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A TEST FOR THE POISSON DISTRIBUTION 

By LAWRENCE D. BROWN 
and 

LINDA H. ZHAO 

University of Pennsylvania, USA 

SUMMARY. We consider the problem of testing whether a sample of observations 
comes from a single Poisson distribution. Of particular interest is the alternative that the 
observations come from Poisson distributions with different parameters. Such a situation 

would correspond to the frequently discussed situation of overdispersion. 

We propose a new test for this problem that is based on Anscombe's variance stabiliz 

ing transformation. There are a number of tests commonly proposed, and we compare the 

performance of these tests under the null hypothesis with that of our new test. We find 

that the performance of our test is competitive with the two best of these. The asymptotic 
distribution of the new test is derived and discussed. 

Use of these tests is illustrated through two examples of analysis of call-arrival times 

from a telephone call center. The example facilitates careful discussion of the performance 

of the tests for small parameter values and moderately large sample sizes. 

1. Introduction 

A variety of tests is available for testing whether a sample of observa 

tions comes from a Poisson distribution. This article proposes an additional 

test based on Anscombe's (1948) variance stabilizing transformation. We 

examine the performance of this test and compare it with three other tests 

in current use. We find this new test to be competitive in performance with 

the best of these alternatives. We recommend it on this basis, and also be 

cause the heuristic idea underlying it easily adapts for a variety of related 

applications. 
We use call-arrival data gathered at an Israeli call center as motivation 

and illustration of the various problems and methodologies we discuss. We 

provide a very brief discussion in Section 2 of this application. 

Paper received December 2001. 

AMS (2000) subject classification. 62F03, 62F05. 

Keywords and phrases. Poisson variables, Anscombe's transformation, likelihood ratio 

test, chi-squared test, overdispersion. 
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The three additional types of test statistics we examine are the likelihood 

ratio statistic, the corresponding chi-squared statistic sometimes called the 

"dispersion test", and a putatively normal version of this statistic sometimes 

attributed to Neyman and Scott. The performance of the Neyman-Scott 
test is shown to be inferior to those built from the remaining statistics. We 

favour the new test based on its ease of use, diagnostic ability and breadth 

of application. 

Suppose the null hypothesis is true, i.e., the data come from a Poisson(A) 
distribution. When ? is not small all three recommended tests (the new 

test, the dispersion x2, and the likelihood ratio) appear fully satisfactory for 

practical applications. When A is small the nominal null distribution for the 

likelihood ratio test is quite inaccurate. The test should not then be used in 

the usual form as presented here. 

In Section 5 we state the asymptotic distribution of our new test statistic 

as n ?> oo with A fixed. It is shown that this implies that the heuristic 

nominal null distribution is not fully accurate when A is small, even if n ? oo. 

Thus, when A is small (say A ^ 5), the new test we propose is slightly 
inaccurate. The source of that inaccuracy is explained in Section 4, and an 

easily implemented correction is proposed that is satisfactory for moderately 

large sample sizes (say 50 or more, depending partly on how small A is). 
In Section 2 we describe the call center data we use as an example of an 

application of our methodology. The various tests are described in Section 3, 

including the new test we propose based on Anscombe's variance stabilizing 
transformation. Section 4 presents some simulation results comparing our 

test and the various other tests. The asymptotic distribution of the new test 

is discussed in Section 5. 

2. Call Center Arrival Data 

The data accompanying our study was gathered at a relatively small 

Israeli bank telephone call center in 1999. The portion of data of interest 

to us here involves records of the arrival time of service-request calls to the 

center. These are calls in which the caller requests service from a call center 

representative. It is reasonable to conjecture that these arrival times are well 

modelled by an inhomogeneous Poisson process. The arrival rate for this 

process should depend only on the time of day, and perhaps other calendar 

related covariates such as month or day of the week. There are different 

categories of service that may be requested, and preliminary analysis clearly 
shows that this factor should also be considered since the arrival rate patterns 
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Figure 1: No. of daily calls for Internet Service arriving between 4:30pm 
and 4:45pm, Regular weekdays, Aug. 

- 
Dec. n = 

107, x = 
2.18, s2 = 2.47. 

differ considerably. For more information about various aspects of this data 

see Brown et. al (2001a). Other features of the call arrival process are 

investigated in Brown, Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2001b). 

