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SUMMARY

In this paper, the problem of interest is e�cient estimation of log-normal means. Several existing esti-
mators are reviewed �rst, including the sample mean, the maximum likelihood estimator, the uniformly
minimum variance unbiased estimator and a conditional minimal mean squared error estimator. A new
estimator is then proposed, and we show that it improves over the existing estimators in terms of
squared error risk. The improvement is more signi�cant with small sample sizes and large coe�cient of
variations, which is common in clinical pharmacokinetic (PK) studies. In addition, the new estimator
is very easy to implement, and provides us with a simple alternative to summarize PK data, which
are usually modelled by log-normal distributions. We also propose a parametric bootstrap con�dence
interval for log-normal means around the new estimator and illustrate its nice coverage property with
a simulation study. Our estimator is compared with the existing ones via theoretical calculations and
applications to real PK studies. Copyright ? 2005 John Wiley & Sons, Ltd.
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squared error risk; uniformly minimum variance unbiased

1. INTRODUCTION

It is well known that pharmacokinetic (PK) parameters, especially area under the concen-
tration-time curve (AUC) and maximum concentration (Cmax), should be analysed on the log-
scale under the assumption of log-normality [1]. Currently, PK data are usually summarized
by arithmetic (or sample) means and=or geometric means [2]. A deeper look at the log-normal
distribution reveals that these summaries are actually estimating di�erent parameters of the
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distribution. Arithmetic means or sample means are naive estimates of population means,
while geometric means are plug-in estimates of population medians.
Suppose estimation of population means is of primary interest. Several estimators have been

proposed in Reference [3], including the naive unbiased sample mean estimator, the maximum
likelihood (ML) estimator and the uniformly minimum variance unbiased (UMVU) estimator.
Recently, Zhou [4] proposed a conditional minimal mean squared error (MSE) estimator, and
showed that it has smaller squared error risk than the three estimators mentioned above. In
the current paper, we revisit this classical problem, and derive a simple e�cient estimator
under the squared error loss using a di�erent approach. Our approach is motivated by the
special connection between normal distributions and log-normal distributions. The proposed
estimator is compared with the existing ones via theoretical risk calculations. We show that
this new estimator has much smaller squared error risk (or MSE) than the sample mean,
the MLE and the UMVUE. For small coe�cient of variation (CV), the new approach has
comparable performance with the conditional minimal MSE estimator. The new estimator
improves considerably on the conditional minimal MSE estimator, when the underlying log-
normal distribution has a large CV and the sample size is small. Such scenarios are common
in PK studies. As illustrated below, our estimator is very easy to calculate in practice, and
hence provides an alternative way to estimate the mean parameters for PK data. We also
complement the new estimator with a parametric bootstrap con�dence interval, and show
that it has comparable coverage property with existing approaches, especially for situations
encountered in PK studies.
In Section 2, �rst we review several existing estimators for log-normal means. Then we

describe our proposed estimator in Section 3. The squared error risk of the estimators is
compared in Section 4. The parametric bootstrap con�dence interval is derived in Section 5.
The estimators are applied to two real PK studies in Section 6, and we show that the estimates
can be very di�erent. All technical details are relegated to the Appendix.

2. EXISTING ESTIMATORS OF LOG-NORMAL MEANS

Suppose Z is a random variable which has a log-normal distribution with mean �=E(Z).
Then log(Z) will be normally distributed with some mean � and variance �2. We will denote
the above Z as ‘Z ∼ LN(�; �2) with mean �’. Then, the three parameters, �, � and �2, have
the following relation:

�= exp
(
�+

�2

2

)
(1)

In addition, as noted, for example, in Reference [3], the CV of Z can be written as

CV(%)=
SD(Z)
E(Z)

=
√
e�2 − 1× 100

The CV is thus a function only of the variance of the normal random variable, log(Z).
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Suppose Z1; : : : ; Zn
i:i:d:∼ LN(�; �2) with mean �. Then Xi= log(Zi)

i:i:d:∼ N(�; �2) for i=1; : : : ; n.
De�ne

�Z =
n∑
i=1
Zi=n; �X =

n∑
i=1
Xi=n and S2 =

n∑
i=1
(Xi − �X )2 (2)

Below we would like to review several existing estimators, and discuss their performance.
See References [3, 4] for detailed references.

