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Let X = (X, ,..., X,) have a multinomial distribution based on N trials with 
unknown vector of cell probabilities p G (p , ,..., p,). This paper derives admissibility 
and complete class results for the problem of simultaneously estimating p under 
entropy loss (EL) and squared error loss @EL). Let .S“, % andf(x 1 p) denote the 
(t - I)-dimensional simplex, the support of X and the probability mass function of 
X, respectively. First it is shown that 8 is Bayes w.r.t. EL for prior P if and only if 
8 is Bayes w.r.t. SEL for P. The admissible rules under EL are proved to be Bayes, 
a result known for the case of SEL. Let Q denote the class of subsets of 9 of the 
form T= Uj=, F, where k ) 1 and each F, is a facet of 9 which satisfies: F a 
facet of Y such that F$ F, * F t 7’. The minimal complete class of rules w.r.t. EL 
when N) t - 1 is characterized as the class of Bayes rules with respect to priors P 
which satisfy P(Y”)=l, <(x)=~(f(xIp)P(&)>O for all x in (XC-%: 
supyof(x 1 p) > 0) for some 9’ in Q containing all the vertices of 9. As an 
application, the maximum likelihood estimator is proved to be admissible w.r.t. EL 
when the estimation problem has parameter space 8 = 9 but it is shown to be 
inadmissible for the problem with parameter space 8 = (Sp minus its vertices). This 
is a severe form of “tyranny of boundary.” Finally it is shown that when N) t - 1 
any estimator 8 which satisfies 8(x) > 0 V x E s is admissible under EL if and 
only if it is admissible under SEL. Examples are given of nonpositive estimators 
which are admissible under SEL but not under EL and vice versa. 

1. INTRODUCTION 

Suppose X = (X, ,..., X,) has a multinomial distribution based on N trials 
with unknown vector of cell probabilities p = (pl ,..., J+) in 9 = {p 1 J+ > 0 
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Vi, C pi = 1 }. Denote the mass function of X by 

f(x / P) = lV! n (P;i/xi !)3 XES 

where X = (x = (x, ,..., XJ / xxi =N, xi > 0 is integer Vi} and our 
convention is that the range of any product or summation over the integers 
{l,..., t) will be suppressed. 

This paper derives admissibility and complete class results for the problem 
of simultaneously estimating p under entropy loss (EL); it uses these results 
to establish relationships between the admissible rules under EL and squared 
error loss (SEL). For p, s E Y, SEL is defined by 

(1.1) 

and EL by 

LAP, a) = NC PiB Pi - In %I (1.2) 

where b In 0 is defined to be 0 and +oo for b = 0 and b < 0, respectively, and 
I] . ]] denotes the usual Euclidean norm. The risk functions corresponding to 
L, and L, for an estimator 6 = S(X) will be denoted by R,(p, 8) and 
R,(p, S), respectively. 

SEL has been used widely, initially because of mathematical convenience 
and later because of historical momentum, although in some problems 
symmetry considerations might justify it. However, SEL is inappropriate in 
problems where it is important to differentiate between zero and positive 
guessesofp,>O. LetY+-{qEY:qi>O} andaY={qESP:q&Y+} 
denote the relative interior and boundary of Y, respectively. If p E 5“ ‘, 
then a guess a1 E ~39 is equivalent to any a2 E c?Y satisfying I] p - a1 )I * = 
I] p - a* ]I*. In contrast, EL differentiates between positive and zero guesses of 
pi > 0; L,(p, a) = +co for all p E 9 + and a E ZW. Alternatively, Akaike 
[ 1, 21 motivates EL by the premise that the reason for estimating p by a is 
to base decisions about f(x ] p) on f(x ( a) since L,(p, a) is the Kullback- 
Leibler mean information for discrimination between f(x ] p) and f(x I a) [8]. 
Asymptotically L,(p, a) is roughly the negative of the logarithm of the 
probability of observing a sample distribution closely approximated by 
f(x ] p) when a large number of observations are independently drawn from 
f(x ] a) [9]. See (1, 21 and the references therein for additional motivation 
and examples. 

Since the action space &’ = 9 is a convex compact subset of Euclidean t- 
space, R t, and both L,(p, a) and L,(p, a) are convex in a Vp E 9, the 
nonrandomized decision rules form an essentially complete class [6]. 
Throughout this paper attention will be restricted to nonrandomized 
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estimators 6: X+ 9 except for the class C9: defined in the proof of 
Theorem 2.1 where the convexity of the corresponding class of risk 
functions, r(@‘), will require the inclusion of randomized rules. 

