
 1

 
 

The Analogy Between Statistical Equivalence and Stochastic Strong Limit Theorems. 1 

 
 

Lawrence D. Brown2 

 
Statistics Department 

Wharton School, University of Pennsylvania 
Philadelphia, PA 19104-6302 

USA 
lbrown@wharton.upenn.edu 

 
 

Abstract 
 

 A classical limit theorem of stochastic process theory concerns the sample 
cumulative distribution function (CDF) from independent random variables. If the 
variables are uniformly distributed then these centered CDFs converge in a suitable sense 
to the sample paths of a Brownian Bridge. The so-called Hungarian construction of 
Komlos, Major and Tusnady provides a strong form of this result. In this construction the 
CDFs and the Brownian Bridge sample paths are coupled through an appropriate 
representation of each on the same measurable space, and the convergence is uniform at a 
suitable rate. 
 
 Within the last decade several asymptotic statistical-equivalence theorems for 
nonparametric problems have been proven, beginning with Brown and Low (1996) and 
Nussbaum (1996). These theorems consider two sequences of statistical problems. The 
parameter spaces for these problems are infinite-dimensional; hence the problems are 
called nonparametric. The approach here to statistical-equivalence is firmly rooted within 
the asymptotic statistical theory created by L. Le Cam but in some respects goes beyond 
earlier results.  
 

This paper contains a survey of some of these statistical-equivalence results. It 
also demonstrates the analogy between these results and those from the coupling method 
for proving stochastic process limit theorems. These two classes of theorems possess a 
strong inter-relationship, and technical methods from each domain can profitably be 
employed in the other. Results in a recent paper by Carter, Low, Zhang and myself will 
be described from this perspective.  
 
 
1. Much of this material was contained in an invited address at the International Congress of 
Mathematicians, Beijing, Aug. 2002. Revised Sept 4, 2002. 
2. Research supported in part by NSF-Division of Mathematical Sciences 
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1. Probability Setting 
 
1.1 Background 
 

 
Let F be the CDF for a probability on [0,1];. F abs. cont., with 

 ( ) [0,1].Ff x on
x

∂
∂

�  

Let X1, …, Xn iid from F. n̂F  denotes the sample CDF, 

 ( )[0, ]
1

1ˆ ( )
n

n x j
j

F x X
n =
∑ I� . 

Let ˆ
nZ denote the corresponding sample “bridge”, 

(1) ˆ ˆ( ) ( ) ( )n nZ x F x F x−� . 
 
Let W(t) denote the standard Wiener process on [0,1] and let ˆ

nW  denote the white noise 

process with drift f and local variance ( )f t
n . Thus ˆ

nW  solves 

 ( )( )ˆ ( ) ( )n
f tdW t f t dt dW t
n

= + . 

An alternate description of ˆ
nW  is that it is the Gaussian process with mean F(t) and 

independent increments having 

( ) ( )1ˆ ˆvar ( ) ( ) ( ) ( ) , 0 1.n nW t W s F t F s for s t
n

− = − ≤ < ≤  

 
The analog of ˆ

nZ  is the Gaussian Bridge, defined by 

 
ˆ ( )ˆ ( ) ( )ˆ (1)

n
n

n

W tB t F t
W

= − . 

ˆ
nB  can alternately be described as the centered Gaussian process with covariance  

 ( ) { }ˆ ˆcov ( ), ( ) min ( ), ( ) ( ) ( )n nB s B t F s F t F s F t= − . 

 
There are various ways of describing the stochastic similarity between ˆ

nZ  and ˆ
nB . For 

example Komlos, Major, and Tusnady (1975, 1976)  proved a result of the form 
 
Theorem (KMT): Given any absolutely continuous F {X1,…,Xn} can be defined on a 
probability space on which ˆ

nB  can also be defined as a (randomized) function of 

{X1,…,Xn}. This can be done in such a way that ˆ
nB  has the Gaussian Bridge distribution, 

above, and 

(2) 
[0,1]

ˆ ˆsup ( ) ( )F n n n
t

P n Z t B t a c
∈

⎛ ⎞− > ≤⎜ ⎟
⎝ ⎠

. 
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Here c>0 and {an} are suitable positive constants with log
n

na
n

∼ . The process ˆ
nB  can 

be constructed as a (randomized) function of ˆ
nZ , that is, ( )ˆ ˆ( ) ( )n n nB t Q Z t= . It should be 

noted that the construction depends on knowledge of F. 
 
