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Abstract

We study a regression problem where for some part of the data we observe both the label variable

(Y ) and the predictors (X), while for other part of the data only the predictors are given. Such a

problem arises, for example, when observations of the label variable are costly and may require a

skilled human agent. If the conditional expectation ErY |Xs is exactly linear in X then typically the

additional observations of the X’s do not contain useful information, but otherwise the unlabeled data

can be informative. In this case, our aim is at constructing the best linear predictor. We suggest

improved alternative estimates to the naive standard procedures that depend only on the labeled data.

Our estimation method can be easily implemented and has simply described asymptotic properties.

The new estimates asymptotically dominate the usual standard procedures under certain non-linearity

condition of ErY |Xs; otherwise, they are asymptotically equivalent. The performance of the new

estimator for small sample size is investigated in an extensive simulation study. A real data example

of inferring homeless population is used to illustrate the new methodology.

1 Introduction

1.1 Background and contribution

The term “semi-supervised learning” was coined in the machine learning literature to describe a situation

in which some of the data is labeled while the rest of the data is unlabeled (Merz et al., 1992). Such

situations occur when the label variable is difficult to observe and may require a complicated or expensive

procedure. A typical example is web document classification, where the classification is done by a human

agent while there are many more unlabeled on-line documents. Specifically, a sample of n observations

from the joint distribution of pX, Y q is given, where Y is a one-dimensional label variable and X is a

p-dimensional vector of covariates or predictors. Also, an additional sample of size m is observed where
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only X is given. The purpose is to study procedures that make use of the additional unlabeled data to

better capture the shape of the underlying joint distribution of the labeled data.

A large body of literature focuses on the case that Y takes a small number of values and the problem

reduces to a classification task; see e.g., Zhu (2005) and references therein. When the predictors approxi-

mately lie in a low dimensional space, the unlabeled sample can be used to estimate the low dimensional

structure (see e.g., Goldberg et al., 2009) . Wang et al. (2009) divide the different methods into two ap-

proaches: distributional and margin-based. The distributional approach relies on an assumption relating

the conditional expectation ErY |Xs to the marginal distribution of X and the margin-based approach

uses the extra information on X for estimating the Bayes decision boundary; see Liang et al. (2008) for a

Bayesian perspective within this basic approach. Other works consider continuous Y ’s and use the unla-

beled data to learn the structure of the X’s in order to better estimate a non-parametric regression (Zhou,

2005; Lafferty and Wasserman, 2008; Johnson and Zhang, 2008). These works could be very helpful in

situations where non-parametric regression is useful and unlabeled data are available.

Here we follow a different methodology. We aim to estimate the vector β composed of the parameters

of the best linear predictor of Y , but we do not necessarily assume that ErY |Xs is exactly linear in X.

The methodology uses possible unmodeled non-linearities in EpY |Xq and adapts information from the

unlabeled data to provide an estimator for β. This estimator is asymptotically superior to the standard

least squares estimate (LSE), both in terms of variance of β and mean squared error in predicting Y .

In the statistical literature, the typical approach to regression with unlabeled data may be best

summarized by the following quote from Little (1992):

The related problem of missing values in the outcome Y was prominent in the early history

of missing-data methods, but is less interesting in the following sense: If the X’s are complete

and the missing values of Y are missing at random, then the incomplete cases contribute no

information to the regression of Y on X1, . . . ,Xp.

But see Cochran (1977, Chapter 7) for a different view more closely in tune with our development.

Buja et al. (2017) show that β does not depend on the distribution of X if and only if ErY |Xs is

linear in X. When the conditional expectation is linear, there is typically at most a limited amount of

additional information in the unlabeled data. Brown (1990) shows that even in this case there may be

some useful information, but it will not provide an asymptotic advantage in the manner we suggest in the

current treatment when the conditional expectation is not linear. The assumption that ErY |Xs is linear
is unrealistic in many situations, and we show that in the absence of such an assumption the unlabeled

sample can be used to provide useful information for the estimation of β.

We consider two scenarios. In the first, the distribution of X is known exactly. This is equivalent
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to having infinitely many unlabeled observations (m “ 8). We call this the full information scenario.

In the second scenario, which is more frequently encountered, m ă 8 but we assume that m is at least

proportional to n. We call this partial information. In both situations we provide an asymptotically

better estimate of β than the standard LSE, and hence also a better linear predictor. Our new procedure

is closely related to the semi-supervised estimations of means, which is the topic of a recent manuscript

(Zhang et al., 2017). This latter work constructs a semi-supervised regression estimator that is better

than the sample mean. We build upon this work in two ways. First, we transform the regression problem

into a mean estimation problem for each parameter via a “multiplication step”. Second, although it is

proven by Zhang et al. that the semi-supervised estimate is superior to the sample mean, this does not

directly imply superiority of our estimator to the LSE. For this purpose, a new argument is introduced

based on an orthogonal decomposition of the error (see Section 1.2 below).

In a recent paper, Chakrabortty and Cai (2018) also construct an estimator that is asymptotically

superior to the LSE. Chakrabortty and Cai estimate the non-linear part of EpY |Xq, non-parametrically,

and then impute the missing Y ’s to aid estimation of β. This is challenging, and they suggest several

methods for the nonparametric estimation.

Our approach, by contrast, squeezes extra efficiency from the LSE using minimal modeling. The

two approaches are discussed further in Section 4, where we show that our estimator is the “simplest

estimator” that dominates the LSE in some sense. We find that the suggested method is especially useful

when the non-linear part is difficult to model.

1.2 The suggested methodology in a nutshell

To demonstrate our basic methodology, consider the simple linear regression model,

Y “ α ` βX ` δ, (1)

where α, β are least squares coefficients and δ is a remainder term; these will be defined in more detail

shortly. When EpXq and EpX2q are known, we construct an estimator of β that asymptotically dominates

the least squares estimator. This is done by replacing model (1) with a different model where β is the

intercept and also the expectation of the newly defined label variable. For this latter model, Zhang et al.

(2017) show that the intercept estimator dominates the simple empirical estimate in a semi-supervised

setting. Here we go one step further and show that the intercept estimator in this new model is better

than the least squares estimator from the original model as explained below.

To present the intercept model and the methodology, begin by stating the general form of the best

linear approximation. The approximation is used in two different models, and therefore we introduce now

3



the notation U and W instead of X and Y . Suppose that W P R and U P R
d are random variables with

joint distribution G and finite second moments. The best linear predictor is

θ “ pθ1, . . . , θdqT “ argminθ̃PRdEpW ´
dÿ

j“1

Uj θ̃jq2 “
 
EpUUT q

(´1
EpUW q. (2)

Notice that this is a population version of the least squares where
řd

j“1
Uj θ̃j minimizes the L2 distance

in the population from W to any linear function of U. It follows that

W “
dÿ

j“1

θjUj ` r, (3)

where the remainder term r “ W ´ řd
j“1

θjUj is orthogonal to U, i.e., EprUq “ 0. Given a sample of n

observations from G, the standard least squares estimate, θ̂LSE , satisfies asymptotically (White, 1980)

?
npθ̂LSE ´ θq DÝÑ N

´
0,
 
EpUUT q

(´1
E
`
r2UUT

˘  
EpUUT q

(´1
¯
. (4)

Unlike the standard fixed X assumption, the asymptotic variance has a “sandwich” form,
 
EpUUT q

(´1

forming the “bread” and E
`
r2UUT

˘
the “meat”. See Buja et al. (2017) for further discussion of this

form of the sandwich.

We now return to model (1) and assume that EpXq and EpX2q are known. We can therefore assume

w.l.o.g that X is standardized (i.e., EpXq “ 0 and EpX2q “ 1). In this case we can write model (1) with

α “ EpY q, β “ EpXY q and δ “ Y ´ pα`βXq; here we consider model (3) with W “ Y , U1 “ 1, U2 “ X

and the remainder term is r “ δ. The standard LSE is a consistent estimate for β and satisfies, according

to (4),
?
npβ̂LSE ´ βq DÝÑ N

 
0, EpδXq2

(
.

Our aim it to better estimate β “ EpXY q. To this end, we multiply (1) by X setting XY to be the

labeled variable W . Furthermore, we also center the varibale U setting EpXY q “ β to be the intercept.

Specifically,

XY “ αX ` βX2 ` Xδ “ β ` aX ` bpX2 ´ 1q ` δ̃. (5)

Now we consider model (3) with W “ XY , U1 “ 1, U2 “ X, U3 “ X2 ´ 1 and r “ δ̃; here a, b are θ2, θ3

defined by (2). In setting β “ EpXY q to be the intercept coefficient we used that EX “ EpX2q ´ 1 “ 0,

i.e., that we know the first and second moment of X. We define our new estimator, β̂TI (TI for total

information), to be the LSE intercept estimator of (5) based on n observations. The sandwich theorem

(4) implies that
?
npβ̂TI ´ βq DÝÑ Np0, Eδ̃2q.
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Since δX ´ δ̃ “ Xpa ´ αq ` pX2 ´ 1qpb ´ βq is a linear function of X,X2, then it is orthogonal to the

remainder term of (5), which is δ̃, (i.e., EpδX ´ δ̃qδ̃ “ 0) and therefore,

EpδXq2 “ Etδ̃ ` pδX ´ δ̃qu2 “ Eδ̃2 ` EpδX ´ δ̃q2. (6)

This implies that the asymptotic variance of β̂TI is smaller than that of β̂LSE with equality iff δX ” δ̃.

The latter occurs iff α “ a and b “ β or equivalently that δ is uncorrelated with both X2 and X3. This

occurs when the non-linear part of ErY |Xs (if exists) is uncorrelated with X2 and X3. In this case,

Models (1) and (5) are essentially the same model and nothing is gained in the new methodology. On

the other hand, when δ is correlated with either X2 or X3, then Models (1) and (5) are different and β̂TI

has smaller asymptotic variance than β̂LSE. We further show that a similar decomposition to (6) holds

for the partial information case and we generalize the results to the p-dimensional case. We also show

that smaller variance implies smaller prediction error and therefore β̂TI provides better predictions than

β̂LSE .

The rest of the paper is organized as follows. Section 2 provides the basic setting the and loss functions

that we use. The main results are given in Section 3 and in Section 4 we discuss the relation between our

method and semi-parametric efficiency. Section 5 describes an extensive simulation study and Section 6

discusses estimation of the asymptotic covariance matrix of the estimates. An implementation of the new

methodology to infer homeless population in Los Angeles is discussed in Section 7. Section 8 concludes

with final remarks. The proofs are given in Section 9.

2 Preliminaries

Consider a sample of n i.i.d observations pXp1q, Y p1qq, . . . , pXpnq, Y pnqq from a joint distribution G, where

X P R
p, Y P R, and an additional set of m independent observations pXpn`1q . . . ,Xpn`mqq from the

marginal distribution of X. We use super-index to denote the number of the observation, and sub-index

to denote coordinates of X. The notation X, Y without super-index denotes a random vector whose

distribution is G.

