Statistics 101 Review for Final

1. Introduction and Sampling
A. Use data to say something about a characteristic of the population.
B. Data are viewed as a sample from a population

- Each item is chosen in the same way.
- The items are chosen independently (in an unrelated manner).
C. Errors that can arise in sampling from a finite population
- Sample from an incorrect population.
- Non-response bias (people who do not respond are different from people who do respond).
- Response bias (the responses are not honest).
D. 1. In the first part of the course we estimated various quantities
- \bar{x} for μ
- s for σ
- \widehat{p} for p
- Other quantities such as sample correlation r for ρ

2. Variability of estimates across samples

- $\operatorname{Var}(\bar{X})=\sigma^{2} / n$
- $\operatorname{Var}(\widehat{p})=p(1-p) / n$

3. Now we incorporate the variability to draw inferences
4. Confidence Intervals
A. 1. Given α (creates a $100(1-\alpha) \%$ confidence interval) find the range A to B that includes the true population characteristic with probability $1-\alpha$.

2a. Often it is of the form: estimate \pm margin of error
b. Often the margin of error is $z^{*} \times$ standard error of estimate or $t^{*} \times$ estimate of standard error of estimate
B. Special cases

- μ where σ is known: $\bar{x} \pm z^{*} \sigma / \sqrt{n}$
- μ where σ is unknown: $\bar{x} \pm t^{*} s / \sqrt{n}$
- p. Let $\widetilde{p}=\frac{\# \text { successes }+2}{n+4} \quad \widetilde{p} \pm z^{*} \frac{\sqrt{\widetilde{p}(1-\widetilde{p})}}{\sqrt{n+4}}$ or $\widehat{p} \pm z^{*} \frac{\sqrt{\widehat{p}(1-\widehat{p})}}{\sqrt{n}}$

Notes: 1. z^{*} is the z -value corresponding to $1-\alpha / 2$ in the Z-Table
2. t^{*} is the entry in the $n-1^{\text {st }}$ row and $\alpha / 2$ column in the t -Table
C. Sample Sizes

- μ where σ is known: $\quad n=\frac{\left(z^{*}\right)^{2} \sigma^{2}}{E^{2}}$ produces an interval of $\pm E$
- $p n=\frac{\left(z^{*}\right)^{2} 1 / 4}{E^{2}}$ produces an interval of $\pm E$

Note: If we know p is bounded away from $1 / 2$ (e.g., $p \leq .1$) replace $1 / 4$ with $p(1-p)$ for the p in the feasible region that is closest to $1 / 2$.
3. Introdcution to Hypothesis Testing
A. Choose H_{0} and H_{a} What we want to show is H_{a}
B. Structure and Terminology

Hypothesis	Null H_{0} is true	Alternative H_{a} is true
Retain H_{0}	Correct	Type II error $\beta=P($ Type II error $)$
Reject H_{0}	Type I error $\alpha=P($ Type I error $)$	Correct

C. We create tests for a specified level of α

P -value $=\operatorname{Prob}($ observing the sample at hand or one more extreme when H_{0} is true)
If P -value $<\alpha$ then we reject the null hypothesis
4. Hypothesis Tests for Population Characteristics
A. Basics

Hypothesis Testing

Hypothesis	$H_{0}: \mu=\mu_{0}$ $H a: \mu \neq \mu_{0}$	$H_{0}: \mu \leq \mu_{0}$ $H a: \mu>\mu_{0}$	$H_{0}: \mu \geq \mu_{0}$ $H a: \mu<\mu_{0}$
Acceptance	$\mu_{0} \pm z^{*} \frac{\sigma}{\sqrt{n}}$	Up to $\mu_{0}+z_{1}^{*} \frac{\sigma}{\sqrt{n}}$	From $\mu_{0}-z_{1}^{*} \frac{\sigma}{\sqrt{n}}$
$Z-$ scorion	If $\|z\| \geq z^{*}$	If $z \geq z_{1}^{*}$	
$z=\frac{x-\mu_{0}}{\sigma / \sqrt{n}}$	reject	reject	If $z \leq-z_{1}^{*}$ reject
$P-$ value	$2 P(Z \geq\|z\|)$	$P(Z \geq z)$	$P(Z \leq z)$
Proportions $z=\frac{\widehat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)} / \sqrt{n}}$	If $\|z\| \geq z^{*}$ reject	If $z \geq z_{1}^{*}$ reject	If $z \leq-z_{1}^{*}$ reject
T-score $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$	If $\|t\| \geq t^{*}$ reject	If $t \geq t_{1}^{*}$ reject	If t $t \leq-t_{1}^{*}$ reject

Notes

- z^{*} is the z-value associated with the probability of $1-\frac{\alpha}{2}$
- z_{1}^{*} is the z-value associated with the probability of $1-\alpha$

For proprotions:

- μ_{0} is replaced by p_{0}
- σ is replaed by $\sqrt{p_{0}\left(1-p_{0}\right)}$

In the case of unkown variance:

- σ is replaced by s
- z^{*} is replaced by t^{*} where t^{*} is the value in the $\frac{\alpha}{2}$ column and

$$
n-1^{\text {st }} \text { row of the t-table }
$$

- z_{1}^{*} is replaced by t_{1}^{*} where t_{1}^{*} is the value in the α column and

$$
n-1^{s t} \text { row of the t-table }
$$

B. Sample Size and Type II Error for μ with known σ^{2}

- Probabiliy of errors
a. Create range of \bar{x} to retain the null hypothesis (i.e., acceptance regions)
i) $H_{0}: \mu=\mu_{0} \quad \mu_{0} \pm z^{*} \frac{\sigma}{\sqrt{n}}$
ii) $H_{0}: \mu \leq \mu_{0} \quad$ up to $\mu_{0}+z_{1}^{*} \frac{\sigma}{\sqrt{n}}$
iii) $H_{0}: \mu \geq \mu_{0} \quad$ From $\mu_{0}-z_{1}^{*} \frac{\sigma}{\sqrt{n}}$
b. For any assumed value of μ referred to as μ_{a} Find the probability that \bar{X} is in the acceptance region. Use the fact that \bar{X} is Normal with mean $=\mu_{a}$ and standard deviation $=\frac{\sigma}{\sqrt{n}}$
c. If μ_{a} belongs to H_{a} then the probability in b . is a Type II error If μ_{a} belongs to H_{0} then the probability in b . is not making a Type I error
- Find the sample size to produce a Type II error of a given β at a given α.

$$
n=\frac{\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\left(\mu_{a}-\mu_{0}\right)^{2}}
$$

C. Related Tests

- Paired Data- Pairs of (x, y) values generally taken on the same individual or under a common condition
a. Take differences $d=x-y$ for each case. Treat it as a one sample problem as above.
b. Call a success whenever $x>y$ and a failure whenever $x<y$ (eliminate observations when $x=y$ and reduce n accordingly).
Treat the problem as a test of proportions as above with $p_{0}=1 / 2$.
- Tests for Medians- Call each x that exceeds M_{0} a success; call each x that is less than M_{0} a failure
(eliminate observations for which $x=M_{0}$ and reduce n accordingly). Treat the problem as a test of proportions with $p_{0}=1 / 2$.

