$
Acceptance Region	$\mu_0 \pm z^* \tfrac{\sigma}{\sqrt{n}}$	Up to $\mu_0 + z_1^* \frac{\sigma}{\sqrt{n}}$	From $\mu_0 - z_1^* \frac{\sigma}{\sqrt{n}}$
Z-score	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ If $ z \ge z^* reject$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ If $z \ge z_1^* reject$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ If $z \le -z_1^* reject$
P-value	$2P\left(Z \ge z \right)$	$P\left(Z \ge z\right)$	$P\left(Z \le z\right)$

Notes:

- 1. z^* is the z-value associated with the probability of $1 \frac{\alpha}{2}$
- 2. z_1^* is the z-value associated with the probability of 1α
- 3. For proprotions: μ_0 is replaced by p_0
- 4. σ is replaced by $\sqrt{p_0(1-p_0)}$
- 5. In the case of unkown variance:
- σ is replaced by s
- z^* is replaced by t^* where t^* is in the $\frac{\alpha}{2}$ column and n-1 row of the t-table
- z_1^* is replaced by t_1^* where t_1^* is in the α column and n-1 row of the t-table

Other Calculations

- 1. Type II errors: You need to be given a value of μ_a that belongs to the alternative hypothesis. Compute the probability of being in the acceptance region using the fact that \overline{X} is normal with mean equal to μ_a and standard deviation equal to $\frac{\sigma}{\sqrt{n}}$.
- 2. Find the sample size to produce a Type II error of a given β at a given α . $n = \frac{(z_{\alpha}+z_{\beta})^2 \sigma^2}{(\mu_a-\mu_0)^2}$

Review Problem

A car manufacturer redesigned the plant. They want to see if the average time of assembly of a car is less than 3 hours. A sample of 100 cars is taken to yield: $\overline{x} = 2.8$ hours and s = 1 hour. In addition, the number of items that take at least 3 hours was 40 out of the 100 items.

- a) Test whether the population mean time is less than 3 hours, using $\alpha = .01$
- b) If the true value of μ was 2.7 hours, what would be the probability of an error using the test in a)?
- c) What sample size is required so that the probability of a type II error when $\mu = 2.7$ is .05. Assume $\alpha = .01$

Solution

 $H_0: \mu \ge 3$ versus $H_a: \mu < 3$; n=100; $\alpha = .01$; Assume $\sigma = 1$.

a)

1. Acceptance Region: \overline{x} must be at least $3 - 2.33 \frac{1}{\sqrt{100}} = 2.767$. $\overline{x} = 2.8 hours$ implies retain H_0

2.
$$z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{2.8 - 3}{1/\sqrt{100}} = -2$$
 Since -2>-2.33 retain H_0

- 3. $P-value = P(\overline{X} \le 2.8 | \mu = 3) = P(Z \le \frac{2.8-3}{1/\sqrt{100}} = -2) = .0228$. Since the P-value exceeds α retain H_0
- b) Since $\mu_a = 2.7$ that implies that \overline{X} is normal with mean = 2.7 and standard deviation = .10

$$P(\overline{X} > 2.767) = P(Z > \frac{2.767 - 2.7}{.1} = .67) = 1 - .7486 = .2514$$

c) $n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_a - \mu_0)^2} = \frac{(2.33 + 1.645)^2 1}{(2.7 - 3)^2} = 175.5625 \text{ or } 176$