We write ~X “ p1,X1, . . . ,XpqT to be a vector X with an additional constant 1 to accommodate an

intercept term. Assume that the second moments of G exists and that the matrix E
´
~X~XT

¯
is invertible.

Then, we can define

pα,βq “ argmin
α̃PR,β̃PRpEpY ´ α̃ ´ β̃

T
Xq2 “

!
E
´
~X~XT

¯)´1

E
´
~XY

¯
. (7)

In the presence of non-linearity, β is still a meaningful parameter that describes the overall association

between Y and X (Buja et al., 2017). We have in mind two related purposes. The first purpose is just
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to better estimate the parameters of interest, while the second purpose pertains to prediction. The latter

is formalized now. Suppose that an independent observation pX˚, Y ˚q „ G is given. The optimal linear

predictor is α ` βTX˚. We consider the excess loss of an estimator α̃, β̃

Lpα̃, β̃q “
´
Y ˚ ´ α̃ ´ β̃

T
X˚

¯2

´
`
Y ˚ ´ α ´ βTX˚

˘2
.

We have that (see Lemma 1)

ELpα̃, β̃q “ E
”
Ȳ ´

pÿ

j“1

β̃jtX̄j ´ EpXjqu ´ EpY q
ı2

` E
!

pβ ´ β̃qTMpβ ´ β̃q
)

“ EL̃pα̃, β̃q,

where L̃ is the expression inside the expectation and M is the covariance matrix of X. Notice that L and

L̃ have the same expectation but they are different random variables. We further define the asymptotic

risk as

Rpα̃, β̃q “ lim
BÑ8

lim
nÑ8

EmintnL̃pα̃, β̃q, Bu.

The loss is of order 1{n and therefore we consider expectation of nL̃. This is truncated by an arbitrarily

large number B, since when the loss is large, it makes sense not to penalize any further. Also, the

truncation helps to avoid issues of uniform integrability. This is done for example in Le Cam and Yang

(1990), Chapter 5. The following proposition provides a simple expression for the asymptotic risk.

Proposition 1. Let α̃, β̃ satisfies

α̃ “ Ȳ ´
pÿ

j“1

β̃jX̄j , (8)

and assume that β̃ satisfies
?
npβ̃ ´ βq DÝÑ Np0,Σq then,

Rpα̃, β̃q “ E
”
Y ´

pÿ

j“1

βjtXj ´ EpXjqu ´ EpY q
ı2

` TracepMΣq, (9)

where M is the covariance matrix of X.

The first term in (9) does not depend on the distribution of β̃. Hence, Proposition 1 shows that

the excess risk is minimized when TracepMΣq is small. Thus, we aim at estimators β̃ with asymptotic

distribution Np0,Σq such that Σ is “smaller” than the covariance matrix of LSE, in the sense that the

difference is positive semidefinite. Such an estimator asymptotically better estimates β and also has

smaller asymptotic excess risk.

For two estimates pα̃p1q, β̃
p1qq and pα̃p2q, β̃

p2qq, Proposition 1 implies that

ELpα̃p1q, β̃
p1qq ´ ELpα̃p2q, β̃

p2qq « Trace
!
MpΣp1q ´ Σp2qq

)
{n,

and therefore the difference of the prediction errors is

E

"
Y ˚ ´ α̃p1q ´

´
β̃

p1q
¯T

X˚

*2

´ E

"
Y ˚ ´ α̃p2q ´

´
β̃

p2q
¯T

X˚

*2

« Trace
!
MpΣp1q ´ Σp2qq

)
{n. (10)
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It follows that the difference of the errors of the prediction of the mean is also

E

"
EpY ˚|X˚q ´ α̃p1q ´

´
β̃

p1q
¯T

X˚

*2

´E

"
EpY ˚|X˚q ´ α̃p2q ´

´
β̃

p2q
¯T

X˚

*2

« Trace
!
MpΣp1q ´ Σp2qq

)
{n.

(11)

Notice that we estimate the intercept, as in (8), using X̄j rather than the possibly known expectations

EpXjq. This is in accordance with the findings of Zhang et al. (2017).

3 Main results

In this section we provide the main theoretical results of the paper. Before we deal with the p-dimensional

case, we first introduce the results for one-dimensional X. The reason is twofold: first, the presentation

in the one-dimensional case is simpler and captures the main ideas, and second, our results for the p-

dimensional X are obtained by reducing the regression problem to p problems, each of which is closely

related to the one dimensional X regression.

3.1 One dimensional X

In this section we study the one dimensional case. Summary of the notation used here is presented in

Table 1. When G has finite second moments we can write

Y “ α ` βX ` δ, (12)

where α “ EpY q ´ βEpXq, β “ CovpX,Y q
V arpXq and δ “ Y ´ α ´ βX. Equation (12) is the best linear

approximation in the population in the sense that α ` βX minimizes Epα̃ ` β̃X ´ Y q2 over all α̃, β̃ P R

and δ is orthogonal to 1,X, i.e., Epδq “ EpδXq “ 0. The regular LSE is

β̂LSE “
řn

i“1
pXpiq ´ X̄qY piq

řn
i“1

pXpiq ´ X̄q2 .

This is a consistent and asymptotically unbiased and asymptotically normal estimator for β. See Buja et al.

(2017) for contemporary discussion.

For the total information estimator (TI) we consider the following regression model, which is obtained

by multiplying (12) by X´EpXq
V arpXq ,

W “ β ` aU1 ` bU2 ` δ̃, (13)

where W “ Y tX´EpXqu
V arpXq , U1 “ X´EpXq

V arpXq , U2 “ tX´EpXquX
V arpXq ´ 1, a, b are the coefficients θ2, θ3 of the best

linear approximation defined by (2) and δ̃ is the remainder term. Here again β ` aU1 ` bU2 is the best

linear approximation of W in the population. The multiplication term makes the expectation of W to

be E
”
Y tX´EpXqu

V arpXq

ı
“ CovpX,Y q

V arpXq “ β. The covariates U1, U2 are the predictors 1,X in (12) multiplied by

7



Table 1: Summary of the notation used in Section 3.1.

Basic model Y “ α ` βX ` δ α “ EpY q ´ βEpXq, β “ CovpX,Y q
V arpXq and δ “ Y ´ α ´ βX

Intercept model W “ β ` aU1 ` bU2 ` δ̃ W “ Y tX´EpXqu
V arpXq , U1 “ X´EpXq

V arpXq , U2 “ tX´EpXquX
V arpXq ´ 1

a, b are θ2, θ3 defined by (2) for model (13)

and δ̃ is the remainder term

TI estimator β̂TI “ W̄ ´ âŪ1 ´ b̂Ū2 W̄ “ 1

n

řn
i“1

W piq, Ū1 “ 1

n

řn
i“1

U
piq
1

, Ū2 “ 1

n

řn
i“1

U
piq
2

â, b̂ are the LSE of model (13)

PI estimator β̂PI “ ¯̌W ´ â ¯̌U1 ´ b̂ ¯̌U2
¯̌W, ¯̌U1,

¯̌U2 are the means over the labeled sample,

W̌ piq “ tXpiq´ĚpXquY piq

~V arpXq
, Ǔ

piq
1

“ tXpiq´ĚpXqu
~V arpXq

Ǔ
piq
2

“ tXpiq´ĚpXquXpiq

~V arpXq
´ 1, â, b̂ are the LSE

of model (13) with W̌ , Ǔ1, Ǔ2 instead of W,U1, U2

Asymptotics ν “ lim n
n`m

n (m) the labeled (unlabeled) sample size

σ2
LSE, σ

2
PI , σ

2
TI asymptotic variance of the LSE, PI, TI estimators

as in Theorem 1

Main results σ2
LSE “ σ2

TI ` σ2

diff
σ2

diff
“ E

”
δtX´EpXqu

V arpXq ´ δ̃
ı2

σ2
PI “ σ2

TI ` νσ2

diff

X´EpXq
V arpXq . We subtract 1 in U2 in order to set EpU2q “ 0. Since EpU1q “ EpU2q “ 0, then the intercept is

EpW q “ β. Thus, we define the total information estimator to be the intercept estimator of (13), i.e.,

β̂TI “ W̄ ´ âŪ1 ´ b̂Ū2, (14)

where â, b̂ are the regular LSE of model (13), and ¯̈ denotes the mean over the supervised sample with n

observations.

For the partial information (PI) estimator we estimate W,U1, U2 as follows:

W̌ piq “ tXpiq ´ ĚpXquY piq

}V arpXq
, Ǔ

piq
1

“ tXpiq ´ ĚpXqu
}V arpXq

and Ǔ
piq
2

“ tXpiq ´ ĚpXquXpiq

}V arpXq
´ 1 , i “ 1, . . . , n,

where ĚpXq “ 1

n`m

řn`m
i“1

Xpiq, }V arpXq “ ĚpX2q ´ tĚpXqu2, and ĚpX2q “ 1

n`m

řn`m
i“1

tXpiqu2. The

partial information estimator is

β̂PI “ ¯̌W ´ â ¯̌U1 ´ b̂ ¯̌U2,

where â, b̂ are the regular LSE of the regression model (13) with W̌ , Ǔ1, Ǔ2 instead of W,U1, U2. (The

estimates â, b̂ are different in the total and partial information cases but the same notation is presented for

simplicity.) We use ¯̈ (respectively, ˇ̈) to denote empirical mean with respect to the labeled n (respectively,
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full n ` m) sample. The following theorem states the asymptotic distribution of β̂LSE , β̂TI and β̂PI . The

first part of the theorem is known and is stated here for comparison purposes.

Theorem 1. (i) Suppose that V arpXq P p0,8q and that δtX ´EpXqu has finite second moment, then,

?
npβ̂LSE ´ βq DÝÑ Np0, σ2

LSEq,

where σ2
LSE “ E

”
δ2tX´EpXqu2

tV arpXqu2

ı
.

(ii) Suppose further that the vector pW,U1, U2q has finite second moments and that the matrix EpUUT q
is invertible for U “ p1, U1, U2qT . Then,

?
npβ̂TI ´ βq DÝÑ Np0, σ2

TIq,

where σ2
TI “ Epδ̃2q and σ2

LSE “ σ2
TI ` σ2

diff
where σ2

diff
“ E

”
δtX´EpXqu

V arpXq ´ δ̃
ı2
.

(iii) Suppose further that lim n
n`m

“ ν, then,

?
npβ̂PI ´ βq DÝÑ Np0, σ2

PIq,

where σ2
PI “ σ2

TI ` νσ2

diff
.