Let L(., .) denote an arbitrary loss function on 9 x ~2 and R(p, 6) be the 
risk of an estimator 6 at p E 9 under L(., .). An estimator 6’ is Bayes 
under L(., e) with respect to (w.r.t.) a prior P on 9 means 

j R(P, 69 P(dP) < J R(P, 6) VP) (1.3) 

for every 6. For notational simplicity the domain of integration is suppressed 
throughout when it is 9. In particular, it is well known that a Bayes rule 
under L, w.r.t. P is given by 

v(x) = j- PPVP I x) (1.4) 

where P(- 1 x) denotes the posterior distribution of P given x or an arbitrary 
probability measure according to whether sf(x ] p) P(dp) > 0 or = 0, respec- 
tively. 

We conclude this section by outlining the remainder of the paper. 
Section 2 proves that (1.4) is also Bayes under L, w.r.t. P; it shows that 
every admissible rule under L, is Bayes. Section 3 characterizes the minimal 
complete class under L,. As an application, the maximum likelihood 
estimator (mle) of p is proved to be admissible for the problem with 
parameter space 9 and inadmissible for the problem with parameter space 
9 minus its vertices. This result is an extreme case of “tyranny of the 
vertices.” Reference [7] characterized the behavior of the mle under SEL by 
the same language; however its behavior is quite different under SEL since 
the mle is admissible for SEL even over the parameter space Y+ (see 
Section 3). The final section details the relationship between the admissible 
rules under SEL and EL. 

2. ADMISSIBLE AND BAYES RULES UNDER EL 

Let P be a prior on 9. The Bayes risk of the estimator 6 under L, is 

TE(P, 6) = j s UP, S(x)) f(x I P) VP). 
s 

If P(. 1 x) is defined as in Section 1, then 

r,(P, 6) = 2 E]&(P, S(x)) I xl t(x) 

683/12/4-Z 
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where r(x) = jf(x 1 p) P(dp) is the marginal distribution of X and 

EK,(PV 6(x)) I x] = / s Pi ln(Pi/~i(x)) p(dP I x)* (2.1) 

From (2.1) a Bayes rule is any 6 which maximizes the multinomial log- 
likelihood kernel C vi In 6, where v = v(x) is given by (1.4). It is well known 
that 6 = v(x) is the required maximum and hence is Bayes under Z.,, w.r.t. P. 

Remark 2.1. The argument above also shows that v(x) is unique Bayes 
under L, or L, o r(x) > 0 for all x E X. 

Since good decision rules are usually (extended) Bayes the equivalence of 
the Bayes rules established above suggests that the classes of admissible rules 
under the two losses are related. We study this relationship by first 
establishing that admissible rules under SEL or EL must be Bayes with 
respect to SEL or EL, respectively. 

In both cases the action space J/ = Y and the parameter space 0 = Y 
are convex compact subsets of R’. Since L,@, a) is bounded, convex, and 
continuous in a for each p, every admissible rule under SEL is Bayes with 
respect to SEL [ 10, Theorem 3.201. Even though EL is not bounded, 
Theorem 2.1 shows the above result holds for L, by a generalization in [S] 
of Wald’s theorem. For any A c 9 let s(A) I {x E %: sup, r(x ] p) > Oj 
denote the set of outcomes which can be “seen” under A. For arbitrary sets 
EandFletEv-{WEE: w&F}. 

THEOREM 2.1. Suppose 6’ = 6’(x) is admissible for the problem 9 = 
(5, 0 = 9, ZY = 9, i,), then So is Bayes with respect to g = {S: Z + Y ) 

for some prior P such that P(Y”) = 1 where 9’ = (p: R,(p, So) ( co }. 

ProoJ: 6’ must be admissible for the problem 9’ = (%‘, 0 = 9’, 
& = 9, LE) where so = A?C(Y’“); if not, there exists a 8 such that 
R,(p, 6) < R,(p, 6”) Vp E Y” with < for some p E 9’ j. 6 is better than 6’ 
for the problem 9 since R,(p, So) = +a Vp E Y\Y”. 