NOTE: If the probability space is equipped with an auxiliary random variable, U, that is 
uniformly distributed on [0,1] then a randomized function such as Qn, above, can be 
written in a measurable way as a non-randomized function of U and the quantity of 
interest; here ˆ

nZ . (See Wald and Wolfowitz (1951) for the basic theorem from which this 
can be deduced.) This can be done in all the contexts below that involve randomized 
functions, and we will generally suppress mention of U in the statement of such results, 
as we have done above. 
 
[Various authors, such as Csörgö and Revesz (1981) and Bretagnolle and Massart (1989) 
have given increasingly detailed and precise values for {an} and c=c({an}), and also 
uniform (in n) versions of (2).). These are not our focus.] 
 
1.2 Extensions: 
 
1. Results like the above also extend to functional versions of the process 
ˆ

nZ . Various authors including Dudley (1978), Massart (1989) and Koltchinskii (1994) 
have established results of the following form. 
 
Let q:[0,1]→ℜ be of bounded variation. One can define  
 ( )ˆ ˆ ˆ( ) { }n n nZ q qd F F F F dq− = −∫ ∫� . 

(Thus, ( )[0, ]
ˆ ˆ( )n n xZ x Z= I ). There is a similar definition for ˆ ( )nB q  as a stochastic integral. 

(See, for example, Steele (2000).) Then the KMT theorem extends to a fairly broad, but 
not universal, class of functions, _. That is, for each F, ˆ

nB  can be defined to satisfy 

(3) ˆsup ( ) ( )F n n n
q

P n Z q B q a c
∈

⎛ ⎞′− > ≤⎜ ⎟
⎝ ⎠_

�  where { na′ } depends on _. 

(For most classes _, log
na n

n
′ → ∞  so that n na a′ >> .) 

 
2. Bretagnolle and Massart (1989) proved a result for inhomogeneous 
Poisson processes that is similar to (2). Let {T1,…,TN} be (ordered) observations from an 
inhomogeneous Poisson process with cumulative intensity function nF and, 
correpondingly, (local) intensity nf. Note that N~Poisson(n) and conditionally given N 
the values of {T1,…,TN} are the order statistics corresponding to an iid sample from the 

distribution F. In this context we continue to define 1
[0, ]

1

ˆ ( ) ( )
N

n t j
j

F t n I T−

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑  where the 

term in braces now has a Poisson distribution with mean nF(t). Also, continue to define 
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ˆ ˆ( ) ( ) ( )n nZ t F t F t−�  as in (1). (But, note that now { }1ˆ (1) ( )nZ n Poiss n n− −∼  rather than 
ˆ (1) 0nZ = , w.p.1, as was the case in (1).) 

 Then versions of the conclusions (2) and (3) remain valid. We give an explicit 
statement since this result will provide a model for our later development. 
 
Theorem (BM): Given any n and any absolutely continuous F the observations 
{T1,…,TN} of the inhomogeneous Poisson process can be defined on a probability space 
on which ˆ

nB  can also be defined as a (randomized) function of {T1,…,TN}. This can be 

done in such a way that ˆ
nB  has the Gaussian Bridge distribution, above, and 

(4) 
[0,1]

ˆ ˆsup ( ) ( )F n n n
t

P n Z t B t a c
∈

⎛ ⎞− > ≤⎜ ⎟
⎝ ⎠

. 

Here c>0 and {an} are suitable constants with log
n

na
n

∼ . 