2.1. The naive unbiased estimator

Currently, PK data (especially AUC and Cmax), which are log-normally distributed, are usu-
ally summarized by arithmetic means �Z as de�ned in (2). Indeed, it was pointed out by
Zhou et al. [5] that

�̂1 = �Z

is the most commonly used estimator so far (at least) in biomedical research. It is obvious
that �̂1 is a naive unbiased estimator for the log-normal mean. However, as shown by Zhou [4]
and con�rmed later in Section 4, it can be very ine�cient as an estimator of � especially
when the CV is large. This is true even for large samples.

2.2. The maximum likelihood (ML) estimator

As we know, �X and S2=n are the ML estimators for � and �2, respectively. Based on (1),
the plug-in principle leads to the ML estimator for �:

�̂2 = exp
(
�X +

S2

2n

)
As the MLE, �̂2 has some nice properties of being strongly consistent, asymptotically normal
and asymptotically e�cient for estimating �.

2.3. The uniformly minimum variance unbiased (UMVU) estimator

Finney [6] proposed the following estimator for �:

�̂3 = e
�X g
(
S2

2

)
where the function g has the following form:

g(t)=
∞∑
i=0

�((n− 1)=2)
i!�((n− 1)=2 + i)

(
n− 1
2n

t
)i

(3)

It can be shown that �̂3 is the UMVU estimator. (The UMVU property can be proved by
showing that E(e �X g(S2=2))= � and noticing that �X and S2 are complete su�cient statistics.)
Being UMVUE, �̂3 has the smallest squared error risk (or variance in this case) among all
unbiased estimators including the sample mean �Z .
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2.4. A conditional minimal mean squared error (MSE) estimator

Rukhin [7] showed that both �̂2 and �̂3 are inadmissible under squared error loss. Some re-
search has been done in the literature trying to derive estimators with everywhere smaller MSE.
For example, conditioning on �2, Zellner [8] claimed that the estimator,

exp( �X + (n− 3)�2=(2n))
is the conditional minimal MSE estimator among the class of estimators of the form e �Xf(�2).
When �2 is unknown, Evans and Shaban [9] proposed to estimate exp((n− 3)�2=(2n)) using
an unbiased estimator, g((n− 3)S2=(2(n− 1))), with g(·) de�ned as in (3), and suggested the
following estimator:

�̂4 = e
�X g
(
n− 3
2(n− 1) S

2
)

Zhou [4] proposed a slightly di�erent estimator,

�̂5 = e
�X g
(
n− 4
2(n− 1) S

2
)

where g((n−4)S2=(2(n−1))) is an unbiased estimator of exp((n−4)�2=(2n)), and named it the
conditional minimal MSE estimator. Zhou [4] also compared the MSE of the four estimators,
�̂1, �̂2, �̂3 and �̂5, and found out that �̂5 has the smallest MSE regardless of the sample size
and the CV. Our analysis suggests that �̂5 has smaller MSE than �̂4 as well. However, the
improvement is mainly apparent for small sample sizes. When n is large, the two estimators
are almost identical as indicated by their expressions. Since �̂5 has the smallest MSE among
the existing estimators, we will use it as a benchmark in Section 4, and �rst compare our
proposed estimator �̂6 with it.

3. A NEW ESTIMATOR

The estimators �̂3, �̂4 and �̂5 are de�ned in terms of sums of in�nite series. Their practical use
may be limited due to the somewhat complicated form. We want to take a di�erent approach,
and propose a rather simple estimator, which still improves over the aforementioned estimators
in terms of squared error risk.
The estimator we propose is the following:

�̂6 = exp
(
�X +

(n− 1)S2
2(n+ 4)(n− 1) + 3S2

)
The proposed estimator can be viewed as a ‘degree-of-freedom-adjusted’ ML estimator. In
practice, it is very easy to obtain this estimator, because �X and S2 can be readily calculated.
Below we will describe how this estimator is derived.