Therefore, if σ2

diff
ą 0 then σ2

TI ă σ2
LSE and if further ν ă 1 then σ2

PI ă σ2
LSE.

Corollary 1. Theorem 1 and Proposition 1 imply that Rpα̂LSE, β̂LSEq´Rpα̂PI , β̂PIq “ p1´νqσ2

diff
V arpXq.

The improvement of β̂TI and β̂PI over β̂LSE depends on the assumption that σ2

diff
ą 0. The quantity

σ2
diff

measures the difference between the original regression model (12) and the intercept model (13). If

EpδX2q “ EpδX3q “ 0 then a “ α and b “ β and the two models are essentially the same, in which

case σ2
diff

“ 0, otherwise σ2
diff

ą 0. In other words, when ErY |Xs is non-linear and the non-linear part is

correlated with either X2 or X3 then σ2

diff
ą 0.

3.2 Multidimensional X

We now consider the general p-dimensional case as described in the beginning of Section 2. The notation

of this section is summarized in Table 2. The model can be written as

Y “ α ` β1X1 ` ¨ ¨ ¨ ` βpXp ` δ, (15)

where α,β are the coefficients of the best linear predictor in the population defined by (7). The remainder

term δ “ Y ´
řp

j“1
βjXj satisfies Epδq “ EpδX1q “ ¨ ¨ ¨ “ EpδXpq “ 0. Our aim here is at estimating

β. We use the adjustment representation of Buja et al. (2017) that reduces the p-dimensional estimation

9



Table 2: Summary of the notation used in Section 3.2 when j is the chosen coordinate.

Basic model Y “ α ` řp
j“1

βjXj ` δ α,β are defined by (7)

Adjusted regressor Xj‚ “ Xj ´ ~XT
´jβ´j‚ β´j‚ “

!
E
´
~X´j

~XT
´j

¯)´1

E
´
~X´jXj

¯

~X´j “ p1,X1, . . . ,Xj´1,Xj`1, . . . ,XpqT

Intercept model Wj “ βj ` aU1 ` řp
j1“1

bj1Uj1`1 ` δ̃j Wj “ Y Xj‚

EpX2

j‚q
, U1 “ Xj‚

EpX2

j‚q

Uj1`1 “ Xj1Xj‚

EpX2

j‚q
for j1 ‰ j, Uj`1 “ XjXj‚

EpX2

j‚q
´ 1,

a,b are θ2, ¨ ¨ ¨ , θp`1 defined

by (2) for model (17),

δ̃j is the remainder term

TI estimator tβ̂TIuj “ W̄j ´ âŪ1 ´ řp
j1“1

b̂j1Ūj1`1 ¯̈ is the mean over the labeled sample

â, b̂ are the LSE of model (17)

PI estimator tβ̂PIuj “ ¯̌Wj ´ â ¯̌U1 ´ řp
j1“1

b̂j1
¯̌Uj1`1 ¯̈ is the mean over the labeled sample

W̌j “ Y Xj‚̌

ĚpX2

j‚̌q
, Ǔ1 “ Xj‚̌

ĚpX2

j‚̌q

Ǔj1`1 “ Xj1Xj‚̌

ĚpX2

j‚̌q
for j1 ‰ j, Ǔj`1 “ XjXj‚̌

ĚpX2

j‚̌q
´ 1

â, b̂ are the LSE of model (17) with

pW̌j, Ǔ1, . . . , Ǔp`1q replacing pWj , U1, . . . , Up`1q

Asymptotics ν “ lim n
n`m

n (m) the labeled (unlabeled) sample size

ΣLSE, ΣPI , ΣTI asymptotic covariance matrix of LSE, PI, TI

as in Theorem 2

Main results ΣLSE “ ΣTI ` Σdiff Σdiff “ CovpδX‚ ´ δ̃q
ΣPI “ ΣTI ` νΣdiff

procedure to p separate simple regression problems. Correspondingly, we will define our new estimates

by solving p mean-estimation-problems separately, one for each coordinate j.

Let ~X´j “ p1,X1, . . . ,Xj´1,Xj`1, . . . ,XpqT and let

β´j‚ “ argmin
β̃

E
´
Xj ´ β̃

T ~X´j

¯2

“
!
E
´
~X´j

~XT
´j

¯)´1

E
´
~X´jXj

¯
. (16)

Now, define Xj‚ “ Xj ´ ~XT
´jβ´j‚. Each βj can be written in the one dimensional form βj “ EpY Xj‚q

EpX2

j‚q
.

The standard LSE can be viewed in a similar manner. LetY “ pY p1q, . . . , Y pnqqT , Xj “ pXp1q
j , . . . ,X

pnq
j qT

and let X´j “ p1,X1, . . . ,Xj´1,Xj`1, . . . ,Xpq. Define also β̂´j‚̄ “
!
XT

´jX´j

)´1

XT
´jXj and Xj‚̄ “

Xj ´ X´jβ̂´j‚̄; then, tβ̂LSEuj “ xY,Xj‚̄y
||Xj‚̄||2 . Recall that ¯̈ denotes mean over the labeled sample; thus, ‚̄

10



denotes adjustments over the labeled sample, whereas ‚ denotes adjustments over the population.

The total information estimator is the intercept estimator of the regression model in the population

obtained by multiplying (15) by
Xj‚

EpX2

j‚q
, that is,

Wj “ βj ` aU1 `
pÿ

j1“1

bj1Uj1`1 ` δ̃j , (17)

where

Wj “ Y Xj‚

EpX2
j‚q , U1 “ Xj‚

EpX2
j‚q , Uj1`1 “ Xj1Xj‚

EpX2
j‚q for j1 ‰ j, and Uj`1 “ XjXj‚

EpX2
j‚q ´ 1 (18)

are Y, 1,X1, ¨ ¨ ¨ ,Xp multiplied by
Xj‚

EpX2

j‚q
and a,b are θ2, . . . , θp`1 defined by (2) for W “ Wj and U “

pU1, . . . , Up`1q. Since EpU1q “ ¨ ¨ ¨ “ EpUp`1q “ 0, then the intercept is EpWjq “ βj . In setting EpWjq “
βj and also the expectations of the U ’s to be zero, we exploited the knowledge of the moments of X,

yielding higher efficiency as shown below. The remainder term in (17), δ̃j “ Wj ´βj ´aU1´řp
j1“1

b1
jUj1`1

is orthogonal to pU1, . . . , Up`1q. Notice that the vector pU1, . . . , Up`1q depends on j but this is suppressed

in the notation.

Specifically, we define the total information (TI) estimator to be

tβ̂TIuj “ W̄j ´ âŪ1 ´
pÿ

j1“1

b̂j1Ūj1`1,

where â, b̂ are the regular LSE of (17), and ¯̈denotes the mean over the labeled sample with n observations.

To define the partial information estimator let

β´j‚̌ “
!
Ě
´
~X´j

~XT
´j

¯)´1

Ě
´
~X´jXj

¯
, (19)

where Ě is the the empirical mean based on the full X sample of size n ` m. Now define Xj‚̌ “
Xj ´

!
~X´j

)T

β´j‚̌ and

W̌j “ Y Xj‚̌

ĚpX2
j‚̌q

, Ǔ1 “ Xj‚̌

ĚpX2
j‚̌q

, Ǔj1`1 “ Xj1Xj‚̌

ĚpX2
j‚̌q

for j1 ‰ j, and Ǔj`1 “ XjXj‚̌

ĚpX2
j‚̌q

.

Here ‚̌ denotes adjustments over the full n ` m sample. The partial information (PI) estimator is

tβ̂PIuj “ ¯̌Wj ´ â ¯̌U1 ´
pÿ

j1“1

b̂j1
¯̌Uj1`1,

where â, b̂j1 are the regular LSE of model (17) with pW̌j , Ǔ1, . . . , Ǔp`1q replacing pWj , U1, . . . , Up`1q.
The following theorem establishes the asymptotic distribution of the estimates and states conditions

under which β̂TI and β̂PI , asymptotically dominate β̂LSE. The asymptotic distribution of β̂LSE is already

known (White, 1980) and it is presented here so that the comparison to β̂TI and β̂PI can be made.
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Theorem 2. (i) Suppose that the vector X‚ “
!

X1‚

EpX2

1‚q
, . . . ,

Xp‚

EpX2
p‚q

)
is well defined (i.e., the projections

in (16) exist and EpXj‚q2 is positive and finite for j “ 1, . . . , p) and that δX‚ has finite second

moments, then,
?
npβ̂LSE ´ βq DÝÑ Np0,ΣLSEq,

where ΣLSE “ CovpδX‚q.

(ii) Suppose further that for each j “ 1, . . . , p, the vector pWj, U1, U2, . . . , Up`1q has finite second mo-

ments and that the matrix EpUjU
T
j q is invertible for Uj “ p1, U1, U2, . . . , Up`1qT ; then,
?
npβ̂TI ´ βq DÝÑ Np0,ΣTIq,

where ΣTI “ Covpδ̃q for δ̃ “ pδ̃1, . . . , δ̃pq. Furthermore, we have that ΣLSE “ ΣTI ` Σdiff where

Σdiff “ CovpVq for V “ δX‚ ´ δ̃.

(iii) Suppose further that lim n
n`m

“ ν, then,

?
npβ̂PI ´ βq DÝÑ Np0,ΣPIq,

where ΣPI “ ΣTI ` νΣdiff .

Therefore, if Σdiff is not the zero matrix, then ΣLSE ´ ΣTI is positive definite, and if further ν ă 1,

then ΣLSE ´ ΣPI is also positive definite.

Corollary 2. Theorem 2 and Proposition 1 imply that Rpα̂LSE , β̂LSEq ´ Rpα̂PI , β̂PIq “ Tracetp1 ´
νqΣdiffMu, where M “ CovpXq.

In short, Theorem 2 states that if the regression models (15) and (17) are well defined and the residuals

have finite second moments, then ΣLSE ´ ΣTI is positive semi-definite and it is strictly positive unless

V ” 0. If further, the unlabeled sample size is not negligible, i.e. limm{n ą 0, then ΣLSE ´ ΣPI is also

positive definite.

As in the one-dimensional case, β̂TI and β̂PI improve over β̂LSE only whenΣdiff is not the zero matrix

or equivalently that V is not zero. For each j, V arpVjq measures the difference between the original model

(15) and the intercept model (17). When

EpX2
j‚δq “ EpX2

j‚X1δq “ ¨ ¨ ¨ “ EpX2
j‚Xpδq “ 0 (20)

then δXj‚ ” δj and the two models are essentially the same, in which case Vj ” 0. Otherwise, if for

some j (20) does not hold, then β̂PI improves over β̂LSE when ν ă 1. In the one-dimensional case, (20)

is equivalent to EpX2δq “ EpX3δq “ 0, i.e., that X2 and X3 are uncorrelated with δ. Generally, (20)

implies that certain linear combinations of EpXjXj1δq and EpXjXj1Xj2δq are 0. Thus, roughly speaking,

when ErY |Xs is non-linear and the non-linear part is correlated with several second or third moments of

X, then we expect improvement of β̂PI .