 
Remark: Clearly there must be extensions of (4) that are valid for the Poisson case also, 
although we are not aware of an explicit treatment in the literature. Such a statement 
would conclude in this setting that 

(5) ˆ ˆsup ( ) ( )F n n n
q

P n Z q B q a c
∈

⎛ ⎞′− > ≤⎜ ⎟
⎝ ⎠_

 where { na′ } depends on _. 

 
 
 
2. Main Results 

 
The objective is a considerably modified version of (3) and (5) that is stronger in several 
respects and (necessarily) different in others. We will concentrate for most of the 
following on the statement (5) since our results are slightly stronger and more natural in 
this setting. The extension of (3) appears in the statement of Theorem 2.  
 
Expression (5) involves the target function ˆ

nB . In the modified version the role of target 
function is instead played by nW�  which is the solution to the stochastic differential 
equation 

(6) 1( ) ( ) ( )
2ndW t g t dt dW t

n
= +�  

where ( ) ( )g t f t= . An alternate description of nW�  is thus  

(6′) ( )( )
2n

W tW G t
n

= +�  where 
0

( ) ( )
t

G t f dτ τ= ∫ . 

(In the special case where f is the uniform density, f=1, then 4n nW W=� .) 

The role of the constructed random process ˆ
nZ  is now played by a differently constructed 

process nZ� . As before nZ�  depends only on {T1,...,TN}, and not otherwise on their CDF, 
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F. This version also involves a large set, F, of absolutely continuous CDFs. Both nZ�  and 
F will be described later in more detail. Here is a statement of the main result. 
 
Theorem 1: Let F be a set of densities satisfying Assumption A or A′, below. Let _ be 
the set of all functions of bounded variation. Let {T1,…,TN} be an inhomogeneous 
Poisson process with local intensity nf. The process nZ�  can be constructed as a 
(randomized) function of {T1,…,TN}, with the construction not depending on f. The 
Gaussian process nW�  having the distribution (6′) can also be defined (on this same space) 
as a (randomized) function of {T1,…,TN}. [This construction depends on f on a set of 
probability at most cn

. See Remark 9), below.] This can be done in such a way that  

(7) sup sup ( ) ( ) 0 0f f n n n
q

P n Z q W q c∈
∈

⎛ ⎞− > ≤ →⎜ ⎟
⎝ ⎠_

� �
F . 

 
Remarks: The conclusion (7) of this theorem should be compared to (5). In many ways 
(7) is stronger than (5): 

1) The set _ has been enlarged to be the set of all functions of bounded variation. 

2) In (7) the bound applies uniformly to f ∈F where F is a large (but proper) subset 
of all densities. 

3) The constant 0na′ >  in (2) has now been set to 0. (The multiplier, n , that 
appears in (5) – and for analogy in (7) – is then no longer relevant.) 

4) At the same time c = cn is now allowed to depend on n and required to (at least) 
satisfy cn→0. Faster rates of convergence to 0 can also be desirable and are 
obtainable from more restricted choices of F. 

5) The distribution of the target, nW� , still has a known, and easily described 
dependence on f, although this distribution is not that of a Brownian Bridge, as in 
(5). Indeed, the distribution of nW�  turns out to be at least as convenient for 

statistical applications as that of ˆ
nB . 

The tradeoffs are: 
6) The construction of nZ�  based on {T1,…,TN} is considerably less convenient and 

natural than that of the empirical bridge, ˆ
nZ , in the KMT theorem. 

7) The construction of nW�  depends on f. This is true also in (5), but it needs to be 
kept in mind by contrast with the construction of nZ�  since that depends only on 
{T1,…,TN} and not otherwise on f.  

8) The construction of nW�  is also not quite explicit but turns out to suffice for the 
statistical application of this result. This should again be noted in order to more 
fully explain the content of (7).  

9) To be more precise, the construction of nW�  begins in an explicit fashion via the 
construction of nZ� . This preliminary construction then needs to be altered on an 
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exceptional set of probability (under f) at most cn. This set is only implicitly 
defined. The only part of the construction that depends on f is the determination 
of the exceptional set, and the modification to be carried out on this set. 

