Hypothesis Testing

Hypothesis	$H_{0}: \mu=\mu_{0}$	$H_{0}: \mu \leq \mu_{0}$	$H_{0}: \mu \geq \mu_{0}$
$H a: \mu \neq \mu_{0}$	$H a: \mu>\mu_{0}$	$H a: \mu<\mu_{0}$	
Acceptance Region	$\mu_{0} \pm z^{*} \frac{\sigma}{\sqrt{n}}$	Up to $\mu_{0}+z_{1}^{*} \frac{\sigma}{\sqrt{n}}$	From $\mu_{0}-z_{1}^{*} \frac{\sigma}{\sqrt{n}}$
$Z-$ score	$z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$	$z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$	$z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}$
	$I f\|z\| \geq z^{*} r e j e c t$	$I f z \geq z_{1}^{*} r e j e c t$	If $z \leq-z_{1}^{*} r e j e c t$
$P-$ value	$2 P(Z \geq\|z\|)$	$P(Z \geq z)$	$P(Z \leq z)$

Notes:

1. z^{*} is the z-value associated with the probability of $1-\frac{\alpha}{2}$
2. z_{1}^{*} is the z-value associated with the probability of $1-\alpha$
3. For proprotions: μ_{0} is replaced by p_{0}
4. σ is replaed by $\sqrt{p_{0}\left(1-p_{0}\right)}$
5. In the case of unkown variance:

- σ is replaced by s
- z^{*} is replaced by t^{*} where t^{*} is in the $\frac{\alpha}{2}$ column and n- 1 row of the t-table
- z_{1}^{*} is replaced by t_{1}^{*} where t_{1}^{*} is in the α column and $n-1$ row of the t-table

Other Calculations

1. Type II errors: You need to be given a value of μ_{a} that belongs to the alternative hypothesis. Compute the probability of being in the acceptance region using the fact that \bar{X} is normal with mean equal to μ_{a} and standard deviation equal to $\frac{\sigma}{\sqrt{n}}$.
2. Find the sample size to produce a Type II error of a given β at a given $\alpha . n=\frac{\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{a}-\mu_{0}\right)^{2}}$

Review Problem

A car manufacturer redesigned the plant. They want to see if the average time of assembly of a car is less than 3 hours. A sample of 100 cars is taken to yield: $\bar{x}=2.8$ hours and $s=1$ hour. In addition, the number of items that take at least 3 hours was 40 out of the 100 items.
a) Test whether the population mean time is less than 3 hours, using $\alpha=.01$
b) If the true value of μ was 2.7 hours, what would be the probability of an error using the test in a)?
c) What sample size is required so that the probability of a type II error when $\mu=2.7$ is .05. Assume $\alpha=.01$

Solution

$H_{0}: \mu \geq 3$ versus $H_{a}: \mu<3 ; \mathrm{n}=100 ; \alpha=.01 ;$ Assume $\sigma=1$.
a)

1. Acceptance Region: \bar{x} must be at least $3-2.33 \frac{1}{\sqrt{100}}=2.767 . \bar{x}=$ 2.8 hours implies retain H_{0}
2. $z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{2.8-3}{1 / \sqrt{100}}=-2$ Since $-2>-2.33$ retain H_{0}
3. $P-$ value $=P(\bar{X} \leq 2.8 \mid \mu=3)=P\left(Z \leq \frac{2.8-3}{1 / \sqrt{100}}=-2\right)=.0228$. Since the P-value exceeds α retain H_{0}
b) Since $\mu_{a}=2.7$ that implies that \bar{X} is normal with mean $=2.7$ and standard deviation $=.10$

$$
P(\bar{X}>2.767)=P\left(Z>\frac{2.767-2.7}{.1}=.67\right)=1-.7486=.2514
$$

c) $n=\frac{\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{a}-\mu_{0}\right)^{2}}=\frac{(2.33+1.645)^{2} 1}{(2.7-3)^{2}}=175.5625$ or 176