12



3.3 New methodology (summary)

We now provide a step-by-step description of the new methodology for estimation of β.

For each j “ 1, . . . , p:

1. (Adjust the regressors) Let β´j‚̌ as defined in (19) and define X
piq
j‚̌ “ X

piq
j ´

!
~X

piq
´j

)T

β´j‚̌ for

i “ 1, . . . , n.

2. (Define the intercept model) Define for i “ 1, . . . , n

W̌
piq
j “

Y piqX
piq
j‚̌

ĚpX2
j‚̌q

, Ǔ
piq
1

“
X

piq
j‚̌

ĚpX2
j‚̌q

, Ǔ
piq
j1`1

“
X

piq
j1 X

piq
j‚̌

ĚpX2
j‚̌q

for j1 ‰ j, and Ǔ
piq
j`1

“
X

piq
j X

piq
j‚̌

ĚpX2
j‚̌q

´ 1.

3. (Define the intercept estimator) The partial information (PI) estimator is

tβ̂PIuj “ ¯̌Wj ´ â ¯̌U1 ´
pÿ

j1“1

b̂j1
¯̌Uj1`1,

where â, b̂j1 are the regular LSE of the regression model

W
piq
j “ βj ` aǓ

piq
1

`
pÿ

j1“1

bj1Ǔ
piq
j1`1

` δ̃
piq
j , for i “ 1, . . . , n.

The methodology is built from standard least squares procedures. An R code that implements the

algorithm and also computes estimates of the variance as in Section 6.1 below, is available at the homepage

of the first author.

4 Simplicity and semi-parametric efficiency

This section describes an optimality property of β̂TI and discusses its relation to the estimator of

Chakrabortty and Cai (2018) their notion of semi-parametric efficiency.

4.1 Semi-parametric efficiency

To define a semi-parametric efficient estimator in this context, we rewrite model (15) as

Y “ α ` βTX ` η ` εloomoon
“δ

, (21)

where η “ ηpXq “ EpY |Xq´α´βTX and ε “ Y ´α´βTX´η and assume that the marginal distribution

of X is known (total information). In this model, the semi-parametric efficiency bound for the variance

is
!
Ep~X~XT q

)´1

Ep~X~XT ε2q
!
Ep~X~XT q

)´1

(see Chakrabortty and Cai (2018) for more details).

13



Here is a general description of the approach of Chakrabortty and Cai, which is based on the idea of

imputation of the Y ’s in the unlabeled sample. Specifically, when Yi is missing, define Ŷi “ m̂pXiq for

i “ n` 1, . . . , n`m, where m̂ is an estimate of mpXq “ EpY |Xq “ α`βTX` ηpXq based on the labeled

sample. They suggest to use the LSE of the unlabeled sample when using the imputed Y ’s, i.e., based on

pXn, Ŷnq, . . . , pXn`m, Ŷn`mq. When m̂ converges to m, the resulting estimator is semi-parametric efficient.

However, in some situations, e.g., when mpXq has a complicated parametric form and n is not very large,

it is difficult to efficiently estimate it with the data set in hand. Below we review the pros and cons of

this approach with respect to ours.

4.2 Simplicity

We now discuss the relation of our approach to semi-parametric efficiency and introduce an optimality

property of our approach, which we call “simplicity”. In order to avoid unnecessary technicalities, we

consider here only the one-dimensional case under full information. Explicitly, let pX,Y q „ G where

V arGpXq P p0,8q, EGpXY q2 ă 8 and EGpXq “ EGpX2q ´ 1 “ 0; (22)

the latter assumption means that the first and second moments of X are known. The sub-script G is

used to emphasize that the expectation is taken over G as we will consider below several such G’s. In this

context, the semi-parametric efficiency bound for the variance is EGpε2X2q.
We argue that β̂TI is the simplest (to be defined shortly) estimator within the framework of intercept

model that dominates the LSE, and we also describe how to construct an estimator that achieves the

semi-parametric efficiency bound, which is different from the estimator of Chakrabortty and Cai. To this

end, consider a basis of functions tqkpXqu8
k“1

that satisfies

for all K P N : EGrq1pXqs “ ¨ ¨ ¨ “ EGrqKpXqs “ 0,

EG

“
t1, q1pXq, . . . , qKpXquT t1, q1pXq, . . . , qKpXqu

‰
is invertible,

and tXY, q1pXq, . . . , qKpXqu has finite second moments under G. (23)

The assumption that EGrq1pXqs “ ¨ ¨ ¨ “ EGrqKpXqs “ 0 is justified since the marginal distribution of X

under G is assumed known.

Consider an intercept model based on q1pXq, . . . , qKpXq

XY “ β `
Kÿ

k“1

bkqkpXq ` δ̃K . (24)

When (23) holds, then b1, . . . , bk in (24) are well defined as the parameters of the best linear predictor.

Since EGrq1pXqs “ ¨ ¨ ¨ “ EGrqKpXqs “ 0, the intercept is EGpXY q “ β.
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Suppose we have n iid observations pX1, Y1q, . . . , pXn, Ynq from G. Let β̂LSE be the least squares

estimate based on n observations from Model (1) and let β̂K be the intercept LSE estimate based on n

observations from Model (24). By the “Sandwich” Theorem (4),

?
n
´
β̂LSE ´ β

¯
DÝÑ N

`
0, EGpδXq2

˘
and

?
n
´
β̂K ´ β

¯
DÝÑ N

´
0, EG δ̃

2
K

¯
.

The following theorem states that β̂K is better (smaller asymptotic variance) than β̂LSE for every distri-

bution G, iff X P spantq1pXq, . . . , qKpXqu and X2 ´ 1 P spantq1pXq, . . . , qKpXqu.

Theorem 3.

(Sufficiency) If X P spantq1pXq, . . . , qKpXqu and X2 ´ 1 P spantq1pXq, . . . , qKpXqu, then β̂K is better

than β̂LSE for “every” G, i.e., EGδ̃
2
K ď EGpδXq2 for every distribution G that satisfies (22) and (23).

(Necessity) If X R spantq1pXq, . . . , qKpXqu or X2 ´ 1 R spantq1pXq, . . . , qKpXqu, then there exists distri-

bution G that satisfies (22) and (23), and where β̂LSE is better than β̂K , i.e., EGpδXq2 ă EGδ̃
2
K .

Theorem 3 implies that β̂TI is “simple” in the sense that it is derived from the minimal intercept

model that is better than β̂LSE for every G that satisfies (22) and (23). In this sense, β̂TI is the simplest

estimator that is derived from an intercept model.

This “simplicity” property allows us to improve over the LSE without explicitly modeling the non-

linear part ηpXq. This is one advantage over Chakrabortty and Cai’s approach, where the missing Y ’s

are imputed using an estimate of ηpXq. We expect that if ηpXq has a complicated form and n is not very

large, our estimate may be advantageous. On the other hand, a successful approximation of ηpXq, may

lead to an estimator of β with smaller variance, close to the semi-parametric bound. This is demonstrated

and further discussed in Section 5.4 below.

The intercept model framework can also be used to construct an estimator that achieves the semi-

parametric bound. To this end, assume for the moment that for some K

αX ` βX2 ` ηX P spantq1pXq, . . . , qKpXqu. (25)

Then Model (21) implies that EGpδ̃2Kq “ EGpε2X2q and therefore β̂K is semi-parametric efficient. Gen-

erally, (25) is not likely to hold precisely, but if tqkpXqu8
k“1

is rich enough, then for large enough K, (25)

holds true up to some small enough approximation error. In this case, one can increase K slowly with n

and then achieve semi-parametric efficiency. This procedure is made precise in Theorem 7 of Zhang et al.

(2017).

4.3 Other modifications

This addition of extra basis terms is similar to the typical practice of adding extra terms in the regression

model, but it is better in a critical way: expanding the basis in (24) improves estimation of β uniformly
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over G, whereas adding orthogonal terms to the regression model can sometimes harm it. To observe

the latter fact, consider the one dimensional case (Model (12)) and the total information scenario where

EpXq “ 0 and EpX2q “ 1. One could modify the model to

Y “ α ` βX ` γfpXq ` δ̃, (26)

where fpXq is some function of X that satisfies EpfpXqq “ 0 and EpXfpXqq “ 0 (otherwise α and

β might change). In this case, the asymptotic variance for the LSE of β in the original model (12) is

EpX2δ2q and in the modified model (26) it is EpX2δ̃2q. For a given fpXq, it is possible, under mild

conditions, to find δ such that the modified estimator has larger asymptotic variance. To construct one,

fix γ “ 1 and pick an arbitrary residual δ̃ “ δ̃0 such that EpX2fpXqδ̃0q is nonzero (assuming such δ̃0

exists). Then in the original model (12), consider the family δ “ δc “ fpXq ` cδ̃0 for variable c. The

difference of the asymptotic variances between the new LSE and the old LSE is

EpX2c2δ̃20q ´ EpX2δ2c q “ ´EpX2f2pXqq ´ 2cEpX2fpXqδ̃0q.

The variable c can be chosen to make this difference positive, yielding a model in which the ordinary least

squares estimation has been harmed.

To sum up the findings of this section we conclude that the intercept model framework derives a large

class of estimates that are better than β̂LSE . Our suggested estimator β̂TI is minimal within this class

and a semi-parametric efficient estimator can be achieved by considering a sequence of increasing models.

Compared to Chakrabortty and Cai’s estimator it is especially useful when the non-linear part is difficult

to model.

5 A simulation study

We compare the performance of the Partial Information (PI) and Total Information (TI) estimators

against the Least Squares Estimate (LSE) across a wide range of settings.

5.1 Toy example

We start by studying the following toy model

Y “ αX2 ` βX ` ε “ α ` βX ` αpX2 ´ 1q ` εlooooooomooooooon
“δ

, (27)

where X and ε are i.i.d N(0,1). Under model (27), the linear and non-linear part are determined by β and

α separately and the linear coefficient β does not affect the residual δ. In this case, it easy to calculate
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the asymptotic variance of the estimates explicitly

σ2
LSE “ 10α2 ` 1, σ2

TI “ 6α2 ` 1, σ2

diff “ 4α2.

Considering the excess risk, then by Proposition 1 the ratio of excess risks of β̂PI (β̂TI , respectively) and

β̂LSE converges to
2α2`1`σ2

PI

2α2`1`σ2

LSE

(
2α2`1`σ2

TI

2α2`1`σ2

LSE

, respectively). The limits equal 1 in the linear case (α “ 0)

and approach 0 when the non-linear part is dominant (α Ñ 8).

