Solutions Midterm Exam II - Fall 2004 Statistics 101

1. A. First compute $E(X Y)=1(0.1)+2(0.1)+3(0)+4(0.3)+6(0.3)+9(0.2)=$ 5.1. Hence $\operatorname{Cov}(X, Y)=5.1-(2.2)(2.2)=0.26$, and so $\operatorname{Cor}(X, Y)=$ $0.26 / 0.46=0.565$. Thus ratings tend to go in the same direction; there is a moderate linear relationship between the two ratings.
B. Plainly the expectation will be the same as the original expectation, viz. 2.2. To compute the standard deviation we use the relationship $\operatorname{Var}(X / 2+Y / 2)=(1 / 4) \operatorname{Var}(X)+(1 / 4) \operatorname{Var}(Y)+(1 / 2) \operatorname{Cov}(X, Y)$. Thus from the first part we have $\operatorname{Var}(X / 2+Y / 2)=(1 / 2) .46+(1 / 2) 0.26=0.36$. Thus $\mathrm{SD}=0.6$. Since there is a positive correlation, independence would reduce the overall variance, but have no effect on the mean.
C. First we compute the conditional probabilities $P($ rating $=k \mid$ same $)$, and these are $0.1 / 0.6=1 / 6,0.3 / 0.6=1 / 2$, and $0.2 / 0.6=1 / 3$ for $k=1,2,3$ respectively. Hence E (rating \mid same $)=1(1 / 6)+2(1 / 2)+3(1 / 3)=2 \frac{1}{6}$.
2. A. $P(X>9)=\int_{9}^{10} 3 x^{2} / 1000 d x=0.271$.
B. (i) We assume a binomial model. Thus $X \sim B(100,0.271)$ and $P(20 \leq$ $X)=\sum_{k=20}^{100}\binom{100}{k} 0.271^{k} 0.729^{n-k}$.
(ii) We use the central limit theorem, $X \approx N(27.1,27.1(0.729))$, and compute $P(20 \leq X)=P((20-27.1) / \sqrt{(4.4476)} \leq Z)=P(-1.597 \leq Z)=$ 0.9452 .
C. (i) OK, integrate x^{k} to get $x^{k+1} /(k+1)$. Evaluating the definite integral we obtain $10^{k+1} /(k+1)$ and so the normalizing constant is $(k+1) / 10^{k+1}$.
(ii) $\left.E(X)=(k+1) / 10^{k+1}\right) \int_{0}^{10} x^{k+1} d x=10(k+1) /(k+2)$. We set this equal to 8 and solve to get $k=3$.
3. A. Of course it depends on one's stomach for risk. If we consider average risk, then since expected profit is $14(0.2)+(-1) 0.8=2>0$ we would go for it. However, if we consider downside risk, then since the probability of losing million smackers is 0.8 , which is really quite large so we may decide against this venture.
B. Hopefully we have automatic response to this problem: CLT. Use a normal approximation: the E (profit) on one venture is 2 and the standard deviation is easily worked out to be 6 (lose 1 unit with probability . 8 and gain 14 units with probability .2). Thus, since $\mathrm{n}=25$, using the central limit theorem, with $X \sim N\left(50,30^{2}\right)$ we compute $P(X \leq 0)=P(Z \leq$ $-50 / 30)=0.0475$
C. (i) Our friend Bayes theorem once again: we want P (success|makes 2nd round). Displaying the probabilities on a tree diagram or joint table we see that $P($ success \mid makes 2 nd round $)=1(0.2) /(1(0.2)+0.5(0.8))=1 / 3$.
(ii) We want a conditional expectation: E (profit|wait) $=5(1 / 3)+(-1) 2 / 3=$ 1 , less than before so not so smart to wait.
4. A.(i) Putting P into first we have $E(X)=P(8)+(1-P)(4) \geq 5$ when $P \geq 1 / 4$.
(ii) Taking $P=1 / 2$, for example, we have $\operatorname{Var}(\mathrm{CREF} / 2+$ TIAA $/ 2)=$ $\operatorname{Var}(\mathrm{CREF}) / 4+0=20^{2} / 4=100$, and so $\mathrm{SD}=10$.
B. (i)Of course we need to consider the volatility drag, viz. $\mu-\sigma^{2} / 2$. With the portfolio CREF $/ 2+$ TIAA $/ 2$, we have $\mu=0.08 / 2+.04 / 2=.06$ and $\sigma^{2}=.2^{2} / 4=.01$, and so $\mu-\sigma^{2} / 2=.06-.01 / 2=.055$.
(ii) In general we have $\mu-\sigma^{2} / 2=0.08 P+0.04(1-P)-P^{2}(0.04) / 2=$ $0.04+0.04 P-0.02 P^{2}$. Recalling that a quadratic $a x^{2}+b x+c$ has a maximum at $x=-b /(2 a)$ we see that $\mu-\sigma^{2} / 2$ has a maximum at $0.04 /(-0.04)=1$. So put all your dough in the risky investment.
5. A. Here we use our favourite binomial model: We want $P(X=2)+P(X=$ $3)=\binom{3}{2} 0.3^{2}(0.7)+0.3^{3+}=0.216$.
B. This one demands a wee bit more concentration, a bit of subtle partitioning. (i) Using the partition rule we have

$$
\begin{aligned}
P(\mathrm{impl}) & =P(\mathrm{impl} \mid \mathrm{CEO}) P(\mathrm{CEO})+P\left(\mathrm{impl} \mid \mathrm{CEO}^{c}\right) P\left(\mathrm{CEO}^{c}\right) \\
& =1(0.3)+0.5\left(0.3^{2}\right) 0.7 \\
& =0.3315
\end{aligned}
$$

(This approach has the risk of not counting all the possibilities so here are the possibilities)

CEO	CEO	COO	Probability	Implemented ?	Number
Y	Y	Y	0.027	Y	3
Y	Y	N	0.063	Y	2
Y	N	Y	0.063	Y	2
Y	N	N	0.147	Y	1
N	Y	Y	0.063	HALF	2
N	Y	N	0.147	N	1
N	N	Y	0.147	N	1
N	N	N	0.343	N	0

i) Probability $=.027+.063+.063+.147+.063 / 2=.3315$ as computed
above.
ii)

$$
\begin{array}{cl}
\mathrm{x} & \mathrm{p}(\mathrm{x}) \\
1 & .147 / .3315=.4434 \\
2 & (.063+.063+.063 / 2) / .3315=.4751 \\
3 & .027 / .3315=.0814
\end{array}
$$