 
For the situation of iid variables, as in (1), a similar result holds. In this case the matching 
Gaussian process is again nW� , rather than the Brownian bridge of the KMT theorem.  
 
Theorem 2: Let F be a set of densities satisfying Assumption B, below. Let _ be the set 

of all functions of bounded variation. Given any n and f∈F, iid variables {X1,…,Xn} with 

density f can be defined on a probability space. A process nZ��  can be constructed as a 
(randomized) function of {X1,…,Xn}, with the construction not depending on f. The 
Gaussian process nW�  having the distribution (6′) can also be defined (on this same space) 
as a (randomized) function of {X1,…,Xn}. [This construction depends on f, but only on a 
set of probability at most cn.] This can be done in such a way that  

(8) sup sup ( ) ( ) 0 0f f n n n
q

P n Z q W q c∈
∈

⎛ ⎞− > ≤ →⎜ ⎟
⎝ ⎠_

�� �
F . 

 
 
 
3. Statistical Background 

 
3.1 Settings: 
 
The first purpose of the discussion here is to motivate the probabilistic results described 
above. A second purpose is to state the result on which to base the proof of Theorem 1. 
The setting involves two statistical formulations: 
 
Formulation 1 (nonparametric inhomogeneous Poisson process): The observations are T 
= {T1,…,TN} from the Poisson process with local intensity nf, f∈F. The problem is 
“nonparametric” because the “parameter space”, F, is a very large set – too large to be 
smoothly parametrized by a mapping from a (subset of) a finite dimensional Euclidean 
space. Some conventional forms for F are discussed below. The statistician desires to 
make some sort of inference, δ, (possibly randomized) based on the observation of T.  
 
Formulation 1′ (nonparametric density with random sample size): The relation between 
Poisson processes and density problems has been mentioned above. As a consequence, 
Problem 1 is equivalent to a situation where the observations are {X1,...,XN} with 
N~Poisson(n) and {X1,...,XN} the order statistics from a sample of size N from the 
distribution with density f.  
 
Formulation 1′′ (nonparametric density with fixed sample size): This formulation refers 
to the more conventional density setting in which the observations are  {X1,...,Xn} iid 
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with density f and n specified in advance. Clearly, Formulations 1′ and 1′′ are closely 

related, and 1′′ has been often referred to as the Poissonization of 1′. See for example van 
der Vaart and Wellner (1996). 
 
Formulation 2 (white noise with drift): The statistician observes a White noise process 

( )ndW t� , t∈[0,1], with drift g∈G and local variance 1 4n . Thus  

 1( ) ( ) ( )
2ndW t g t dt dW t

n
= +� , 

and ( )( ) ( )n
W tW t G t

n
− =�  where 

0

( ) ( )
t

G t g dτ τ= ∫ . Again G is a very large – hence 

“nonparametric” – parameter space. Throughout, G ⊂ L2 = {g: ∫g2 < ∞}. In general, there 
need be no relation between f in Formulation 1 and g in Formulation 2, but such a 
relation will shortly be assumed in connection with Theorem 1, where  
(9) g f=  and { }:f f= ∈G� F . 

This can alternatively be considered as a statistical formulation having parameter space F 
under the identification (9). We take this point of view in the BCLZ theorem, below. 
 
Formulation 2′: (infinite series problem): The Poisson formulation described above is a 
statistically natural one. (The density problem with fixed n in Problem 1′ is even more 
natural.) The white noise with drift setting is statistically less familiar and less natural. But 
it is mathematically very convenient. One of the features that makes it so convenient is that 
it is equivalent to an infinite series formulation. This equivalence can be derived via any 
convenient orthonormal basis {ϕj} of L2. Let ( , )i i  denote the inner product in L2. Let θj = 
(ϕj, g) and ( , )j j nY dWϕ= � . Then Yj,  j = 1,… are independent normal variables with mean 
θj and variance 1/n. The parameter space for this form of the problem is 

{ }{ }: , ( , ), 1,...j j jg g jθ θ ϕ∗ = ∃ ∈ = =G G .   