3.1. Derivation of the estimator

In light of the special relationship (1), we propose to look at the following class of estimators:

�c : �c= exp( �X + cS2=2); c=
1

n+ d
; d¿− n (4)
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where �X and S2 are de�ned in (2). Intuitively, this class of estimators are of simple form,
and can be described as plug-in estimators relative to the basic formula (1) with �X and
cS2 = S2=(n+ d) serving as the estimators of � and �2, respectively.
The estimators within class (4) are asymptotically equivalent, and they are asymptotically

e�cient since the ML estimator �̂2 belongs to this class with c=1=n. Note that another
plausible choice for c would be c=1=(n−1), corresponding to a plug-in estimator with using
the usual unbiased estimator S2=(n−1) for �2. Our goal is to �nd an estimator from this class
which can minimize the squared error risk, and hopefully has smaller risk than the estimators
mentioned in Section 2.
The squared error risk of an estimator of the form �c is R(�c; �)=E(�c − �)2. This can be

shown to be

e2�+�
2
[e[(2−n)=n]�

2
(1− 2c�2)−(n−1)=2 − 2e[(1−n)=2n]�2 (1− c�2)−(n−1)=2 + 1] (5)

under the condition that c¡1=(2�2).
According to the de�nition in (2), S2=�2 is a �2n−1 random variable. Then (5) can be

obtained using the moment-generating function (MGF) of a �2n−1 random variable, i.e. when
c�2¡1=2,

E(ecS
2
)= (1− 2c�2)−(n−1)=2

When c�2¿1=2, the MGF does not exist; and the risk is in�nite. The condition c�2¡1=2 is
equivalent to d¿2�2−n. Our proposed estimator thus has �nite risk whenever �2¡(n+4)=2.
In real applications this is not a serious restriction. Furthermore, this condition is satis�ed
whenever the risk of the MLE �̂2 is �nite, since �̂2 corresponds to the choice d=0 which
has �nite risk when �2¡n=2.
The following proposition suggests that the risk approaches 0 asymptotically for estimators

in class (4).

Proposition 1
R(�c; �)→ 0 as n→ ∞.
Proof
Note that cn→ 1 as n→ ∞. Then we need to use (5) plus the following result:

if an → ∞ and anbn → � then (1 + bn)an → e�

A direct minimization of risk (5) seems implausible as a path to a convenient, satisfactory
procedure. As an alternative, we look at the second-order asymptotics to �nd a constant c
that can asymptotically minimize R(�c; �). Let V (�c; �)=R(�c; �)=e2�+�

2
. Then �nding c to

minimize risk (5) is equivalent to �nding c to minimize the relative MSE, V (�c; �).
Note the following standard expansion:

c=
1

n+ d
=
1
n

− d
n(n+ d)

=
1
n

− d
n2
+ o

(
1
n2

)
which justi�es consideration of estimators of the form �c with c=1=n− d=n2 + o(1=n2).
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Theorem 1
Suppose c=1=n− d=n2 + o(1=n2). Then

V (�c; �)=
�2

n

{
1 +

�2

2
+
�2

4n

[
d2 − (8 + 3�2)d+ 8�2 + 7

4
�4
]}
+ o
(
1
n2

)
Under squared error loss, the risk can be written as a sum of the squared bias and the

variance. The bias and variance decomposition of the risk is summarized in Corollary 1.

Corollary 1

Bias2�(�c) = �
2
(
d2

4n2
�4 − d

4n2
�6 +

1
16n2

�8
)
+ o

(
1
n2

)

var�(�c) = �2
�2

n

[
1 +

�2

2
+
2�2

n

(
−d+ 4− d

4
�2 +

3
16
�4
)]
+ o

(
1
n2

)

Suppose we want to �nd a constant c that can minimize the risk up to the order of 1=n2,
Theorem 1 suggests that it su�ces to �nd d to minimize d2 − (8 + 3�2)d. According to the
quadratic form, the minimizer depends on �2 and is

(8 + 3�2)=2=4 + 3�2=2

This means that the constant c which minimizes the approximate risk should be of the order of
1=(n+4+3�2=2). This is thus the value an oracle would choose. However, in real applications,
the true variance �2 is usually unknown. We propose to use an ‘adaptive’ estimator by
replacing �2 with its consistent estimate, S2=(n− 1). As a result, our proposed estimator is

�̂6 = exp
(
�X +

(n− 1)S2
2(n+ 4)(n− 1) + 3S2

)
In Section 4 we will compare the squared error risk of our estimator �̂6 with the existing
estimators described in Section 2.

4. RISK COMPARISON

To compare these estimators, we take into account both the bias and the variance of the
estimators and consider their risks under the squared error loss. Due to the log-normality,
there exist convenient expressions for the risks of all the estimators. The risks for �̂3, �̂4 and
�̂5 can be calculated from numerical summations of in�nite series. The risk of �̂6 can be
obtained via numerical integration. These are summarized in the following proposition.

