Statistics 101 Review for Final

- 1. Introduction and Sampling
 - A. Use data to say something about a characteristic of the population.
 - B. Data are viewed as a sample from a population
 - Each item is chosen in the same way.
 - The items are chosen independently (in an unrelated manner).

C. Errors that can arise in sampling from a finite population

- Sample from an incorrect population.
- Non-response bias (people who do not respond are different from people who do respond).
- Response bias (the responses are not honest).
- D. 1. In the first part of the course we estimated various quantities
 - \overline{x} for μ
 - s for σ
 - \widehat{p} for p
 - Other quantities such as sample correlation r for ρ

2. Variability of estimates across samples

- $Var\left(\overline{X}\right) = \sigma^2/n$
- $Var(\widehat{p}) = p(1-p)/n$
- 3. Now we incorporate the variability to draw inferences

- 2. Confidence Intervals
 - A. 1. Given α (creates a 100 (1α) % confidence interval) find the range A to B that includes the true population characteristic with probability $1 - \alpha$.
 - 2a. Often it is of the form: estimate \pm margin of error
 - b. Often the margin of error is $z^* \times$ standard error of estimate or $t^* \times$ estimate of standard error of estimate
 - B. Special cases
 - μ where σ is known: $\overline{x} \pm z^* \sigma / \sqrt{n}$
 - μ where σ is unknown: $\overline{x} \pm t^* s / \sqrt{n}$
 - p. Let $\widetilde{p} = \frac{\#successes+2}{n+4}$ $\widetilde{p} \pm z^* \frac{\sqrt{\widetilde{p}(1-\widetilde{p})}}{\sqrt{n+4}}$ or $\widehat{p} \pm z^* \frac{\sqrt{\widetilde{p}(1-\widehat{p})}}{\sqrt{n}}$ Notes: 1. z^* is the z-value corresponding to $1 - \alpha/2$ in the Z-Table

2. t^* is the entry in the $n - 1^{st}$ row and $\alpha/2$ column in the t-Table

- C. Sample Sizes
 - μ where σ is known: $n = \frac{(z^*)^2 \sigma^2}{E^2}$ produces an interval of $\pm E$
 - $p \ n = \frac{(z^*)^2 1/4}{E^2}$ produces an interval of $\pm E$

Note: If we know p is bounded away from 1/2 (e.g., $p \le .1$) replace 1/4 with p(1-p) for the p in the feasible region that is closest to 1/2.

3. Introduction to Hypothesis Testing

A. Choose H_0 and H_a What we want to show is H_a

B. Structure and Terminology

Hypothesis	Null H_0 is true	Alternative H_a is true
Retain H_0	Correct	Type II error $\beta = P(Type II error)$
Reject H_0	$\begin{array}{c} \text{Type I error} \\ \alpha = P(Type I error) \end{array}$	Correct

C. We create tests for a specified level of α

P-value= Prob(observing the sample at hand or one more extreme when H_0 is true)

If P-value $< \alpha$ then we reject the null hypothesis

4. Hypothesis Tests for Population Characteristics

A. Basics

Humothesis	$H_0: \mu = \mu_0$	$H_0: \mu \le \mu_0$	$H_0: \mu \ge \mu_0$
11 gpotnesis	$Ha: \mu \neq \mu_0$	$Ha: \mu > \mu_0$	$Ha: \mu < \mu_0$
Acceptance		Up to	From
Region	$\mu_0 \pm z^* \frac{1}{\sqrt{n}}$	$\mu_0 + z_1^* \frac{\sigma}{\sqrt{n}}$	$\mu_0 - z_1^* \frac{\sigma}{\sqrt{n}}$
Z-score	$ If z \ge z^*$	If $z \ge z_1^*$	If $z \leq -z_1^*$
$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	reject	reject	reject
P-value	$2P\left(Z \ge z \right)$	$P\left(Z \ge z\right)$	$P\left(Z \le z\right)$
Proportions	$ If z \ge z^*$	If $z \ge z_1^*$	If $z \leq -z_1^*$
$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)}/\sqrt{n}}$	reject	reject	reject
T-score	$ If t \ge t^*$	$If t \ge t_1^*$	$If t \leq -t_1^*$
$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$	reject	reject	reject

Hypothesis Testing

Notes

- z^* is the z-value associated with the probability of $1 \frac{\alpha}{2}$
- z_1^* is the z-value associated with the probability of $1-\alpha$

For proprotions:

- μ_0 is replaced by p_0
- σ is replaced by $\sqrt{p_0(1-p_0)}$

In the case of unkown variance:

- σ is replaced by s
- z^* is replaced by t^* where t^* is the value in the $\frac{\alpha}{2}$ column and

 $n - 1^{st}$ row of the t-table

• z_1^* is replaced by t_1^* where t_1^* is the value in the α column and

 $n - 1^{st}$ row of the t-table

B. Sample Size and Type II Error for μ with known σ^2

• Probabiliy of errors

a. Create range of \overline{x} to retain the null hypothesis (i.e., acceptance regions)

- i) $H_0: \mu = \mu_0$ $\mu_0 \pm z^* \frac{\sigma}{\sqrt{n}}$ ii) $H_0: \mu \le \mu_0$ up to $\mu_0 + z_1^* \frac{\sigma}{\sqrt{n}}$ iii) $H_0: \mu \ge \mu_0$ From $\mu_0 - z_1^* \frac{\sigma}{\sqrt{n}}$
- b. For any assumed value of μ referred to as μ_a Find the probability that \overline{X} is in the acceptance region. Use the fact that \overline{X} is Normal with mean= μ_a and standard deviation= $\frac{\sigma}{\sqrt{n}}$
- c. If μ_a belongs to H_a then the probability in b. is a Type II error If μ_a belongs to H_0 then the probability in b. is not making a Type I error
- Find the sample size to produce a Type II error of a given β at a given α .

$$n = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_a - \mu_0)^2}$$

C. Related Tests

- Paired Data- Pairs of (x, y) values generally taken on the same individual or under a common condition
 - a. Take differences d = x y for each case. Treat it as a one sample problem as above.
 - b. Call a success whenever x > y and a failure whenever x < y (eliminate observations when x = y and reduce *n* accordingly).
 - Treat the problem as a test of proportions as above with $p_0 = 1/2$.
- Tests for Medians- Call each x that exceeds M_0 a success; call each x that is less than M_0 a failure

(eliminate observations for which $x = M_0$ and reduce n accordingly). Treat the problem as a test of proportions with $p_0 = 1/2$.