 
 
 
3.2 Constructive asymptotic statistical equivalence:  
 
Of the various statistical formulations, above, Formulation 2′ is generally the easiest to 
work with mathematically in order to construct asymptotically desirable statistical 
procedures. On the other hand, the various versions of Formulations 1 are the more 
frequently encountered in statistical practice. Hence it is desirable to establish a strong 
form of asymptotic equivalence between these two different formulations. This enables one 
to proceed to “solve” the statistical problem in the easier setting of Formulation 2′ and then 
transfer that “solution” to Formulation 1, which is (usually) the setting of greater practical 
importance.  
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Here is one definition of the strongest form of such an equivalence.  

Definition (asymptotic equivalence): Let  (n) (n) (n) (n)
j j j j=( , , )P X B F   j = 1,2, n = 1,2,...  be two 

sequences of statistical problems on the same sequence of parameter spaces, Θ(n). Hence, 
{ }(n) ( ) ( )

j , :n n
jF θ θ= ∈ΘF . Then P1 and P2 are asymptotically equivalent if there exist 

(randomized) mappings ( ) (n) (n)
j k:n

jQ →X X , j,k = 1,2, k≠j, such that  

(10) ( ) ( )( )
( ) ( )
,sup ( ) 0n
n n

j k k k n
TV

F Q x F dx cθθ∈Θ
− = →∫i i ,  j,k = 1,2, k≠j,  

where 
TV
i  denotes the total variation norm.   

 
This definition involves a reformulation of the general theory originated by LeCam (1953, 
1964). See also Le Cam (1986), Le Cam and Yang (2000), van der Vaart (2002) and Brown 
and Low (1996) for background on this theory including several alternate versions of the 
definition and related concepts, a number of conditions that imply asymptotic equivalence, 
and many applications to a variety of statistical settings. Note that both Formulations 1 and 
2 involve an index, n, and can thus be considered as sequences of statistical problems in the 
sense of the definition. 
 
3.3 Spaces of densities (or intensities): 
 
Suitable families of densities, F, can be defined via Besov norms with respect to the Haar 
basis. The Besov norm with index α and shape parameters p = q can most conveniently be 
defined via the stepwise approximants to f at resolution level k. These approximants are 
defined as  

 
( 1) 22 1

, ,[ 2 ,( 1) 2 )
0 2

( ) ( ) where 2
kk

k k

k

k
k k kf t I t f f f

+−

+
=

= =∑ ∫
A

A AA A
A A

, 

and the Besov(α,p) norm is defined as 

 
1

0 1,
0

2
p

p ppk
k kp p

k

f f f fα
α

∞

+
=

⎧ ⎫
= + −⎨ ⎬
⎩ ⎭

∑ . 

The statement of Theorem 1 can now be completed by stating the assumption on F needed 
for its validity. 
 
Assumption A: F satisfies  
(11) { }0 1 0inf ( )x f x ε≤ ≤⊂ ≥F f :  for some ε0>0  

and F is compact in both Besov(1/2,2) and Besov(1/2,4). 
 
Other function spaces are also conventional for nonparametric statistical applications of 
this type. The most common of these are based on either the Lipshitz norm ( )Lf

β
 or the 

Sobolev norm ( )Sf
β

. These are defined for β≤1 by 
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 ( ) ( ) 2 2

0 1

( ) ( )
,supL S

k
x y

f y f x
f f k

y x
β

ββ β
ϑ

∞

≤ < ≤ −∞

−
= =

−
∑  

where 
1

2

0

( ) ik x
k f x e dxπϑ = ∫  denote the Fourier coefficients of f. (Both spaces have natural 

definitions for β>1 as well, but we need consider here only the case β≤1.) 
 
The following implies Assumption A and hence also suffices for validity of Theorem 1. 
 
Assumption A′: F satisfies (11), and is bounded in the Lipshitz norm with index β, and is 
compact in the Sobolev norm with index α, where α ≥ β and either β > 1/2 or α ≥ 3/4 and 
α + β ≥ 1. 
 