Let go = (6: 95-O + 91, 0 < c < 1 and G’z = {S a randomized rule on 
3-O: 6,(x) = i a&da, x) > C%‘(X) Vx E Z) where a randomized rule on so 
is a mapping from so to the set of all probability measures on (J/ = 9, 
9(&‘)) and 9(39) denote the Bore1 o-field in .&. For every A E 9(J), 
&A, .) is assumed measurable in (so, A?(%“)) where 9(%“) is the power 
set of A!?‘. It is straightforward to verify that V6 E @, RE(., 6) is a 
continuous, real valued function on Y”, that the risk set r(G9:) = {RE(., 6): 
6 E CZ,“} is convex and that @?:)= {h: 9O-t [0, co]: 36 E &9,0 with 
R,(p, 6) < h(p)Vp E 9”} is closed in nfl [0, co] under the topology 
defined by pointwise convergence of sequence of functions. By Theorem 3.5 
of [5], 6’ is Bayes relative to @ for some prior P such that P(.Y”) = 1. We 
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claim 6’ is Bayes with respect to P relative to go; if not, then 36 E G8’\9,0 
and x* E Y” 3 <(x*) > 0 and #(6(x*)) > #(S”(x*)) where #(S) = I9 zip, 
In SIP(dp 1 x*). Let S’(x) = n&x) + (1 -A) 6’(x) for I E (0, 1). By concavity 
of $w), dw(x*)) > +(&x*)) + (1 -A) $(sO(x*)) > qGO(x)) VA E (0, 1). 
Choose A sufficiently small so that Vi E {l,..., t}, 6:(x) = SF(x) + 
A(Zi(x) - 6:(x)) > cSF(x) Vx E So since c E (0, 1) * 6’ E @ * 6’ is not 
Bayes with respect to P relative to @. Since P has support in Y”, we have 
VS E ~23 EE {S: X + 9) that the Bayes risk relative to P is 

rEP9 6) = ; &(P. S(x)) P(dP I x) r(x) 

= ; I, L,(P, S(x)) P(dP I x) Hz) 

z rE(P, SO) 

and the proof is completed. Section 4 will use Theorem 2.1 to establish the 
relationship between the admissible rules under EL and SEL. 

3. THE MINIMAL COMPLETE CLASS UNDER EL 

Throughout Sections 3 and 4, 6’ denotes a nonrandomized estimator for 
the problem 9= (%, 0 ~9, &‘=Y, LE) and p” = {p ~9: 
R,(p, 6”) < co}. We begin by describing the structure of Y” for admissible 
6’ in Lemmas 3.1 and 3.2 and then characterize the minimal complete class 
for 9 in Theorems 3.1 and 3.2. 

DEFINITION 3.1. F c S is a facet of 9 means either F = 27 or 3 1 E ( l,..., 
t--1Jandintegers l<i,<i,<~.. <i,<t such that pEFop,,=Oforj= 
1 1. ,a--, 

For any facet F of 9 let I(F) be defined by p E F o pr = 0 V i E I(F); set 
I(Y) = 0. Let Q denote the collection of subsets T of 9 which can be 
written in the form T = l-l:=, F, for some positive integer k where F, ,..., Fk 
are facets of 9 such that Vi = 1 ,..., k if F is a facet of 9 satisfying F$ Fi, 
then F v! T. 

LEMMA 3.1. 9’ is in Q for any admissible So. 

Proo$ Clearly 9’ # 0 since 6’ is admissible. If sP” = 9, then the 
result is true. If Y” # 9, then suppose Y”nF+ # 0 for some facet F 
where F, = {p E F: pi > 0 for j&I(F)) is the relative interior of F. A 
straightforward argument proves F c 9’. 
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LEMMA 3.2. {e,,..., e,} c Y” for any admissible 6’ where e, is the unit 
vector with 1 in the ith component and 0 in the remaining components. 

ProoJ: Suppose w.l.0.g. e, @ Y”, then R,(e,, 6’) = +a~ o 6y(Ne,) = 0. 
Define a new estimator 6 by 

&x)-e,, x=Ne, 

E SO(x), x#Ne,, 

then 0 = R,(e,, 8) < co = R,(e,, So), R,(p, 6) < co = R,(p, 6’) for all p with 
0 < p, < 1, and R(p,f) =R(p, 6”) for all p with p, = 0. Therefore 6 
dominates 6’ which contradicts the admissibility of So and completes the 
proof. One consequence of Lemma 3.2 is that for admissible 6’ every facet 
of 9 has a nonempty intersection with 9’. 

Theorems 3.1 and 3.2 below characterize an estimator 6’ as admissible 
when N> t - 1 if there exists a set Tin Q containing the vertices and a prior 
P with support in T so that (1) 6’ is Bayes w.r.t. P and (2) X(T) is the 
support of <(.). The symbol Supp P will denote the support of P in the 
following. 