Figure 1 summarizes 10,000 simulations of model (27) with β “ 1 and different values of α, n; for the

PI case we used m “ 2n. For all the scenarios we found that β̂TI , β̂PI have smaller excess risk when n is

large enough. As α increases, the departure from linearity is more significant and the ratio of the excess

risks is smaller. For small n, LSE is superior for all scenarios as it is a simpler estimate. When the model

is close to linear (α “ 1{4), the new estimates are better for n ě 200 and for the other values of α the

new estimates are better for n ě 70. For small values of α the limiting excess risk is close to the actual

risk even when n « 300 but this does not hold true for larger values of α. In short, we found that the

new estimates are better for large n, and are much better when the non-linear part is significant.
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Figure 1: Estimates of the excess risk ratio for the TI and PI estimates based on 10,000 simulations of model (27) with

β “ 1 and different values of α, n; for the PI case we used m “ 2n. A confidence interval based on two standard deviations

is also plotted. The horizontal lines represents the limiting excess risk.
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5.2 Simulation Parameters

We now compare our new estimates to LSE for a broader variety of scenarios. Estimates of the Excess

Risk Ratio (ERR) for PI and TI were obtained for every combination of the following parameter choices:

n (size of labeled dataset) 12, 25, 50, 100, 250, 500

m (size of unlabeled dataset) n, 2n

p (number of predictors) 1, 4

Distribution of X Gaussian, Lognormal, Exponential, Cubed Gaussian

Errors Gaussian, Np0, e2}X}q
ErY |Xs X, eX , X3,

a
|X|

For p “ 4, ErY |Xs was the sum over j of the chosen function of each Xj . Fixing each of the 768

parameters settings, many sample datasets were generated, along with a large test dataset (n = 100,000).

For each sample dataset, PI, TI, and LSE were fit, (calculating TI using the PI method with m ě 500n.)

Next, an estimate of expected MSE was obtained using the test dataset. Along with the best linear fit

for the test dataset (given by least squares regression), these determine the Excess Risk Ratio for PI

(ERRPI) as follows:

ERRPI “ MSEPI ´ MSEBLF

MSELSE ´ MSEBLF

,

where

MSEPI is the expected MSE of the PI estimator (estimated from mean performance on the test dataset),

MSELSE is the expected MSE of the LSE estimator, and

MSEBLF is the MSE of the best linear fit of the test dataset.

An analagous calculation was performed to calculate ERRTI . Additional datasets were sampled to

improve estimates of MSEPI and MSELSE , until standard errors for ERRPI and ERRTI fell below 1%

(as estimated by the delta method), or a maximum of 100, 000 sample datasets was generated.

5.3 Simulation Results

Table 3 provides the proportions of scenarios where the PI estimate yields a statistically significant

smaller excess risk than the LSE and the proportion where the opposite holds true, for different p and n.

Statistical significance is measured by two standard errors. The results demonstrate that the PI estimate

outperforms the LSE across a wide range of scenarios for large n, and the proportion increases with n.

When n “ 500, LSE is significantly better only for about 10% of the scenarios we studied. More detailed

comments follow:
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Table 3: Proportions of scenarios where ERRPI is significantly smaller than 1 and where it is significantly larger than 1.

❅
❅
❅
❅❅

p

n
12 25 50 100 250 500

ERRPI ă 1 significantly
1 0.297 0.344 0.469 0.594 0.656 0.609

4 0.047 0.234 0.391 0.438 0.594 0.547

ERRPI ą 1 significantly
1 0.344 0.234 0.172 0.125 0.125 0.109

4 0.578 0.391 0.234 0.188 0.188 0.125

1. A proposed rule of thumb when p “ 1: As indicated by Table 3 across a wide range of parameter

settings, PI performs almost as well as LSE when n ě 100, m ě 100 and linear ErY |Xs, and better

than the LSE for nonlinear ErY |Xs (that is, ERR ă 1). Furthermore, PI’s underperformance is

mild when ErY |Xs is linear. Thus, assuming that the scenarios we studied are representative of

reality, we recommend using the PI method when the following conditions are satisfied, as a rule of

thumb:

(a) n ě 100

(b) m ě 100

(c) ErY |Xs could be non-linear

2. If p “ 1, n ą 100, m ą 100, and ErY |Xs is one of the non-linear functions tested, then both PI and

TI appear to outperform LSE; furthermore, the margin of outperformance widens as n increases (See

Figure 2 (a), and Figure 2 (b), respectively). In particular, PI does much better for ErY |Xs “ X3

and eX , as compared to
?
X. Intuitively, this results from the larger non-linear moments of X3 and

eX , causing Σdiff to be large (as defined in Theorem 2, part ii)

3. Increasing m, the size of the unlabeled dataset, improves performance of PI. Indeed, comparing PI

where m “ 2n in Graph X against TI (m ě 500n) in Graph Y, one observes that greatly increasing

the pool of unlabeled samples can reduce Excess Risk, in some cases on the order of 5 ´ 10 per

cent (Compare Figures 2 (a) and (b)). But, a word of caution: if n is small, then LSE may still

outperform both PI and TI, even when m is large and ErY |Xs is non-linear.

4. If n is small, or if ErY |Xs is linear, then LSE performs better than TI and PI. However, ERR Ñ 1

as n Ñ 8, holding other parameters fixed (See Figures 2 (a) and (b)). This result is consistent with

the asymptotic agreement of PI, TI, and LSE when ErY |Xs is linear (See Theorem 2)
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Figure 2: Estimates of the excess risk ratio for the TI and PI estimates, for several possible functions of ErY |Xs. In PI

estimates (a), m “ 2n. In TI estimates (b), the PI method is used with m ě 500n. In all cases, X is Gaussian, errors are

Gaussian, and p “ 1. Confidence intervals are ˘2 standard errors.

5. Extra heteroskedastic noise appears to decrease the relative advantage of PI. See Figure 3 (a).

6. Somewhat similarly, increasing the number of parameters to 4 (with ErY |Xs being the sum over j

of the given function of Xj) also decreases the relative advantage of PI. See Figure 3 (b).

7. If X is not Gaussian, PI still does well, especially for large n. See Figure 3 (c) for an example

where X is exponential. (Note that standard errors may be understated, especially in the case

ErY |Xs “ exppXq, partly due to the large moments of Y .)
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Figure 3: Estimates of the excess risk ratio of PI estimates, across several possible functions of ErY |Xs, with tweaks to

the previous settings of Figure 2 (a): these were m “ 2n, X Gaussian, p “ 1, and Guassian errors. The following is changed

in each plot: Figure (a): Errors are heteroscedastic, distributed Np0, e2}x}q. Figure (b): p “ 4, where ErY |Xs is the sum of

the given relationship in each X-variable. Figure (c): X is distributed exponentially. Confidence intervals are ˘2 standard

errors.
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5.4 Comparison to Chakrabortty and Cai

In this section we describe a simulation study that compares β̂TI with the estimator of Chakrabortty and Cai

(2018), using R code they generously provided. They suggest two candidate smoothing methods, but in

both their simulation results and ours, one method (kernel machine regression, or in their notation, T

:= KM ) performs better than the other (T := KS2,P2
). Therefore we report the results only of the

former. We denote it “EASE” (Efficient and Adaptive Semi-Supervised Estimator). The kernel machine

regression procedure is computationally intensive, especially when n is not small, and therefore we did

not compute the EASE estimator for all scenarios considered in Section 5.2, but instead chose several

interesting ones.

In order to compare the two methods we ran a simulation study, where the dimension is p “ 4,

the number of labeled observations is n “ 100, and the unlabeled sample is much larger m “ 10, 000

(Chakrabortty and Cai’s estimator is constructed for cases where m ąą n). The simulations were

repeated 1000 times. We considered four scenarios for the joint distribution of pX, Y q; in all scenarios the

distribution of X and ε is iid Np0, 1q.

• Scenario 1: Y “ p1, 1, 1, 1qX`p1, 1, 1, 1qX2 `ε (whereX2 “ pX2
1
,X2

2
,X2

3
,X2

4
qT and similar notation

is used below for other functions).

• Scenario 2: Y “ p1, 1, 1, 1qX ` p0.3, 0.3, 0.3, 0.3qX2 ` ε.

• Scenario 3: Y “ p1, 1, 1, 1qX ` p1, 1, 1, 1q
`
X3 ´ X2 ` exppXq

˘
` ε.

• Scenario 4: Y “ p1, 1, 1, 1qX ` p0.3, 0.3, 0.3, 0.3q
`
X3 ´ X2 ` exppXq

˘
` ε.

In Scenarios 1 and 2 the non-linear part has a squared form; they differ in the level of non-linearity. On

the other hand, Scenarios 3 and 4 have a complex non-linear part, which is difficult to estimate given the

relatively small number of observations.

Table 4: Mean (std) of the MSE of β̂LSE, β̂PI , and EASE.

β̂LSE β̂PI EASE

Scenario 1 0.174 (0.004) 0.137 (0.003) 0.081 (0.003)

Scenario 2 0.025 (0.001) 0.023 (0.001) 0.022 (0.001)

Scenario 3 0.985 (0.031) 0.773 (0.026) 0.961 (0.028)

Scenario 4 0.106 (0.005) 0.076 (0.002) 0.097 (0.003)
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To match the convention of Chakrabortty and Cai (2018), in this section we report results in terms

of MSE of β rather than excess risk. (The ERR defined in 5.2 can be recovered asymptotically as the

ratio of the MSE of β to the MSE of βLSE , due to Proposition 1). The mean MSE and standard errors

of the simulations are given in Table 4. EASE outperformed all other methods in Scenario 1; its MSE is

about half than the LSE. In scenario 2 all methods are more or less the same since the non-linear part

is relatively small. Scenarios 3 and 4 suit better our framework since ηpXq is a complex function and is

difficult to estimate. Indeed, in these scenarios, β̂PI improves over the LSE and also outperforms EASE.

Notice that the relative improvement of β̂PI remains the same across Scenarios 3 and 4 (the MSE in

Scenario 4 is about 10% of the MSE of Scenario 3 in all estimates).