Proposition 2

R(�̂1; �) = �2
e�

2 − 1
n

R(�̂2; �) = �2
(
e[(2−n)=n]�

2
(
1− 2�2

n

)−(n−1)=2
− 2e[(1−n)=2n]�2

(
1− �2

n

)−(n−1)=2
+ 1

)
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R(�̂3; �) = �2
(
e(1=n)�

2
g
(
n− 1
2n

�4
)

− 1
)

R(�̂4; �) = �2
(
e−(1=n)�

2
g
(
(n− 3)2
2n(n− 1) �

4
)

− 2e−(1=n)�2 + 1
)

R(�̂5; �) = �2
(
e−(2=n)�

2
g
(
(n− 4)2
2n(n− 1) �

4
)

− 2e−(3=2n)�2 + 1
)

R(�̂6; �) = �2(e[(2−n)=n]�
2
f1 − 2e[(1−n)=2n]�2f2 + 1)

where

f1 =E
(
exp

(
2(n− 1)S2

2(n+ 4)(n− 1) + 3S2
))

and f2 =E
(
exp

(
(n− 1)S2

2(n+ 4)(n− 1) + 3S2
))

The formulas for �̂2 can be derived directly from (5) while some results from Evans and
Shaban [10] are needed to obtain the formulas for �̂3, �̂4 and �̂5. See the Appendix for details.
A di�erent formula for �̂3 was previously provided by Mehran [11], which can be shown to
be equivalent to the one given here.
Based on the formulas in the above proposition, the risks for these estimators can be

calculated numerically for any given CV and sample size n. As for R( �̂6; �), f1 and f2 can
be calculated using numerical integration because S2=�2 is a �2n−1 random variable. Zhou [4]
illustrated that �̂5 has smaller risk than �̂1, �̂2 and �̂3. In our analysis (not shown here), we
con�rmed the results of Zhou [4] and also found that �̂5 has smaller risk than �̂4. Thus, we
will use �̂5 as a benchmark, and �rst compare our proposed estimator �̂6 to �̂5 in terms of
squared error risk. The risks are calculated as functions of CV and sample size n. The values
of CV are chosen to be between 0.3 and 2.5, which are commonly observed in various clinical
PK studies. The sample size n is chosen to be one of 6, 8, 10, 12, 25, 50, 75, 100 and 150.
Some of these are common in PK studies while the others are chosen to show the overall
e�ect.
For illustration purpose, Figure 1 plots the risk ratio of �̂5 over �̂6 as a function of CV when

n is 6, 8, 12 and 25, respectively. As one can see, when n is small, our proposed estimator
�̂6 improves over �̂5 in terms of risk in most cases, especially for moderate to large CVs.
The improvement increases as the CV increases. As n increases to 25, �̂6 dominates �̂5 over
the whole range of the CVs considered here, and remains so for larger sample sizes as well
( �gures not shown here). When sample sizes are large (n¿100), the improvement becomes
smaller as one would expect. For a �xed sample size, the improvement increases as the CV
increases, except for really small sample sizes and small CVs as shown by the top panels
of Figure 1. Although the risk of our estimator is generally smaller than the risk of �̂5,
the two risks are quite close except when the CV is large. It seems that the case could be
made for either estimator, but some practitioners might prefer our estimator due to its simpler
calculation and more explicit functional form. Its simpler form also enables us to provide an
accompanying parametric bootstrap con�dence interval in Section 5, which has nice coverage
property.
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Figure 1. R(�̂5; �)=R(�̂6; �) as a function of CV and sample size n.

In addition, our proposed estimator �̂6 has uniformly smaller squared error risk than the
other four estimators. Figure 2 plots the risk ratios of �̂1, �̂2, �̂3 and �̂4 over �̂6. For the
sake of space saving, only plots for n=6, 25, 75 and 150 are shown. As one can see, the
improvement of �̂6 over the other estimators is very substantial with small sample sizes and
large CVs. Even with a large sample size (n=150), there is still considerable amount of
improvement especially over the sample mean �̂1. The plots suggest that, for moderate to
large sample sizes, the risks of �̂2, �̂3 and �̂4 increase in the same order as �̂6 when the CV
increases; however, the risk of �̂1 seems to increase in a much higher order (exponentially).
This con�rms the claim of Zhou [4] that the sample mean, �̂1, could be very ine�cient even
for large samples.