THEOREM 3.1. Every admissible 6’ is Bayes w.r.t. some prior P with 
support in Y” which satisfies {x E s: r(x) > 0) c X(9”). Furthermore if 
N > t - 1, then {x E %: r(x) > 0} = Z(9’“). 

Proof: Theorem 2.1 guarantees 6’ is Bayes w.r.t. some prior P with 
support in 9’. If x E x\J&-(Y”), thenf(x ( p) = 0 Vp E 9’ * c(x) = 0 and 
so {x E 27: r(x) > 0} c X(Y”). N ow suppose N > t - 1; if {Fj}fzl is the 
collection of facets such that P(Fj+) > 0 for j = l,..., J where Fj’ denotes the 
relative interior of Fj, then Theorem A.1 in the Appendix proves that 9’ = 
U&, Fj. If x E Z(Y”), then 3p E 9’ such that f(x ) p) > 0. Assume 
w.1.o.g. that xi > 0 for i = l,..., r and = 0 for i = r + l,..., t and that p E F,. 
Then pi > 0 for i= l,..., r and p’ E Ff * pf > 0 for i = l,..., r. Hence 
c(x) > 0 and the proof is finished. 

THEOREM 3.2. Suppose N > t - 1 and T E Q contains the vertices 
e, ,..., e,. If P is a probability measure on 9 satisfying P(T) = 1 and T(x) = 
J”f(x 1 p) P(dp) > 0 Vx E X(7’), then any Bayes estimator 6 w.r.t. P is 
admissible under EL. 

Proof: Suppose 6’ satisfies R(p, 6’) < R(p, 6) Vp E 9, then S’ is also 
Bayes w.r.t. P. By Remark 2.1 the Bayes estimator is unique for xsuch that 
r(x) > 0 and hence 6(x) = S’(x) Vx E Z(T). So R,(p, 6) = RE@, 6’) V p E T. 
Let {F,} be the set of facets of 9 such that P(Fj+) > 0 Vj; it is easy to see 
that U Fj c T. Furthermore, Theorem A. 1 guarantees {p E 9’: 
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R,(p,6’)<oo}=UFj={pEY:R,(p,8)<oo} sinceNat- andhence 
R,(p, 6’) = co = R,(p, 6) Vp E Y\g So that 6 is admissible. 

Remark 3.1. Any estimator 6 satisfying 6(Nei) = e, for i = l,..., t is 
admissible under EL since d is Bayes with respect to the prior P putting 
mass l/t at each point of T = (e, ,..., e,). 

Remark 3.2. The proof of Theorem 3.2 shows that if t(x) > 0 Vx E Z, 
then any Bayes rule is admissible for all N> 1. 

The maximum likelihood estimator Smte(X) = X/N is admissible under 
SEL [3, 4, 71. As is well known, this admissibility is related to the fact that 
the risk 

R,(P,~~'~)= 1 -lIplIz 

is small when p is near vertices. Johnson [7] refers to this behavior as the 
“tyranny of the boundary.” For the case of EL the boundary exerts a much 
stronger tyranny as evidenced by the following result. 

THEOREM 3.3. Under EL, Smle is 

(i) admissible when 0 = 9 for N > t - 1, 

(ii) inadmissible when 0 = Y\{e, ,..., e,} for N > 1. 

ProoJ: Part (i) follows from Remark 3.1. To prove part (ii) fix p E 

Y\{e i ,..., e,}; assume w.1.o.g. that pi > 0 for i = 1,2 since p has at least two 
nonzero components. Choose x* = x*(p) so that P,[X = x* ] > 0 and 
6yle(x*) = 0 =s R(p, Smle) = co. tjrnle is clearly dominated by the constant 
estimator SC(x) = (l/t,..., l/t) Vx E .2X 

Remark 3.3. In contrast, Smle is admissible under SEL when 0 = 

Y\le , ,..., e,} and even when 0 = 9 +. See [4, especially Proposition 1.71. 

The admissibility of gmie under entropy loss can therefore be dismissed as 
being artificial. 

The last section shows the admissible rules under EL and SEL coincide 
for estimators which are always positive but each class contains 
(nonpositives) estimators not contained by the other. 