We also report two typical examples of how the relative performance of the estimators can depend

on n. We considered two scenarios for the joint distribution of pX, Y q, which are chosen from those of

Section 5.2:

• Scenario 5: X „ Np0, 1q i.i.d. and Y “ p1, 1, 1, 1qX ` p.3, .3, .3, .3qX3 ` ε

• Scenario 6: X „ Expp1q i.i.d. and Y “ p1, 1, 1, 1qX1{2 ` ε
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Figure 4: Confidence intervals are ˘2 simulation standard errors

In both scenarios, ε is iid Np0, 1q and the dimension is p “ 4. For labeled dataset sizes n “
12, 25, 100, 250, 500, and unlabeled dataset sizes m “ 20n, for both β̂PI and β̂EASE we computed via
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simulation the MSE’s of β̂PI and β̂EASE and standardized by the simulated MSE of β̂LSE. The ratios

are displayed in Figure 4, with upper and lower intervals of ˘ 2 simulation standard errors based on

the delta method. Both estimators can be worse than the LSE for small n. Both scenarios show an

interesting pattern: PI’s MSE compared to LSE improves uniformly with n, whereas for EASE the ratio

kinks upward at small n and then decreases. In Scenario 5, PI does significantly better than both EASE

and LSE for moderate n, but for large n EASE eventually catches up. In Scenario 6, the nonlinearity is

mild and both PI and EASE struggle; we do not observe a range where PI is simultaneously better than

both EASE and the LSE, and PI and EASE only beat the LSE for large n.

In practice, one does not know the complexity or severity of the nonlinearity relative to n, and thus it

is unclear which estimator is best. Therefore, it might be advisable to try all three methods. Since each

method estimates its standard error, one can try to evaluate the proper estimator for the specific data

set in hand.

6 Estimating the standard errors of the estimates

In this section we study estimation of the asymptotic covariance matrix. We suggest three estimates for

βPI in Section 6.1 and study their performance by simulation (Section 6.2). Section 6.3 deals with the

estimation of the prediction error (excess risk).

6.1 Three estimates of ΣPI

We proved that under certain conditions,

?
npβ̂LSE ´ βq DÝÑ Np0,ΣLSEq,

?
npβ̂PI ´ βq DÝÑ Np0,ΣPIq and,

?
npβ̂TI ´ βq DÝÑ Np0,ΣTIq.

In these expressions the (asymptotic) variability of the estimates are determined by the matrices ΣLSE,

ΣPI and ΣTI . These matrices are unknown and therefore need to be estimated. In this section we

consider only estimation of ΣLSE and ΣPI . Estimation of the asymptotic variance yields prediction error

estimates or L2 risk in a standard fashion. In section 6.3 we discuss estimation of the excess risk.

For ΣLSE we follow Buja et al. (2017) who show that the standard estimates are inconsistent when

non-linearity is present and suggest two alternative estimates for the variance. The parametric sandwich

estimator for the asymptotic variance of β̂LSE is

ÂVparmpβ̂LSEq “
`
X
T
X
˘´1

X
T D̂X

`
X
T
X
˘´1

,

where X is the design matrix and D̂ is a diagonal matrix with D̂i “ δ̂2i the standard residual estimator.

The second estimate is derived from a pairs bootstrap where a pair pX˚, Y ˚q is sampled NBS times from
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the empirical joint distribution of pX, Y q, yielding a sample (under the empirical measure) of size NBS of

β̂LSE. The resulting estimate of the variance is denoted by ÂVBSpβ̂LSEq.
For estimating the variance of ΣPI , we consider three estimates described as follows:

1. Parametric: The asymptotic variances of β̂LSE and β̂PI are

AVpβ̂LSEq “ Covpδ̃q ` CovpVq, AVpβ̂PIq “ Covpδ̃q ` νCovpVq. (28)

To estimate the variance of Covpδ̃q notice that for j “ 1, . . . , p and i “ 1, . . . , n,

ˇ̃
δ

piq
j “ W̌ piq ´ tβ̂PIuj ´ âǓ

piq
1

´
pÿ

j1“1

b̂j1Ǔ
piq
j1`1

“ δ̃
piq
j ` opp1{

?
nq,

and hence, Covpˇ̃δq pÝÑ Covpδ̃q, where Cov is the empirical covariance based on the labeled n

sample. Therefore, using (28) we obtain that a consistent estimator to AVpβ̂PIq is

!
ÂVparmpβ̂PIq

)
j,j1

“ Covpˇ̃δj , ˇ̃δj1q ` ν

ˆ!
ÂVparmptβ̂LSEuq

)
j,j1

´ Covpˇ̃δj , ˇ̃δj1q
˙
,

for j ‰ j1 and for j “ 1, . . . , p,

!
ÂVparmpβ̂PIq

)
j,j

“ 1

n

nÿ

i“1

!
ˇ̃
δ

piq
j

)2

` νmax

˜!
ÂVparmptβ̂LSEuq

)
j,j

´ 1

n

nÿ

i“1

!
ˇ̃
δ

piq
j

)2

, 0

¸
.

2. Bootstrap: Let
!

pXpiq
˚ , Y

piq
˚ q

)n

i“1

be a sample from the empirical distribution of pX, Y q (based on

the labeled observations) and tXpiq
˚ un`m

i“n`1
be a sample from the empirical distribution ofX (based on

the unlabeled observations). Thus, β̂
˚
PI “ β̂

˚
PI

´!
pXpiq

˚ , Y
piq

˚ q
)n

i“1

, tXpiq
˚ un`m

i“n`1

¯
is a sample under

the empirical measure of β̂PI , which can yield an estimate of the variance of the estimator, denoted

by ÂVBSpβ̂PIq.

3. Variance bootstrap: In the proof of Theorem 2 we showed that for j “ 1, . . . , p,

tβ̂LSEuj “ βj`
1

n

řn
i“1

X
piq
j‚ δ

piq

EpX2
j‚q `opp1{

?
nq and tβ̂PIuj “ βj` 1

n

nÿ

i“1

δ̃piq` 1

n ` m

n`mÿ

i“1

V
piq
j `opp1{

?
nq.

Hence, the definition of the vector V implies that

β̂LSE ´ β̂PI “ 1

n

nÿ

i“1

´Vpiq ` 1

n ` m

n`mÿ

i“1

Vpiq ` opp1{
?
nq

“ 1

n

nÿ

i“1

Vpiq

ˆ
n

n ` m
´ 1

˙
` 1

n ` m

n`mÿ

i“n`1

Vpiq ` opp1{
?
nq.

Therefore, dropping the smaller order terms we obtain

nCovpβ̂LSE ´ β̂PIq « CovpVq
ˆ
1 ´ n

n ` m

˙2

` nm

pn ` mq2CovpVq

“ CovpVq
ˆ
1 ´ n

n ` m

˙
Ñ CovpVq p1 ´ νq “ ΣLSE ´ ΣPI .
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Thus, a a consistent estimator of the difference ΣLSE ´ΣPI “: ∆ can be obtained by bootstrapping

nCovpβ̂˚

PI ´ β̂
˚

LSEq. We denote this estimator by p∆. A consistent estimate to AV pβ̂PIq is

ÂVV BSpβ̂PIq “ ÂVBSpβ̂LSEq ´ p∆.

This estimator has the advantage over the previous suggestions that it is always smaller than the

estimated variance of the LSE (in the sense that the difference is positive definite), in a similar

fashion to the asymptotic distribution.

In the next section we compare the different estimates through a simulation study.

6.2 Simulations for the estimates of the variance

We now investigate the estimates of the variance under the toy model (27). We study the performance

of the estimates for α “ 1, 1{2, 1{4, 1{8, where small α corresponds to little non-linearity. We considered

n “ 250 and m “ 1500 similar to the numbers of Section 7. For each α we repeated the simulation 1000

times and also NBS “ 1000.

The simulations are summarized in Table 5 and in Figure 5. We find that the bootstrap estimate

(henceforth BS) is more variable than the parametric (henceforth PARM) and the variance bootstrap

(henceforth VBS). PARM and VBS are comparable but for small α’s for estimating the difference, the

histogram of VBS is narrower around the true value. When α “ 1{8, the estimated difference under BS

(PARM) is negative 32.9% (34.7%) of the simulations, while for VBS it is never negative. However, since

VBS cannot be negative, the mean of the simulations is upwards biased. In short, we find that PARM

and VBS outperform BS and VBS has the advantage of never being smaller than ÂV pβ̂LSEq.

Table 5: The mean (std) of the estimates of the asymptotic variance AV pβ̂PIq and the difference AV pβ̂LSEq ´ AV pβ̂PIq.

Variance Difference

α Bootstrap Parametric Variance BS true Bootstrap Parametric Variance BS true

1 7.65 (3.71) 6.86 (3.11) 6.58 (2.40) 7 2.63 (2.53) 3.51 (1.53) 3.70 (2.13) 3.43

1/2 2.65 (0.97) 2.42 (0.82) 2.36 (0.70) 2.5 0.64 (0.53) 0.88 (0.45) 0.93 (0.46) 0.86

1/4 1.43 (0.40) 1.33 (0.33) 1.31 (0.31) 1.37 0.15 (0.18) 0.24 (0.22) 0.27 (0.16) 0.21

1/8 1.11 (0.23) 1.06 (0.20) 1.03 (0.19) 1.09 0.02 (0.07) 0.06 (0.17) 0.10 (0.06) 0.05
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Figure 5: Histograms of the estimates (Bootstrap, Parametric, Variance BS) of the asymptotic variance AV pβ̂PIq and the

difference AV pβ̂LSEq ´ AV pβ̂PIq. The true asymptotic value is illustrated by the vertical gray line.
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6.3 Estimating the prediction error

The three estimates of ΣPI can be used to estimate the prediction error in a standard fashion. Here,

we describe how the variance bootstrap estimate together with the result of Proposition 1 provide an

estimate of the excess risk.

By Proposition 1, the excess risk of β̂LSE can be approximated by

E
”
Y ´EpY q´

pÿ

j“1

βjtXj´EpXjqu
ı2

`TracepMΣLSEq “ V arpY q`βTMβ´2

pÿ

j“1

βjCovpY,Xjq`TracepMΣLSEq

and hence can be consistently estimated by

σ̂2
Y ` β̂

T

LSEM̂βLSE ´ 2
pÿ

j“1

tβ̂LSEujCovpY,Xjq ` TracetM̂ÂV BSpΣLSEqu,

where σ̂2
Y “ 1

n

řn
i“1

pY piq ´ Ȳ q2, M̂ “ 1

n`m

řn`m
i“1

pXpiq ´ X̄q
 
Xpiq ´ X̄

(T
and CovpY,Xjq “ 1

n

řn
i“1

pY piq ´
Ȳ qpXpiq

j ´ X̄jq is the empirical covariance. Therefore, a consistent estimate to the excess risk ratio is

zERRPI “
σ̂2
Y ` β̂

T

LSEM̂βLSE ´ 2
řp

j“1
tβ̂LSEujCovpY,Xjq ` TracetM̂pÂV BSpΣLSEq ´ ∆̂qu

σ̂2
Y ` β̂

T

LSEM̂βLSE ´ 2
řp

j“1
tβ̂LSEujCovpY,Xjq ` TracetM̂ÂV BSpΣLSEqu

, (29)

where ∆̂ is defined by the Variance bootstrap.