The following assumption is noticeably stronger than either A′ or A, and is used in 
Theorem 2. 
 
Assumption B: F satisfies (11) and is bounded in the Lipshitz norm with index β, where β 
> 1/2. 
 
For more information about the relation of these spaces in this context see Brown, Cai, 
Low and Zhang (2002) and Brown, Carter, Low and Zhang (2002) (referred to as BCLZ 
below).  
 
3.4 Statistical Equivalence Theorems 
 
BCLZ then extended earlier results of Nussbaum (1996) and Klemela and Nussbaum 
(1998) to prove the following basic result: 
 
Theorem a (BCLZ): Consider the statistical Formulations 1 and 2 with the parameter space 
F and the relation (9). Assume F satisfies Assumption A (or A′). Then the sequences of 
statistical problems defined in these two formulations are asymptotically statistically 
equivalent.  
 
NOTE: Assumption A seems to be about the weakest possible assumption under which a 
conclusion like the above is valid. Brown and Zhang (1998) shows that such a conclusion 
is not valid under the general assumption that F is bounded in both the Besov(1/2,2) and 

Lipshitz(β=1/2) norm . The appearance of the norm Besov(1/2,4) in Assumption A may 
possibly be a technical artifact of our proof of Theorem a, though perhaps something 
slightly stronger than compactness in Besov(1/2,2) is required for such a conclusion. 
 
BCLZ describes in detail a construction of nZ�  as a (randomized) funcion of {T1,…,Tn}. 
(More precisely, BCLZ describes the construction of the Haar basis representation of nZ� , 
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from which nZ�  can directly be recovered.) This construction is invertible, in that 
{T1,…,Tn} can be recovered as a function of nZ� . Further, BCLZ shows that both nZ� and 

nW�  can be represented on the same probability space so that their distributions, 
nZP�  and 

nWP� , say, satisfy 

 0
n nZ W TV

P P− →� � . 

 
The mappings { ( )n

jQ : j=1,2, n = 1,2,...} that yield the equivalence of the above theorem can 
then be directly inferred from this construction. We sketch that construction in Section4, 
and refer the reader to BCLZ for details of the construction and proof. It can be remarked 
that these bear considerable similarity to parts of the construction and proof in Bretagnolle 
and Massart (1989) and Koltchinskii (1994) and other proofs of KMT type theorems. But 
there are also some basic differences, especially those related to the appearance of the 
square-root in the fundamental relation (9) and the use of the very strong Total Variation 
metric involved in the statement of the theorem. In addition, the fact that (7) is uniform in 
_ and F entails the need for various refinements in the proof. See Section 4 for a related 
remark. 
 
Theorem 1 is now an immediate logical consequence of this result from BCLZ and the 
following lemma. 
 
Lemma: Suppose (n) (n) (n) (n)

j j j j=( , , )P X B F   j = 1,2, n = 1,2,...  are asymptotically equivalent 
sequences of statistical problems on the same sequence of parameter spaces, Θ(n). Let 
{ ( )n

jQ : j=1,2, n=1,2,...}  denote a sequence of mappings that define this equivalence, as in 

(10). Then there are non- randomized mappings { ( )n
jQ� : j=1,2, n = 1,2,...} such that  

(12) ( ) ( )( ) 1n n
f j j nP Q Q c= ≥ −�   for every (n)

jf ∈F , j=1,2, n=1,2,...  

and for every θ∈Θ(n) 

(13) ( )( ) ( ), ,

( ) ( ) ( )
j k

n n n
f j j f kP Q X A P X A

θ θ
∈ = ∈� , θ∈Θ(n)  

 for every measurable (n)
kA⊂X , j,k=1,2, j≠k, n=1,2,... . 