5. A PARAMETRIC BOOTSTRAP CONFIDENCE INTERVAL AROUND �̂6

For statistical inference purpose, it makes sense to investigate con�dence intervals for the
log-normal mean, �. Relation (1) suggests that con�dence intervals for � can be derived by
exponentiating con�dence intervals for �=�+ 1

2�
2. Zhou and Gao [12] compared four main

methods for constructing con�dence intervals for � via a simulation study, and concluded
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Figure 2. R(�̂i ; �)=R(�̂6; �) (i=1; 2; 3; 4) as a function of CV and sample size n.

that Cox’s method [13] and Angus’s parametric bootstrap method [14] have superior perfor-
mances. In this section, we propose a parametric bootstrap con�dence interval for � around
our estimator

�̂= log �̂6 = �X +
(n− 1)S2

2(n+ 4)(n− 1) + 3S2

which then leads to a con�dence interval for � around �̂6. When compared with the results in
Reference [12], our simulation study suggests that the proposed con�dence interval has nice
and comparable coverage properties with Cox’s and Angus’s methods in scenarios common
in PK studies. In general, our method also results in narrower con�dence intervals.
We know that �X ∼ N(�; �2=n) and S2 ∼ �2�2n−1. Then, using the Delta method, we can

obtain the following approximate expression for the variance of �̂:

var(�̂) ≈ �2

n
+
8(n− 1)(n+ 4)2�4
(3�2 + 2(n+ 4))4
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Note that �2 can be estimated using S2=(n− 1). De�ne the following statistic:

K(�)=
�̂− �√
v̂ar(�̂)

=
�X +

(n− 1)S2
2(n+ 4)(n− 1) + 3S2 − �√√√√√√√√ S2

n(n− 1) +
8(n− 1)(n+ 4)2 S4

(n− 1)2(
3
S2

n− 1 + 2(n+ 4)
)4

(6)

For a signi�cance level �, let t1 and t2 be the �=2 and 1− �=2 percentiles of K(�), respec-
tively. Then, one can obtain a 1− � con�dence interval for � as

[�̂− t2
√
v̂ar(�̂); �̂− t1

√
v̂ar(�̂)]

To estimate the two percentiles, we observe from (6) that K(�) has the same distribu-
tion as

T (�)=

N +
√
n�
2

⎡⎢⎣ 2(n− 1) C
n− 1

2(n+ 4) + 3�2
C
n− 1

− 1

⎤⎥⎦
√√√√√√√√ C
n− 1 +

8�2n(n− 1)(n+ 4)2
(

C
n− 1

)2
(
3�2

C
n− 1 + 2(n+ 4)

)4
(7)

where N ∼ N(0; 1), C ∼ �2n−1 and they are independent. Thus, we propose the following
parametric bootstrap procedure to estimate t1 and t2:

1. Generate Ni ∼ N(0; 1) and Ci ∼ �2n−1 independently for i=1; : : : ; B;
2. Calculate Ti according to (7) with N , C and � replaced with Ni, Ci and S=

√
n− 1;

3. Estimate t1 by t̂1, the �=2 percentile of {Ti : i=1; : : : ; B}, and t2 by t̂2, the 1 − �=2
percentile of the Ti’s.

As a result, we obtain a 1− � parametric bootstrap con�dence interval for � as[
�̂− t̂2

√
v̂ar(�̂); �̂− t̂1

√
v̂ar(�̂)

]
(8)

Then, the corresponding 1− � bootstrap con�dence interval for � is

exp
([
�̂− t̂2

√
v̂ar(�̂); �̂− t̂1

√
v̂ar(�̂)

])
(9)

5.1. Performance of the con�dence interval (8)

We use the following simulation set-up to investigate the performance of the proposed con�-
dence interval (8): n=11; 101 and 400, �2 = 0:1; 0:5; 1:0; 2:0; 5:0; and 20:0, and �= −�2=2.
The parameter con�guration is the same as in Reference [12] so that we can compare the
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Table I. Coverage probability (and length) of 90 per cent parametric
bootstrap con�dence intervals.