7 Inferring homeless population

We now consider the Los Angeles homeless data set (Kriegler and Berk, 2010). Our purpose here is not

to carefully analyze this data set but rather to demonstrate our new method and to compare it to the

standard LSE. For our analysis, we used the same covariates as in Kriegler and Berk (2010); see this

reference for more details about the data.

There are about 2000 census tracts in the Los Angeles county, and a sample was conducted in order

to infer the homeless population. The sample consisted of two parts. First, tracts believed to have large

numbers of homeless people were pre-selected and visited; there are about 240 such tracts. Second, a

sample of about 260 tracts was chosen from the remainder by a random sampling technique and the

homeless population was counted, leaving about 1500 tracts to be imputed.

Leaving aside the preselected tracts this is almost exactly our semi-supervised setting among the

remaining population. We have n “ 261 and m “ 1536. The major difference from the setting in our

introduction here is that sampling from the remaining population is without replacement and hence is not

an i.i.d random sample. Since we have not discussed this type of sampling in detail, we will ignore this

issue in the subsequent discussion which is for illustrative purposes. (The difference in sampling schemes

does not affect the values of the various estimates, but does impact their standard errors.)
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We compare the LSE of the random sample and the new estimate (PI) where the supervised part is

the random sample (of size 261) and the unsupervised part consists of the 1536 tracts to be imputed. The

resulting estimates, as well as their standard errors (SE) are given in Table 6. The SE of the LSE was

computed using pairs bootstrap (NBS “ 105), and the SE of PI was computed using the above variance

bootstrap method (the SE of the intercept of PI was estimated by pairs bootstrap).

We find that the SE’s of PI are smaller by 15%-40% than LSE in the predictors MedianInc, PercVacant,

PercCommercial, PercIndustrial. These predictors also demonstrated a discrepancy between the SE from

linear models to bootstrap SE as reported in Buja et al. (2017) Section 2, indicating non-linearity in these

predictors (a discrepancy was observed also in the predictor PercResidential, but the improvement in this

predictor is relatively small). In summary, we found that the additional information on the distribution

of the predictors in the unsupervised data provides estimates that are more accurate (smaller variance).

Consider the prediction problem of estimating the homeless population for the 1500 tracts. An estimate

of the excess risk ratio, using (29), is zERRPI “ 0.904, i.e., improvement of about 10%. An estimate of

the differences of prediction errors as in (10) and (11) is Tracep∆̂M̂q{n “ 15.2, while an estimate of the

prediction error of the mean is
1

m

mÿ

i“1

~XT
n`iΣ̂LSE

~Xn`i{n “ 42.8.

Since 15.2/42.8 =0.355 the improvement in prediction risk is about 36%. When considering the prediction

of Y itself as in (11) then the improvement is much smaller, about 1.5%. The reason for this difference is

that the predictors we considered are all quite weak, and hence most of prediction error comes from the

variability in the distribution of Y given X rather than the variability in estimating the β’s.

Table 6: The estimates β̂LSE, β̂PI and their standard errors.

β̂LSE ŜELSE β̂PI ŜEPI
SELSE

SEPI

Intercept 13.138 11.822 14.758 11.184 0.927

MedianInc ($K) -0.065 0.056 -0.080 0.044 1.284

PercVacant 1.449 0.707 1.583 0.514 1.374

PercMinority 0.060 0.105 0.063 0.099 1.058

PercResidential -0.070 0.100 -0.078 0.094 1.072

PercCommercial 0.446 0.354 0.335 0.300 1.179

PercIndustrial 0.101 0.188 0.202 0.143 1.317
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8 Discussion

In this work we showed that β can be better estimated when additional information on the predictors X

is available. The key idea is to replace the regression model

Y “ α ` β1X1 ` ¨ ¨ ¨ ` βpXp ` δ, (30)

with p regressions of the form

Wj “ βj ` aU1 `
pÿ

j1“1

bj1Uj1`1 ` δ̃j , (31)

for j “ 1, . . . , p, where Wj, U1, . . . , Up`1 is defined in (18). Regression (31) can be used only when the

first and second moments of X are known. We showed that the intercept estimator of (31) is a better

estimate of βj , in terms of smaller asymptotic variance, than the standard LSE of (30). Furthermore,

we showed that even if the second moments of X are not known exactly then improvement can be made

over the standard LSE provided that the unlabeled sample is non-negligible with respect to the labeled

sample, i.e., m{n is bounded away from 0.

Here we considered the classical framework where p is fixed and n Ñ 8. Zhang et al. (2017) study the

semi-supervised mean estimation problem where p, n both go to infinity but p grows relatively slowly, i.e.,

p “ Op?
nq. The findings of Zhang et al. (2017) indicate that our results can be extended to the latter

case. However, our method obviously requires that p ăă n and for high-dimensional regression models

where p ą n, a different approach is needed. High-dimensional missspecified regression models are the

topic of a recent manuscript by Bühlmann and van de Geer (2015).

In this work we did not study variable selection and considered the covariates as given. However,

improved asymptotic performance may be achieved by including functions of the existing covariates as

additional new covariates. Section 3 of Zhang et al. (2017) discusses how this can be done for the problem

of semi-supervised estimation of a mean. On the other hand, when the labeled sample, n, is small, then

it may be better not to include all covariates. We hope to study the problem of variable selection in this

context in a future research.

A possible extension of these results is to generalized linear models, where the label variable (Y ) takes

a small number of values and the regression model reduces to a classification problem. Our hope is that

our method can be extended to these cases and improvement can be made over naive classifiers that

consider only the labeled data.

In summary, in this work we considered the framework where the best linear predictor is of interest

even if EpY |Xq is not linear. Under this framework, additional information on the distribution of X is

useful to construct better estimates than the standard estimates. We believe that this framework is of

practical importance and also can lead to interesting statistical issues, which are yet to be studied.
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9 Proofs

Lemma 1. We have that

ELpα̃, β̃q “ E
”
Ȳ ´

pÿ

j“1

β̃jtX̄j ´ EpXjqu ´ EpY q
ı2

` E
!

pβ ´ β̃qTMpβ ´ β̃q
)
. (32)

Proof.

First,

Rpα̃, β̃q “ E
´
Y ˚ ´ α̃ ´ β̃

T
X˚

¯2

´ E
`
Y ˚ ´ α ´ βTX˚

˘2

“ E
!

pα ´ α̃q ` pβ ´ β̃qTX˚
)!

2Y ˚ ´ pα ` α̂q ´ pβ ` β̃qTX˚
)

“ E
!

pα ´ α̃q ` pβ ´ β̃qTX˚
)2

` 2E
!

pα ´ α̂q ` pβ ´ β̃qTX˚
) 

Y ˚ ´ α ´ βTX˚
(

“ E
!

pα ´ α̃q ` pβ ´ β̃qTX˚
)2

,

where the last equality holds true since Y ˚ ´ α ´ βTX˚ is orthogonal to X˚, 1. We can further write

E
!

pα ´ α̃q ` pβ ´ β̃qTX˚
)2

“ E
”
pα ´ α̃q ` pβ ´ β̃qTEpXq ` pβ ´ β̃qT tX˚ ´ EpXqu

ı2

“ E
!

pα ´ α̃q ` pβ ´ β̃qTEpXq
)2

` Etpβ ´ β̃qTMpβ ´ β̃qu, (33)

For the first term in (33) notice that α “ EpY q ´ řp
j“1

βjEpXjq and α̃ “ Ȳ ´ řp
j“1

β̃jX̄j ; therefore,

E
!

pα ´ α̃q ` pβ ´ β̃qTEpXq
)2

“ E
”
Ȳ ´

pÿ

j“1

β̃jtX̄j ´ EpXjqu ´ EpY q
ı2
,

and (32) is established.

Proof of Proposition 1.

Since for any numbers c, d,B we have that minpc ` d,Bq ď minpc,Bq ` minpd,Bq and minpc ` d,Bq ě
minpc,B{2q ` minpd,B{2q, then

Rpα̃, β̃q “ lim
BÑ8

lim
nÑ8

EmintnL̃pα̃, β̃q, Bu “ lim
BÑ8

lim
nÑ8

Emin

˜
n
”
Ȳ ´

pÿ

j“1

β̃jtX̄j ´ EpXjqu ´ EpY q
ı2
, B

¸

` lim
BÑ8

lim
nÑ8

Emin
´
n
!

pβ ´ β̃qTMpβ ´ β̃q
)
, B

¯
. (34)

We start with the first summand in (34). Since
?
npβ̃ ´ βq is asymptotically normal then

Ȳ ´
pÿ

j“1

β̃jtX̄j´EpXjqu´EpY q´
”
Ȳ ´

pÿ

j“1

βjtX̄j´EpXjqu´EpY q
ı

“
pÿ

j“1

pβj´β̃jqtX̄j´EpXjqu “ opp1{
?
nq.
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Therefore, by the continuous mapping theorem and since the random variables are bounded, then for any

B,

lim
nÑ8

Emin

˜
n
”
Ȳ ´

pÿ

j“1

β̃jtX̄j ´ EpXjqu ´ EpY q
ı2
, B

¸

“ lim
nÑ8

Emin

˜
n
”
Ȳ ´

pÿ

j“1

βjtX̄j ´ EpXjqu ´ EpY q
ı2
, B

¸

“ Emin
`
Z2
1 , B

˘
, (35)

where Z1 is normal with mean zero and variance
”
Y ´ řp

j“1
βjtXj ´ EpXjqu ´ EpY q

ı2
.

For the second summand in (34), the asymptotic normality
?
npβ̃ ´ βq DÝÑ Np0,Σq implies that for

any B,

lim
nÑ8

Emin
´
n
!

pβ ´ β̃qTMpβ ´ β̃q
)
, B

¯
“ Emin

 
ZT
2Z2, B

(
, (36)

where Z2 is a normal vector with mean zero and variance matrix M1{2ΣM1{2. Taking limits as B Ñ 8
in (35) and (36) completes the proof of the proposition since TracepM1{2ΣM1{2q “ TracepMΣq.

We will not prove Theorem 1 since it is a special case of Theorem 2.

Proof of Theorem 2.

Part (i) We have that (Buja et al., 2017) tβ̂LSEuj “ βj ` xδ,Xj‚̄y
||Xj‚̄||2

. Furthermore,

tβ̂LSEuj “ βj ` xδ,Xj‚̄y
||Xj‚̄||2 “ βj `

1

n

řn
i“1

X
piq
j‚̄ δ

piq

1

n

řn
i“1

!
X

piq
j‚̄

)2
“ βj `

1

n

řn
i“1

X
piq
j‚ δ

piq

EpX2
j‚q ` opp1{

?
nq,

since
?
n

n

nÿ

i“1

δpiqpXpiq
j‚̄ ´ X

piq
j‚ q “

?
n

n

nÿ

i“1

δpiq
!
~X

piq
´j

)T ´
β̂´j‚̄ ´ β´j‚

¯
pÝÑ 0, and

1

n
||Xj‚̄||2 pÝÑ EpX2

j‚q.