If the arrival process for a given call category is as above then the number 

of arrivals each day within any given interval of time should be independent 
Poisson variables with a parameter that depends only on the given time 

interval. If other covariates are involved (such as day of the week) then the 

Poisson parameter may also depend on these covariates. 

The histograms in Figures 1 and 2 show the results from two typical 

samples. Figure 1 shows the number of standard calls arriving on each 

regular workday in Nov. and Dec, between 4:30pm and 4:45pm. Figure 2 

is a similar histogram for the special category of calls requesting internet 

assistance arriving between 4:30pm and 4:45pm from Aug. through Dec. In 

each case it is of interest to test the null hypothesis that these data arise 

from Poisson populations with their own respective means. Note the different 

levels of calls/day in these two samples, as well as the different sample sizes. 

One reason for considering standard calls only for Nov. and Dec. is that 

there is some evidence of an increased rate of standard calls in Nov. and 

Dec. 
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Figure 2: No. of daily calls for Standard Service arriving between 4:30pm 

and 4:45pm, Regular weekdays, Nov. 
- Dec. n = 

44, x ? 
18.66, s2 = 25.95. 

3. Tests for the Poisson Distribution 

Let X\,..., Xn be independent non-negative integer valued random vari 

ables with P(X 
= 

x) 
= 

f(x). The basic null hypothesis of interest is that 

H0: Xi~ Poiss(Ai), Ai 
= ... = 

An. 

We consider the alternative hypothesis that 

Ha : Xi ~ 
Poiss(Ai), ]T(A? 

- 
X)2 > 0. 

(1) 

(2) 

We propose a new test for this problem. We also briefly describe some 

other tests in common use for Hq. We will later focus our attention on 

properties of the new test in relation to the others. 

3.1. A new test based on Anscombe's statistic. Anscombe (1948) derived 

the second order variance stabilizing transformation for a Poisson variable. 

Also see Bartlett (1947). If N ~ 
Poiss(A) Anscombe showed that 

v??(V^l)-? 
+ 

?(i). 
(3) 

On this basis it is natural to define Y? = 
y/X{ + 3/8 and use the statistic 

I new = 4 / v ( Y i 
"" * ) 
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to provide a test for Ho. 

Formula (3) suggests that Y? is approximately normal with variance 1/4 
and mean 

u{\i) = EXi(Yi) = EXi(^N + 3/S). (4) 
Such an assertion is asymptotically correct as A? ?> oo. Under this ap 

proximation it would follow that when Ho is true, Tnew has approximately a 

Chi-squared distribution with n?1 df. We thus reject f?o if Tnew > Xn-i-i-a 
Further one may conclude that under Ha, Tnew has approximately a non 

central Xn-i distribution. In summary it is reasonable to act as if 

Tnew ~ 
Xl-l (4 ?>(**) 

- 
*n)2) (5) 

where 

1 
n 

Vn = 
-yVAi). n *?f 2=1 

The empirical results in Section 4 indicate that this approximation is rea 

sonably accurate under Ho even for fairly small A and n. Further simulations 

we have carried out (not reported here) suggest that this approximation is 

also fairly good for a variety of choices of {A?} in Ha, even for moderate n 

so long as none of the A? are small. 

Section 5 presents some asymptotic theory concerning the distribution 

of Tnew. This theory helps explain why (5) provides numerically satisfactory 
results even though it is not quite asymptotically valid as n ?? oo, even 

under Ho 
In the context of nonparametric density estimation Brown, Zhang and 

Zhao (2001) suggested using the transformation yjN +1/4 instead of 

^N + 3/8. This is because 

Ex(^N + l/4) = y/\ + 0(1/X). 

In the context of Brown, Zhang and Zhao (2001) accuracy in estimation of 

y/X is of prime importance, rather than stability of the variance. However 

for the Poisson tests under investigation here validity of (3) is more impor 

tant, and the transformation \JX{ + 3/8 performs slightly better than would 

y/Xi + 1/4. 
Brown, Cai and DasGupta (2001) investigated confidence intervals for a 

Poisson mean. This is a related problem but techniques for best confidence 

intervals do not necessarily extend to best tests of Ho, and vice-versa. Some 

results about the confidence interval problem are also reported in Brown, 

Zhang and Zhao (2001). 
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The test statistic Tnew appears to us a natural proposal given Anscombe's 

well known variance stabilizing transformation. We expect it has been used 

in the form (6) by some practitioners. But the only other reference we have 

found is Huffman (1984) that presents a sample size two (n 
= 

2) version of 
this test, and also discusses testing a generalization of Hq when n ? 2. 