�2 0.1 0.5 1.0 2.0 5.0 20.0
CV 0.32 0.81 1.31 2.53 12.14 22026.47

n=11 0.897 0.886 0.856 0.830 0.774 0.628
(0.347) (0.838) (1.232) (1.897) (3.379) (8.919)

n=101 0.893 0.896 0.891 0.890 0.865 0.766
(0.106) (0.260) (0.400) (0.651) (1.310) (3.700)

n=400 0.899 0.910 0.884 0.908 0.892 0.874
(0.053) (0.130) (0.202) (0.327) (0.680) (2.275)

result with theirs. Note that � is chosen such that �=0. This is without loss of general-
ity, because di�erent � only shifts the con�dence interval, given �xed n and �2. For each
set-up, 1000 random samples are simulated from the corresponding distribution, and 5000 (B)
bootstrap samples are used.
Table I reports the empirical coverage probabilities for the calculated 90 per cent con�dence

intervals, as well as the average interval lengths (in parentheses). The corresponding CV, are
also reported. In most cases, our method leads to con�dence intervals that have comparable
coverage properties as those obtained by Cox’s and Augus’s methods [12], and are similar or
shorter in length. The result shows that our method works well when n is moderate to large.
When n is small, the performance is good for �2 in a range that is common for PK studies
(up to 2.0). For n=11 and �2 = 5:0 or 20:0, our method undercovers the true parameter
considerably. This is because, in these cases, our con�dence intervals are much shorter than
those generated by the other methods. For example, the average interval lengths are 4.277
and 15.328 for Cox’s method, and 6.781 and 27.450 for Angus’s method [12].

6. REAL PHARMACOKINETIC EXAMPLES

In this section, the di�erent estimators are applied to two real clinical PK studies to illustrate
their practical performance when estimating log-normal means. The intent of this discussion
is to illustrate the extent of di�erences in practice that may result from the use of di�erent
estimators. Consequently, our description is intentionally brief of the context of these examples
and various important details of the analysis not directly related.

6.1. The e�ect of aspirin on the pharmacokinetics of Compound X

This was a drug-interaction study conducted by GlaxoSmithKline (GSK) to estimate the e�ect
of aspirin on the pharmacokinetics of Compound X. The outcome variable of interest is the
area under the concentration-time curve (AUC) of Compound X. Treatment A means taking
Compound X for �ve days, while treatment B stands for taking the combination of Compound
X and aspirin for �ve days. Ten subjects complete the study; thus, n=10 in this study for
each treatment. The observed between-subject CVs are around 35 per cent for both treatments.
A guidance of the U.S. Food & Drug Association (FDA) requires that outcome vari-

ables like AUC should be analysed on the log-scale, which implicitly assumes log-normality.
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Table II. Aspirin-interaction study.

Treatment A B

CV (per cent) 38.16 33.11
�̂1 5047.80 5206.70
�̂2 5049.01 5197.87
�̂3 5047.31 5196.84
�̂4 4979.81 5143.45
�̂5 4946.31 5116.94
�̂6 4958.40 5126.93
CI [4159:29; 6386:31] [4364:18; 6408:11]

Nevertheless, we still performed the Shapiro–Wilk normality test on the log-transformed AUC
data for both treatments, and the p-values are consistent with the log-normality assumption
under a signi�cance level of 0:05.
Table II lists the estimated means of AUC for each treatment separately using the six

estimators. The bootstrap con�dence intervals (9) for the means are also reported. As one
can see from Table II, the �rst three estimators, �̂1, �̂2 and �̂3, give very similar estimates
for each treatment, while the last three estimates are close and are smaller than the �rst three
estimates. However, the values for treatments A and B are uniformly comparable with each
other with respect to each estimator. This example illustrates the comparison of the estimators
when CVs are small. In the current study, all the estimators have comparable risks due to
the small CVs. According to the calculation in Section 4, the risk ratios of �̂6 relative to the
other �ve estimators are, respectively, 0.96, 0.96, 0.96, 0.99 and 1.00 for treatment A; while
they are 0.97, 0.97, 0.97, 0.99 and 1.00 for treatment B.