The results now follows from the multivariate CLT and Slutsky’s theorem.

Part (ii) For each j,

tβ̂TIuj “ W̄j ´ âŪ1 ´
pÿ

j1“1

b̂j1Ūj1`1 “ W̄j ´ aŪ1 ´
pÿ

j1“1

bj1Ūj1`1 ` opp1{
?
nq

“ βj ` 1

n

nÿ

i“1

δ̃
piq
j ` opp1{

?
nq. (37)

Again, the multivariate CLT and Slutsky’s theorem imply the result.

To prove the furthermore part, notice that for each j,

Vj “ δXj‚

EpX2
j‚q ´ δ̃j “

´
Y ´ α ´ řp

j1“1
βj1Xj1

¯
Xj‚

EpX2
j‚q ´ Y Xj‚

EpX2
j‚q ` βj ´ bj ` a

Xj‚

EpX2
j‚q `

pÿ

j1“1

bj1
Xj1Xj‚

EpX2
j‚q

“ βj ´ bj ` pa ´ αq Xj‚

EpX2
j‚q `

pÿ

j1“1

pbj1 ´ βj1qXj1Xj‚

EpX2
j‚q “ pa ´ αqU1 `

pÿ

j1“1

pbj1 ´ βj1qUj1`1 (38)
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is a linear function of U1, . . . , Up`1 and hence is orthogonal to δ̃j , i.e., EVj δ̃j “ 0 for all j. Therefore,

ΣLSE “ CovpX‚δq “ Cov
!
δ̃ ` pX‚δ ´ δ̃q

)
“ Covpδ̃ ` Vq “ Covpδ̃q ` CovpVq “ ΣTI ` Σdiff .

Part (iii) We show that

tβ̂PIuj ´ tβ̂TIuj “ 1

n ` m

n`mÿ

i“1

V
piq
j ` opp1{

?
nq. (39)

Hence,
?
npβ̂PI ´ β̂TIq DÝÑ Np0, νΣdiffq. Since V is orthogonal to δ̃, then

?
npβ̂PI ´ βq “

?
npβ̂TI ´ βq `

?
npβ̂PI ´ β̂TIq DÝÑ Np0,ΣTI ` νΣdiffq.

We now prove (39) by a somewhat lengthy calculation. We have that

tβ̂PIuj “ ¯̌Wj ´ â ¯̌U1 ´
pÿ

j1“1

b̂j1
¯̌Uj1`1 “ ¯̂

Wj ´ a ¯̌U1 ´
pÿ

j1“1

bj1
¯̌Uj1`1 ` opp1{

?
nq. (40)

Therefore, (40) and (37) yield

tβ̂PIuj ´ tβ̂TIuj “ ¯̌Wj ´ W̄j ´ ap ¯̌U1 ´ Ū1q ´
pÿ

j1“1

bj1p ¯̌Uj1`1 ´ Ūj1`1q ` opp1{
?
nq.

We have that

¯̌Wj ´ W̄j “ αp ¯̌U1 ´ Ū1q `
pÿ

j1“1

βj1p ¯̌Uj1`1 ´ Ūj1`1q ` opp1{
?
nq,

and hence,

tβ̂PIuj ´ tβ̂TIuj “ pα ´ aqp ¯̌U1 ´ Ū1q `
pÿ

j1“1

pβj1 ´ bj1qp ¯̌Uj1`1 ´ Ūj1`1q ` opp1{
?
nq. (41)

We now consider the summands in (41). We start with the first summand

¯̌U1 ´ Ū “
1

n

řn
i“1

X
piq
j‚̌

ĚpX2
j‚̌q

´
1

n

řn
i“1

X
piq
j‚

EpXj‚q2 “ 1

n

nÿ

i“1

X
piq
j‚

˜
1

ĚpX2
j‚̌q

´ 1

EpXj‚q2

¸
`

pβ´j‚ ´ β´j‚̌qT 1

n

řn
i“1

~X
piq
´j

ĚpX2
j‚̌q

“
pβ´j‚ ´ β´j‚̌qT 1

n

řn
i“1

~X
piq
´j

EpXj‚q2 ` opp1{
?
nq

“
pβ´j‚ ´ β´j‚̌qT 1

n`m

řn`m
i“1

~X
piq
´j

EpXj‚q2 `
pβ´j‚ ´ β´j‚̌qT

´
1

n

řn
i“1

~X
piq
´j ´ 1

n`m

řn`m
i“1

~X
piq
´j

¯

EpXj‚q2 ` opp1{
?
nq

“
pβ´j‚ ´ β´j‚̌qT 1

n`m

řn`m
i“1

~X
piq
´j

EpXj‚q2 ` opp1{
?
nq.

Since

0 “ ĚpXj‚̌q “ ĚpXj ´ βT
´j‚̌

~X´jq ùñ ĚpXjq “ ĚpβT
´j‚̌

~X´jq

then,

ĚpXj‚q “ ĚpXj ´ βT
´j‚̌

~X´jq “ ĚpβT
´j‚̌

~X´jq ´ ĚpβT
´j‚

~X´jq “ pβ´j‚̌ ´ β´j‚qT 1

n ` m

n`mÿ

i“1

~X
piq
´j,
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and therefore,

¯̌U1 ´ Ū1 “
´ 1

n`m

řn`m
i“1

X
piq
j‚

EpXj‚q2 ` opp1{
?
nq. (42)

We now consider the j1-th term in (41) for j1 ‰ j; then, EpXj1Xj‚q “ 0. We have

¯̌Uj1`1 ´ Ūj1`1 “
1

n

řn
i“1

X
piq
j1 X

piq
j‚̌

ĚpX2
j‚̌q

´
1

n

řn
i“1

X
piq
j1 X

piq
j‚

EpXj‚q2

“ 1

n

nÿ

i“1

X
piq
j1 X

piq
j‚

#
1

ĚpX2
j‚̌q

´ 1

EpXj‚q2

+
`

pβ´j‚ ´ β´j‚̌qT 1

n

řn
i“1

X
piq
j1

~X
piq
´j

ĚpX2
j‚̌q

“
pβ´j‚ ´ β´j‚̌qT 1

n`m

řn`m
i“1

X
piq
j1

~X
piq
´j

EpXj‚q2 ` opp1{
?
nq.

Since

0 “ ĚpXj‚̌Xj1q “ ĚtpXj ´ βT
´j‚̌

~X´jqXj1u ùñ ĚpXjXj1q “ ĚpβT
´j‚̌

~X´jXj1q

then,

ĚpXj‚Xj1q “ ĚtpXj´βT
´j‚̌

~X´jqXj1 u “ ĚpβT
´j‚̌

~X´jXj1q´ĚpβT
´j‚

~X´jXj1q “ pβ´j‚̌ ´ β´j‚qT 1

n ` m

n`mÿ

i“1

X
piq
j1

~X
piq
´j ,

and therefore,

¯̌Uj1`1 ´ Ūj1`1 “
´ 1

n`m

řn`m
i“1

X
piq
j‚ X

piq
j1

EpXj‚q2 ` opp1{
?
nq. (43)

For the j-th term in (41), we have that EpXjXj‚q “ EpXj‚q2; hence,

¯̌Uj`1 ´ Ūj`1 “
1

n

řn
i“1

X
piq
j X

piq
j‚̌

ĚpX2
j‚̌q

´
1

n

řn
i“1

X
piq
j X

piq
j‚

EpXj‚q2

“
#
1

n

nÿ

i“1

X
piq
j1 X

piq
j‚ ´ EpXj‚q2

+#
1

ĚpX2
j‚̌q

´ 1

EpXj‚q2

+
`

pβ´j‚ ´ β´j‚̌qT 1

n

řn
i“1

X
piq
j

~X
piq
´j ` EpXj‚q2 ´ ĚpX2

j‚̌q
ĚpX2

j‚̌q

“
pβ´j‚ ´ β´j‚̌qT 1

n

řn
i“1

X
piq
j

~X
piq
´j ` EpXj‚q2 ´ ĚpX2

j‚̌q
EpXj‚q2 ` opp1{

?
nq.

Since

ĚpX2
j‚̌q “ ĚpXj‚̌Xjq “ ĚtpXj ´ βT

´j‚̌
~X´jqXju ùñ ĚpX2

j q “ ĚpβT
´j‚̌

~X´jXjq ` ĚpX2
j‚̌q

then,

ĚpXj‚Xjq “ ĚtpXj ´ βT
´j‚̌

~X´jqXju “ ĚpβT
´j‚̌

~X´jXjq ` ĚpX2
j‚̌q ´ ĚpβT

´j‚
~X´jXjq

“ pβ´j‚̌ ´ β´j‚qT 1

n ` m

n`mÿ

i“1

X
piq
j

~X
piq
´j ` ĚpX2

j‚̌q.

34



Thus, for the j-th term we obtain,

¯̌Uj`1 ´ Ūj`1 “
´ 1

n`m

řn`m
i“1

X
piq
j‚ X

piq
j

EpXj‚q2 ` 1 ` opp1{
?
nq. (44)

Tracking back to (41) through (42),(43), and (44), we obtain

tβ̂PIuj ´ tβ̂TIuj “ pβj ´ bjq ` pa ´ αq
1

n`m

řn`m
i“1

X
piq
j‚

EpX2
j‚q `

pÿ

j1“1

pbj1 ´ βj1q
1

n`m

řn`m
i“1

X
piq
j‚ X

piq
j1

EpX2
j‚q ` opp1{

?
nq.

Hence, (38) implies that

tβ̂PIuj ´ tβ̂TIuj “ 1

n ` m

n`mÿ

i“1

V
piq
j ` opp1{

?
nq,

and (39) is established.

Proof of Theorem 3. (Sufficiency). The same proof outlined in the introduction applies. We bring it

here for completeness. We have that

δX ´ δ̃K “
Kÿ

k“1

bkqkpXq ´ αX ´ βpX2 ´ 1q.

If X P spantq1pXq, . . . , qKpXqu and X2 ´ 1 P spantq1pXq, . . . , qKpXqu, then δX ´ δ̃K is orthogonal to δ̃K

and then

EGpδXq2 “ EG

´
δ̃K ` δX ´ δ̃K

¯2

“ EGδ̃
2
K ` EG

´
δX ´ δ̃K

¯2

ě EGδ̃
2
K .

(Necessity). Let G be such that X and Y are linearly dependent, i.e., Y “ α ` βX for certain α and β.

Then δ ” 0. We have that

XY “ β ` αX ` βpX2 ´ 1q

and therefore δ̃K ” 0 in Model (24) for every α, β iff X P spantq1pXq, . . . , qKpXqu and X2 ´ 1 P
spantq1pXq, . . . , qKpXqu.
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