 
NOTE: The expression (12) refers to the form of the functions ( )n

jQ� and ( )n
jQ  in which these 

are written as a nonrandomized function involving an auxiliary variable U, as described 
earlier. If these functions are represented in the ordinary form of a randomized mapping 
and (as is the case) (n)

jF  is a dominated family for each n then the condition (12) is 
equivalent to 
(12′) ( ) ( )( ) ( ) ( ) ( ) (n)

j| | 1 . .( )n n n n
j j j j nTV

Q x Q x c a e f f− ≥ − ∀ ∈� i i F . 
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Proof of Lemma: Fix n, j, k≠j, θ∈Θ(n). Let Fk denote the distribution under θ of ( )n
kX  and 

let kF ′  denote the distribution under θ of ( )( ) ( )n n
j jQ X . Let H = min(Fk, kF ′ ). Let 

1k
k

dFf
dH

′
′∞ ≥ = ≥ . Then define ( )n

jQ�  as a version of the randomized map satisfying 

 ( )1 1( | ) ( | ) ( ) ( )
( )

k
j j k

k k

fQ B x Q B x F B H B
f x f

′ − ′= + −
′ ′

� . 

This completes the proof of the lemma, and consequently also that of Theorem 1. || 
 
Remark 1: Although not simple, the construction of ( )n

jQ  is somewhat more natural than 

that of ( )n
jQ� . In particular, the construction of ( )n

jQ  does not depend on f∈F. We have 

included the construction of ( )n
jQ�  in order to complete the statement (7) of Theorem 1 in a 

form parallel to (4) in Theorem BM. However, it should be noted that ( )n
jQ  itself satisfies a 

pleasant property as given in the following corollary. 
 
Corollary 1: Under the setting of Theorem 1 the maps ( )

1
nQ  satisfy 

(13) ( ){ }( )
1sup sup | ( ) ( ) | 0 0n

f f n n n
q

P Z q Q Z q c∈
∈

⎛ ⎞− > ≤ →⎜ ⎟
⎝ ⎠_

� �
F  

and there is a version of nW�  such that 

(14) ( ){ }( )
1sup sup ( ) ( ) 0n

f f n n n
q

P W q Q Z q c q∈ ∞
∈

⎛ ⎞− > =⎜ ⎟
⎝ ⎠_

� �
F . 

 
Theorem 2 requires a slightly different fundamental construction, and some additional 
argument for its proof. The proof for this result is based heavily on results in Carter 
(2001). See the remarks following Theorem 2 of BCLZ. 
 
Theorem b (BCLZ): Consider the statistical Formulations 1′′ and 2 with the parameter 
space F and the relation (9). Assume F satisfies Assumption B. Then the sequences of 
statistical problems defined in these two formulations are asymptotically statistically 
equivalent.  
  
 
4. Construction of the Mapping 
 
4.1 A “Natural” Mapping 
 
As already remarked the object, ˆ

nZ , that appears in the KMT theory is a probabilistically  
and statistically natural quantity. The object nZ�  that appears in our main theorem, while 
explicitly constructable, is far less natural. However, there is a reasonably natural object, 
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call it *
nZ� , that resembles nZ� . We conjecture below that this object could play a role like 

that of ˆ
nZ .  

 
By analogy with the KMT theorem one could view *

nZ�  as the natural analog of ˆ
nZ  and nZ�  

as the “coupling” produced to match *
nZ�  to the continuous process nW� . We conclude this 

section by sketching the construction of nZ�  as an extension of the construction of *
nZ� .  

 
The construction of nZ�  in BCLZ involves two separate stages. Stripped of several detailed 
features some of which are needed to obtain the full strength of the theorem there (and 
others that are present only for technical convenience in the argument there) the first stage 
of that construction resembles the following definition. 

 Let 2
0 0

log( )
2

nk k n ⎡ ⎤= = ⎢ ⎥⎣ ⎦
. Let { }0 00 ,

( 1)# : 2 2k kk i iN T T += < ≤A
AA . Then let  

(15)  ( ) 00
0 0

1
,*

0

22 2
k jk

kn k
j

N
Z

n

−
−

=

= ∑
A

� A , 00,...,2k=A . 