4. RELATIONSHIP BETWEEN ADMISSIBLE CLASSES UNDER SEL AND EL 

The development below first studies estimators which are positive for all 
x f s via Lemmas 4.1 and 4.2; it then considers estimators which allow 
zero guesses. 
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LEMMA 4.1. Let 6’ be admissible under EL. Then there is an estimator 
6’ which is admissible under SEL such that 6’(x) = S’(x) Vx E X(,i’ “) 
when Nat- 1. 

Proof. From Theorem 3.1, 6 is unique Bayes on %(Y”) relative to some 
prior P on 9’. Let P, be a prior with marginal distribution T,(x) = (f(x 1 p) 
P,(dpIx)>O VxEX. Define S’(x) = 6(x) for x E-%(9’) and 
=J‘N’,H4x) f or x 4. X(9”). Then 6’ is admissible for SEL by [4]. 

LEMMA 4.2. Suppose N > t - 1 and 6 is admissible under SEL. If 
6(x) > 0 Vx E 3, then 6 is unique Bayes on all of % for some prior P. 
(Equivalently S is Bayes for a prior P having r(x) > 0 Vx E ST.) 

Proof. Any 6 admissible under SEL is Bayes from Section 2; let P be a 
prior such that 6 is Bayes w.r.t. P. Suppose 3 x* E % 3 &x*) = 0; w.1.o.g. 
assume XT > 0 for i = I,..., s and x) = 0 for i = s + l,..., t (1 < s < t). Then P 
hassupp~rtinT-{pELSP:p~=Oforsomei=l,...,s}=UF~whereF~,j= 
1 ,..., 2” - 1, have index sets I(Fj), j = l,..., 2” - 1, which are the’ distinct 
nonempty subsets of {l,..., s). Let X= {Fc T: F a facet, P(F) > O}. 
Partially order the sets Z(F), FE Y by inclusion and let I, be a minimal set 
in this ordering. Now I, # 0 since I, = 0 + 3 F E Sr 3 Z(F) = I, = 0 which 
contradicts F E T, assume w.1.o.g. that I, = {r + l,..., s) with 1 < r + 1 < s. 
Fix % E X so that zi = 0 for i = r + l,..., s and ii > 0 otherwise; this is 
possible since N > t - 1. Clearly r(a) > 0 since r(g) = 0 (together with 
r(x*) = 0) + Supp(P) c (p E 9: pi = 0 for some 1 < i < r} + I(F) c {l,..., r} 
V F E Y which is impossible since 3 F’ E Sr 3 Z(F’) = I, = {r + l,..., s}. To 
complete the proof it suffices to show pi = 0 for i = r + l,..., s whenever 
f(% ] p) > 0 and p E FEY and hence S,(i) = 0 for i = r + l,..., s which 
contradicts the assumption 6(x) > 0 V x E %. But f (2 1 p) > 0 * pi > 0 for 
1 < i < r and s + 1 Q i < t z- Z(F) c (r + l,..., s} = I, * Z(F) = I, since I, is 
minima1 +- pi = 0 for r + I,..., s and hence the desired result. 

Remark. One consequence of Lemmas 4.1 and 4.2 is that when N > 
t - 1, a positive estimator 6 is admissible under SEL if and only if 6 is 
admissible under EL. Suppose 6(x) > 0 for all x E 5; then 9’ = {p E 9 1 
R,(p, 6) ( co) = 9. Hence if 6 is admissible under SEL, then 6 is Bayes for 
some prior P satisfying l(x) > 0 Vx E % =X(9”) and hence 6 is 
admissible under EL by Theorem 3.2. Conversely, if 6 is admissible under 
EL, then 6(x) = S’(x) Vx E %(Y”) = % where S’ is admissible under SEL 
so that S is admissible under SEL. 

There exist (nonpositive) estimators 6 which are admissible under SEL but 
not EL and vice versa. However, in the latter case, a 6 admissible under EL 
must coincide on X(9”) with an estimator which is admissible under SEL 
by Lemma 4.1. Intuitively, a (nonpositive) estimator 6 admissible under SEL 
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for which Y” = lJf=, Fj has at least one facet, F, say, disjoint from the 
remaining ones is a candidate to be inadmissible under EL. In this case 
-‘Z-(sP”) = U;= 1 A-(FJ w h ere S(F,) n (n,“=, %(I;,)) = 0. If 8 can be 
constructed to modify 6 at one or more x E %(F,) to decrease R,(p, S) for 
p E I;,, then since R,(p, 6) = +co for p 6$9’, the resulting estimator can 
improve 6. Example 4.1 illustrates this phenomenon. 