6.2. Evaluation for the bioavailability of Compound Y

This was a four-period cross-over study also conducted by GSK to estimate the bioavailability
of two forms of Compound Y (liquid or tablet) before and after breakfast. The variable of
interest is again the AUC of Compound Y. Treatments A and B stand for taking the two forms
of Compound Y before breakfast, while C and D mean taking the two forms after breakfast.
Sixteen subjects complete the study (n=16), and the order for each subject to undergo the four
treatments is randomized in order to avoid any period bias. The Shapiro–Wilk normality test
is performed on the log-transformed data for the four treatments. The p-values are 0.41, 0.96,
0.61 and 0.50, respectively, which suggest that log-normality is not an implausible assumption.
This study has larger between-subject CVs around 200 per cent. AUCs are estimated for each
treatment separately; thus, we ignore the within-subject correlation across the four treatments.
The results are summarized in Table III, along with the bootstrap con�dence intervals (9) for
the means.
The six estimators provide di�erent summary results for AUC of every treatment. Although

treatment B has a smaller average AUC relative to treatment A using all the estimators, �̂6
leads to the least di�erence among these estimators. The sample sizes are comparable to the
drug-interaction study in Section 6.1 while the CVs are much larger. In this study, because of
the rather large CVs, the estimators have very di�erent risks. The risk ratios of �̂6 relative to
the other estimators are, respectively, 0.44, 0.47, 0.62, 0.84 and 0.91 for treatment A; 0.55,
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Table III. A bioavailability study.

Treatment A B C D

CV (per cent) 235.91 184.47 232.87 241.90
�̂1 158.57 122.62 158.39 142.25
�̂2 161.27 135.97 165.62 148.10
�̂3 154.81 132.49 158.83 141.63
�̂4 138.98 121.52 141.80 125.99
�̂5 131.63 116.34 133.92 118.77
�̂6 123.89 111.93 126.37 111.64
CI [92:41; 436:32] [82:96; 306:85] [94:85; 452:28] [83:19; 421:15]

0.58, 0.69, 0.88 and 0.94 for treatment B; 0.44, 0.46, 0.61, 0.84 and 0.92 for treatment C and
0.42, 0.44, 0.60, 0.83 and 0.91 for treatment D.

7. CONCLUSION

In this paper, we �rst reviewed several existing estimators for log-normal means. Then we
proposed to look at a special class of estimators, which are asymptotically equivalent to
the ML estimator, and derived their squared error risk function. Through the second-order
asymptotics, we came up with an easy-to-calculate e�cient estimator within the special class,
which has approximately the smallest squared error risk. The estimator can be viewed as a
‘degree-of-freedom-adjusted’ ML estimator. The new estimator is compared with the existing
ones in terms of squared error risk, and appears to improve greatly over the sample mean
estimator, the ML estimator and the UMVU estimator. The improvement is more substantial
with small sample sizes and large CVs. Our estimator also has comparable performance with
the conditional minimal MSE estimator [4], and reasonably smaller squared error risk when
the CV is large. However, our estimator has a more explicit expression, and is easier to
implement. Thus, we recommend to use the proposed estimator to estimate log-normal means.
A parametric bootstrap con�dence interval is also developed to complement the new estimator,
and it is shown to have nice coverage property except for cases of small n and very large CV.

APPENDIX A

A.1. Proof of Theorem 1

Here we give the proof of Theorem 1. The following two lemmas, which are needed during
the proof, are established �rst.

Lemma A.1
Suppose c=1=n− d=n2 + o(1=n2). Then the following statements are true:

1. An ≡ 2
n

− 1 + (n− 1)c= 1− d
n

+ o
(
1
n

)
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2. Bn ≡ 1
2n

− 1
2
+
(n− 1)c
2

= − d
2n
+ o
(
1
n

)

3. (n− 1)c2 = 1
n

− 2d+ 1
n2

+ o
(
1
n2

)

4. (n− 1)c3 = 1
n2
+ o
(
1
n2

)

5. (n− 1)c4 = o
(
1
n2

)

6. (n− 1)2c4 = 1
n2
+ o
(
1
n2

)
The proof of Lemma A.1 is straightforward. We only need to plug in the Taylor expansion

of c. This lemma can be used to simplify the proof of the following Lemma A.2.