3.2 Likelihood ratio statistic. The likelihood ratio statistic for testing Ho 
versus Ha is 

2iA = 
2?W^V 

(6) 
?=l ^ ^ 

Under the null hypothesis this statistic is asymptotically distributed as a 

Chi-squared variable with n ? 1 df. (asymptotically as n ?> oo for fixed A). 
Hence this test rejects Hq when Tlr > Xn-i-i-a 

Under alternatives in Ha this statistic has approximately a non-central 

Chi-squared distribution with n ? 1 df and non-centrality parameter i?j2 
? 

Zti(*i 
- 

?)2A where ? = 
EILi Vn. We write, TLR ~ 

xLi(^2)- This 

approximation is asymptotically valid as A ?? oo for fixed n with Ai,..., An 

chosen to depend on n in such a way that i\)2 remains constant, or as n ?> oo 

with Ai,..., An chosen so that lim inf A > 0 and ^2 
= 

0(y/n). 

3.3 Conditional Chi-squared statistic. Under the null hypothesis the 

conditional distribution of X\,...,Xn given Yl^i 
= n^ *s multinomial 

(nX, (1/n,..., 1/n)). This motivates as a test statistic, 

^(X,-X)2 (n 
- 

1)S2 

where under Ho has an (asymptotic) Chi-squared distribution with n - 1 df. 

(Hence we reject Hq ifTec > Xn-ii-a*) This statistic can also be motivated 

as the asymptotic chi-squared approximation to the likelihood ratio test of 

Section 3.2. Some authors (e.g., Rice(1995)) call this the Poisson dispersion 
test or the variance test (Cochran, 1954). See also Agresti (1990, p. 479). 

Under Ha, Tec 
~ 

Xn-i(^2)> w^ ^s approximation being asymptoti 

cally valid under the same conditions as described for Tlr. 

3.4 Neyman-Scott statistic. This statistic is directly motivated by the ex 

pression (7). It is often used as a test of Ho. See for example Lindsay (1995) 
and Jongbloed and Koole (2001) for application of this test to telephone 
call-center data. The statistic is 
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Figure 3: Histogram (with best fitting normal curve) and Normal Quantile 

plot for TNs] X = 
12, n = 

12, 10,000 Monte Carlo samples 

This statistic is normalized so that asymptotically Tp/s 
~ 

N(^2/\f2n, 1). 

(Hence this test rejects if T^s >$-1(l 
? 

a).) The asymptotic assertion 

here is valid as n ? oo with Ai,..., An chosen so that ip2 
= 

0(y/n) and 

lim inf A> 0. 
It can be seen that under Ho, Tns is the standard normal approximation 

to the chi-squared statistic Tec- The null distribution of Tns is not close to 

its limiting normal distribution until n is moderately large. This is shown 

in Fig 3, which displays an empirical approximation to the null distribution 

of Tjsfs for the case X = 
12, n = 12. 

The fact that the true null distribution of T^s is not close to its nominal 

limiting distribution means that tests constructed using critical values from 
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this will not have close to their nominal significance level. Correspondingly 
their nominal P-values based on the limiting distribution will also be con 

siderably in error. For this reason we recommend against use of T^s- (For 

comparative purposes we have nevertheless included Tns m the numerical 

results in Section 4.) 

4. Empirical Results Under Ho 

This section reports selected empirical results about the null distribution 

of the statistics Tnew, Tir, Tcci Tns- These results are summarized in 

Table 1. This table gives information about the empirical type I error rates 

for tests computed using the nominal null distribution of various statistics. 

The table also contains an overall measure of how close is the empirical x2 
or normal null distribution. The table also indirectly provides information 

about the accuracy of P-values calculated from the nominal distributions 

since accuracy of type I error rates and of P-values are linked concepts. 

The general impression from the table is that the empirical type I error 

rates using any of Tnew, Tlr, Tec are reasonably accurate when A ^ 12. 

Even when A = 5 satisfactory accuracy is evident for Tnew and Tec- The 

results in Section 5 suggest a modified nominal null distribution be used 

when A is even smaller to calculate critical values for Tnew. The results in 

Section 5 also confirm that Tlr is a less desirable choice when A ^ 5. Overall, 

the empirical type I errors using the Tns are less accurate than those from 

the other three statistics, as one would also expect from the results reported 

in Fig 3. 