EXAMPLE 4.1. Consider the estimator for the trinomial problem defined 
by 

6(x, 9 x2 9 x3) = (0, l/2, l/2), x, =o 

= (l/3, l/3, l/3), x, > 0. 

6 is admissible under SEL [4]. Consider f defined by 

&Xl 9 x2, x1) = (0, l/2, l/2), x, =o 

= (l/3, l/3, l/3), O<x,<N 

= (LO, 01, x,=N. 

Then,p,=O~R,(p,6)=R,@,8)<co,p,=l~O=R,(p,~)<R,(p,6)= 
N ln(3), and 0 < p1 < 1 + R,(p, 6) = RE@, 6) = co; hence 6 is inadmissible 
under EL. 

Conversely, an estimator 6 which guards against the states of nature 
e, ,..., e, by guessing 6(Ne,) = ei for i = l,..., t will be admissible under EL. 
However 6 can be inadmissible under SEL by making counter intuitive 
guesses at other x values. 

EXAMPLE 4.2. By Remark 3.1 the estimator defined by 

S(x) E e,, x=Nei (1 Q i Q t) 

=e 1 otherwise 

is admissible under EL; it is inadmissible under SEL by Theorem 3.2 of [4]. 

APPENDIX 

Let P be a given prior on Sp and {F,}j-, the collection of facets such that 
P(F/+ ) > 0 where F/’ is the relative interior of F, ; denote T 5 Us=, Fj . 

THEOREM A.l. Let 6’ be any Bayes rule w.r.t. P under EL. Then 
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Tc .M” = (p E 9: R,(p, 6’) < 00) for all N > 1. Furthermore T = .2 ’ 
when N>t- 1. 

Proof: Suppose p* E T, then assume w.1.o.g. that p* E F, . Fix x* E &’ 
such the f(x* ( p*) > 0; then XT = 0 whenever p,? = 0. Consequently, 
f(x* 1 p) > 0 Vp E F, since Z(FI) c {i:qF = 0). Then <(x*) > JF;f(x* 1 p) 
P(dp) > 0 and Vi 6! Z(F1), Sp(x*) > jF: pif(x* 1 p) P(dp 1 x*) > 0 since 
P(F:) > 0 and pif(x* ) p) > 0 Vp E Ft and i 6? Z(F,). Since this is true for 
any x* for which f(x* I p*) > 0, it follows that p* E Y”. 

Conversely, if N > t - 1, suppose p* E 9’ but p* 6 T. Assume w.1.o.g. 
pT>O for i=l ,..., q and = 0 for i = q + l,..., t (1 ,< q ,< t). Then Z(Fj) n 
(l,...,q}z0 vj= 1 ,..., J since p* 6? T. Partially order the sets Z(Fj)n 
{ l,...) q}, j = I)...) J, by inclusion and let I, be a minimal set; then I, # 0. 
Assume w.1.o.g. that I, = { l,..., r} =Z(Fj) f7 (l,..., q) for j= l,..., L but I, # 
Z(Fj)n {l,...,q} forj=L + 1 ,...,J(l<r<q, 1<1<J).Choosex*EXso 
that XT > 0 for i = r + 1 ,..., q and = 0 otherwise; this is possible since N > 
t - 1 and 1 < r < q < t. Then x* E S(Fj) for j = l,..., k and x * & S(Fj) for 
j=n+1 ,..., J since Z. is minimal. It follows that 6,(x*) = 0 for i = l,..., r 
since pi = 0, i = l,..., r whenever f(x* I p) > 0 and p E T z~ Supp P. Thus, 
R(p*, 6) = +co since pi* > 0 for i = l,..., r which contradicts p* E 9-O and 
proves the theorem. 

Remark A.l. When N < t - 1, strict containment can occur in T c 9”. 
For example let t = 3, N = 1 and P be a prior with support contained in the 
interior of F, = {p E 9: p, = 0). Then min{@e,), @e,)} > 0 = Qe,) where 
e, is the ith unit vector. Every Bayes rule has S’(e,) and S’(e,) uniquely 
determined; the rule with 6’(e,) = (l/3, l/3, l/3), say, gives Y’O = 
(e, } U F, # T = F, . However, the authors conjecture that if in addition to 
the hypotheses of Theorem A.1 either T(x) > 0 Vx E LiiT(-i”“) or 6’ is 
admissible w.r.t. entropy loss, then T = 9’ and hence Theorems 3.1, 3.2 and 
4.1 would hold for all N > 1. 
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