 For 
0 0

( 1)
2 2k kt +< < AA let  

(16) ( ) ( ) ( ) { }0

0 0 0

0

* * * *

,

# :( 1) 2( ) 2 2 2
kj j

k k kn n n n
k

T T t
Z t Z Z Z

N

< ≤
+⎛ ⎞= + −⎜ ⎟

⎝ ⎠ A

A
A� � � �A A . 

The object *
nZ�  does not satisfy a conclusion like that of (7) in Theorem 1. However it does 

seem reasonable to conjecture that *
nZ�  can be made uniformly close to nW�  with respect to 

the supremum (Kolmogorov-Smirnov) distance that appears in (2).   
 
Thus, we conjecture that for a suitable sequence of constants an (probably with 

log
n

na
n

∼ ), and a suitable c>0, and for F satisfying Assumption B (and perhaps only 

the weaker Assumption A) the random quantities *
nZ�  and nW�  can be represented on the 

same probability space so that   

(17)  *

[0,1]
sup sup ( ) ( )f n n n
f t

P n Z t W t a c
∈ ∈

⎛ ⎞− > ≤⎜ ⎟
⎝ ⎠

� �
F

. 

 
   
 
4.2 Definition of nZ�  
 
As already mentioned, the definition of nZ�  resembles the above definition in several 
respects, but there are also several differences. This construction begins with a choice of 
level similar to the choice k0, above, but here one must choose k0(n) so that 
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  02k

n
⎛ ⎞ → ∞⎜ ⎟
⎝ ⎠

 (slowly), 

with the allowable speed of convergence depending on the properties of F. (The larger F 
is, the slower must be this convergence.) Then let Uk,j be independent random variables 
with ( ), 1 2,1 2k jU Uniform −∼ , 
and let 

(18) ( ) 0 00
0 0

1
, ,

0

22 2
k j k jk

kn k
j

N U
Z

n

−
−

=

+
= ∑

A
� A , 00,...,2k=A . 

This definition is the same as that in (15) except for the slightly different choice of k0 and 
the presence of the uniform random variables whose main purpose is to smooth the 

distributions of ( )02knZ� A . 

 

It is helpful to represent the values of ( )02knZ� A  as the integral of a function defined 

through a set of Haar coefficients. Thus, let  

(19) 0 00

0 0

, ,
, 2

2
k j k jk

k k

N U
h

n
−

+
=A , and 

0

0 00 0

2 1

,[ 2 ,( 1) 2 )
0

( ) ( )
k

k kk kh t I t h
−

+
=

= ∑ AA A
A

. 

Then 

 ( )
0

0 0

2

0

( )2

k

kn kZ h dτ τ= ∫
A

� A , 00,...,2k=A . 

 
To define the Haar coefficients at finer levels, let ( 1 2)mV Binomial p =∼  and let 

{ },2( )m m mF x P V U x∗ + ≤A� . Then, for k>k0 let 

(20) ( )( )1,

1
,2 1 ,2 1 ,2 ,2kk k k N k kh h F N Uσ

−

− ∗
+ −− Φ +

AA A A A� � , 10,...,2k−=A , 

where Φ denotes the standard normal CDF and 2 2
4

k
k nσ = . Then let  

(21) 
0

2 1

( 1) ,[ , )
2 20

( ) ( )
k

k
k

h t I t h
κ

κ κ
κ

κ

−

+
= =

= ∑ ∑ A AA
A

 

 ( )
2

0

( )2

k

kn kZ h dτ τ= ∫
A

� A , 0,...,2k=A . 

For the purposes of establishing statistical equivalence it suffices to carry this 
construction to 2[log ]k n∗ = . (See Brown, Cai, Low and Zhang (2002).) If a complete 
definition of nZ�  is desired one can carry the construction in (21) to its limit in L2 as 

k→∞. Alternatively, one can carry the construction down to the value k* and then define 

( )nZ t�  at values between points of the form 
2k∗
A by interpolating suitably scaled 

independent Brownian Bridges. (This is the continuous analog of the procedure in (16).) 
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