Table 1. Empirical Type I errors (10,000 repetitions) and Dn defined in (8) 

~~n X Statis- a = .1 a = .05 a = .01 a=.005 D*=sup\H 
- 

G\ 

_tic 
SE.=0.003 SE.=0.002 SE.=0.001 SE.=0.001 ESE.=0.007 

20 5 Tnew 0.1107 0.0585 0.0132 0.0070 0.0130 

20 5 TLR 0.1359 0.0724 0.0173 0.0089 0.0588 

20 5 Tec 0.0977 0.0495 0.0103 0.0059 0.0105 

20 5 TNS 0.1039 0.0620 0.0220 0.0148_0.0457 
12 12 Tnew 0.1050 0.0540 0.0122 0.0065 0.0094 

12 12 TLR 0.1102 0.0563 0.0120 0.0062 0.0130 

12 12 Tec 0.1007 0.0505 0.0104 0.0054 0.0057 

12 12 TNS 01082 0.0670 0.0260 0.0179_0.0611 
5 25 Tnew 0.1008 0.0510 0.0103 0.0053 0.0035 

5 25 Tlr 0.1027 0.0517 0.0101 0.0051 0.0069 

5 25 Tec 0.0994 0.0490 0.0095 0.0046 0.0066 

5 25 TNS 0.1059 0.0696 0.0312 0.0231 0.0955 
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The quantities reported in Table 1 are defined as follows. Let G denote 

generally the nominal null cumulative distribution of a statistic T. (For 

Tns, G is standard normal. For the other statistics G is Xn-iO Let Ka 
denote the a critical values, k(ol) 

= 
G~l(l 

? 
a). Let H denote the true 

null distribution of the statistic. Then the true type I error is 1 ? 
H(x,(a)). 

The table reports Monte-Carlo estimates based on 10,000 samples of these 

quantities for various statistics and values of n, X. The standard errors 

reported in the table are the theoretical values \/a(l 
? 

a)/10000. 
Table 1 also reports a measure of the disparity between the nominal G 

and the true H as measured via the Kolmogorov-Smirnov distance 

D* = sup \H(t)-G(t)\. t 

Again, the values reported derive from 10,000 simulations. To be more 

precise, each entry in the last column of the table reports the value of 

D*N 
= 

8*p\HN(t)-G(t)\ (8) t 

where H denotes the sample CDF from the N=10000 simulated values of T. 

Simulated values of D^ have the Kolmogorov-Smirnov limiting distri 

bution. This is not a normal distribution. In particular, a 95% confidence 

region for H(t) is 

sup\H(t)-Hn(t)\^2ESE t 

where 

ESE=2^?L 
= 0.007. 

1.36v/HXKX) 

For this reason we have chosen to report the effective standard error, ESE, 
as the measure of the precision of our Monte-Carlo simulation. 

Note that for Tnew and Tec, D*N is acceptably small. Indeed, it is less 

than 2 x ESE, and hence using this we would not reject at level .05 the 

null hypothesis that H = G. This is also true for Tlr when A = 12 and 25. 

But when A = 5 the performance in this regard is less satisfactory, as is the 

performance of T/vs for all combinations of n, A in the table. 

5. Asymptotic Distribution of Tnew 

We have suggested approximating the null distribution of Tnew as a Chi 

squared with n ? 1 df. The empirical results in the previous section suggest 
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that this approximation is satisfactory for practical applications. We now 

explore the asymptotic distribution of Tnew as n ? oo. We show that the 

limiting null distribution is not Chi-squared (n 
? 

1) but is very close to 

Chi-squared (n 
? 

1) so long as A is not small. This closeness explains why 
the Chi-squared approximation is suitable for most practical applications. 

Finally, we also provide similar results about the distribution under Ha. 

Note that E\(Tnew) 
= 

4(n 
? 

l)VarA(y). As noted at (3), Anscombe 

(1948) proved by an asymptotic expansion that 

C(A) = 4VarA(y) = l + 0(l/A). (9) 

This expression is not only asymptotically accurate ? it is nearly the exact 

truth so long as A > 4. Figs 4 and 5 show plots of ?(A) 
= 

4Vai\(Y) 
= 

E\(Tnew)/(n 
? 