Lemma A.2
Let f1(x)= e((2=n)−1)x−[(n−1)=2] ln(1−2cx) and f2(x)= e((1=2n)−(1=2))x−[(n−1)=2] ln(1−cx). Then the
following statements hold:

1. f(1)1 (0)=An

2. f(2)1 (0)=A
2
n + 2(n− 1)c2 = 2

n
+
d2 − 6d− 1

n2
+ o
(
1
n2

)

3. f(3)1 (0)=A
3
n + 6An(n− 1)c2 + 8(n− 1)c3 = − 6d− 14

n2
+ o
(
1
n2

)

4. f(4)1 (0)=A
4
n+12A

2
n(n−1)c2 +32An(n−1)c3 +12(n−1)2c4 +48(n−1)c4 = 12

n2
+o
(
1
n2

)

5. f(k)1 (0)= o
(
1
n2

)
for k¿5

6. f(1)2 (0)=Bn

7. f(2)2 (0)=B
2
n +

1
2
(n− 1)c2 = 1

2n
+
d2 − 4d− 2

4n2
+ o
(
1
n2

)

8. f(3)2 (0)=B
3
n +

3
2
Bn(n− 1)c2 + (n− 1)c3 = − 3d

4n2
+
1
n2
+ o
(
1
n2

)

9. f(4)2 (0)=B
4
n+3B

2
n(n− 1)c2 + 4Bn(n− 1)c3 + 3

4
(n− 1)2c4 + 3(n− 1)c4 = 3

4n2
+ o
(
1
n2

)

10. f(k)2 (0)= o
(
1
n2

)
for k¿5
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To prove Lemma A.2, one must �rst calculate the derivatives of the functions f1(x)
and f2(x). The calculations are standard but rather tedious, and we omit them here. Then
one needs to use the Taylor expansions of the terms in Lemma A.1.

Proof of Theorem 1
Let f(x)=f1(x) − 2f2(x) where f1 and f2 are de�ned in Lemma A.2. Then according to
(5) and Lemma A.2, we have

V (�c; �)=1 + f(�2)

First we would like to look at some derivatives of the function f(x). According to
Lemmas A.1 and A.2, the following statements are true:

1. f(1)(0)=f(1)1 (0)− 2f(1)2 (0)=An − 2Bn= 1n

2. f(2)(0)=f(2)1 (0)− 2f(2)2 (0)=
1
n
+
d2 − 8d
2n2

+ o
(
1
n2

)

3. f(3)(0)=f(3)1 (0)− 2f(3)2 (0)=
3(8− 3d)
2n2

+ o
(
1
n2

)

4. f(4)(0)=f(4)1 (0)− 2f(4)2 (0)=
21
2n2

+ o
(
1
n2

)

5. f(k)(0)=f(k)1 (0)− 2f(k)2 (0)= o
(
1
n2

)
for k¿5

Then, according to Taylor expansion, we have that

f(�2) =f(0) + f(1)(0)�2 +
f(2)(0)
2!

�4 +
f(3)(0)
3!

�6 +
f(4)(0)
4!

�8 + o
(
1
n2

)

=−1 + �
2

n
+
�4

2n
+
(d2 − 8d)�4

4n2
+
(8− 3d)�6

4n2
+
7�8

16n2
+ o
(
1
n2

)

Finally, it follows that

V (�c; �)=
�2

n

{
1 +

�2

2
+
�2

4n

[
d2 − (8 + 3�2)d+ 8�2 + 7

4
�4
]}
+ o
(
1
n2

)

A.2 Proof of Proposition 2

Here we give a brief proof for some of the risk formulas in Proposition 2. The following
lemma is needed for the estimators �̂3, �̂4 and �̂5.
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Lemma A.3

E(g(AS2))= exp
(
n− 1
n

A�2
)
; E(g2(AS2))= exp

(
2(n− 1)
n

A�2
)
g
(
2(n− 1)
n

A2�4
)

where g(t) is de�ned as in (3).

For a proof, see Reference [10].

Proof of Proposition 2
Let A=(n − 1 + k)=(2(n − 1)). Then �̂3, �̂4 and �̂5 can be written as exp( �X )g(AS2) with k
being 0, −2 and −3, respectively.
Using Lemma A.3, we can obtain that

E(exp( �X )g(AS2)− �)2 = �2
(
e[(k+1)=n]�

2
g
(
2(n− 1)
n

A2�4
)

− 2e(k=2n)�2 + 1
)

The risk formulas for �̂3, �̂4 and �̂5 can be derived by plugging in A=(n−1+k)=(2(n−1))
into the above expression, and letting k be 0, −2 and −3, respectively.
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