1) derived via direct calculation. In particular, 

?(A) 
= 

(n 
- 

l)-lEx(Tnew) ^ 1.0025. (10) 

(The maximum value of E\(Tnew) occurs at approximately A = 
5.5.) This 

means that Tnet(; is positively biased by at most a very small amount, and 

so suggests that a test based on Tnew will not have significance levels much 

below their nominal value. That is, this suggests while the test based on 

Tnew may be conservative, it will not be radical by very much. 

The results in Figs 4 and 5 suggest that the distribution of Y may ef 

fectively be very close to normal. As further exploration of this possibility, 
note that if Y were exactly normal then we would have Var((F 

? 
v\)2) 

= 2. 

Fig 6 is a plot of 

rvaray-^)2)]1/2 p(A) = (11) 

Note that p(X) ? 1 whenever A > 4. In particular, p(X) < 1.054 with the 
maximum occurring at A = 5.4. Again, this suggests that the test based on 

Tnew will be conservative for very small A, but will not for any A be "radical" 

by very much. 

Here is a formal statement of the asymptotic result. 

Theorem 5.1 Assume Hq is true, X is fixed and n ?> oo. Then 

mf?{?i-ew)~mi) 
(12) 

in distribution where ^ p are defined in (10) and (11). 
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Figure 5: Detail of Fig 4 
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>0.8H 

Figure 6: Plot of p(X) as defined in (11) 

Remarks. Recall that if Z ~ 
x2-i then 

^(?r-H^ 
Note that both ?(A) ? 1 and p(A) ? 1. It is thus clear that for large n, 
Tnew is reasonably closely approximated as a Xn-i variable, even though its 

asymptotic distribution is not exactly x2_i as n ?> oo for fixed A. 

If one were in a situation where n is moderately large and A is small 

then (12) suggests that the nominal x2 critical values (and P-values) can 
be slightly improved by calculating critical values (and P-values) from the 

normal distribution in (12) calculated at A = X. 
The formula for the approximate P-value thus becomes 

P?l-$ 
-l 

'sW^F (??!-?*>)) 
(13) 

Proof: The result follows from the definition of ?, p, the central limit 
theorem and Slutsky's theorem. We omit the straightforward details. 
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Similar reasoning using the central limit theorem for independent non 

identically distributed random variables yields the following result. 

Theorem 5.2 Let Xi,...,Xn depend on n. Let 

it 

fn = 
??P2(A?) 

^ = 
4][>(Ai)-Fn)2 

Assume 

liminfpn>0 and lim sup pn < oo. (15) n->oo n-x? 

Then 

(16) 
as n ?> oo. 

It is possible to effectively implement Theorem 5.2 to get values of the 

power of the test when more accuracy is desired than is provided by (5) and 
n is quite large. In order to best use (12) and (16) we suggest defining 

?=i 

A = 
??A*i), (17) 

i?l 

since these are the obvious estimates of the corresponding quantities in (14). 
Then construct the test that rejects when 

y^?a-i-Y*-1*-*- 
(i8) 

Note for later use that under Ho 

e(x)?f, p\x)*f (i9) 
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with asymptotic equality as n ?? oo. (19) should also be approximately valid 

when the alternative is not far from Ho. In such situations one could use 

the simpler values ?(X), p2(X) in place of ?, p . Because of (19) the test in 

(18) is very similar to that described in (13). 
Theorem 5.2 implies the power of the test given in (18) is 

P\(Tnew satisfies (18)) 

where ? = 
{A?}. 

Now, pn 
? 

pn in probability. Also, pn ? 1 so long as min A? > 4 as a 

consequence of the results plotted in Fig 6. 

Let 

Var(V?r^?(?n-?n)) 
= (A). 

Recall that ?(A) is nearly constant for A > 4. Hence e is numerically quite 
small so long as min A? > 4. It follows that then 

Px(Tnew satisfies (18)) =1-E ($($-l(l-a)- f +e(A))+Op(l) ) 

,-i/, -x ^ ^" 
i* (1"a)"*U 

+ 
E*J 

(21) 

for some numerically small e*. ( c* is numerically small because of its relation 

to the random variable e(X) which is also numerically small.) 
If Tnew were exactly noncentral x2 as assumed in (5) then we would have 

-+ 1 - * U-\l -a)- 
2J?-) 

, under (5). (22) 

Since 
* 

is numerically small, these facts suggest that so long as all (or most) 

Xi > 4, (5) is a very good approximation even though it is not asymptotically 
exact as n ?> oo with A = 

0(1). 
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