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Abstract: Construction of valid statistical inference for estimators based on data-driven

selection has received a lot of attention in the recent times. Berk et al. (2013) is possibly

the first work to provide valid inference for Gaussian homoscedastic linear regression with

fixed covariates under arbitrary covariate/variable selection. The setting is unrealistic and

is extended by Bachoc et al. (2016) by relaxing the distributional assumptions. A major

drawback of the aforementioned works is that the construction of valid confidence regions

is computationally intensive. In this paper, we first prove that post-selection inference

is equivalent to simultaneous inference and then construct valid post-selection confidence

regions which are computationally simple. Our construction is based on deterministic in-

equalities and apply to independent as well as dependent random variables without the

requirement of correct distributional assumptions. Finally, we compare the volume of our

confidence regions with the existing ones and show that under non-stochastic covariates,

our regions are much smaller.

1. Introduction and Motivation

1.1. Motivation of the Problem

In recent times, there has been a crisis in the sciences because too many research results are

found to lack replicability and reproducibility. Some of this crisis has been attributed to a failure

of statistical methods to account for data-dependent exploration and modeling that precedes

statistical inference. Data-dependent actions such as selection of subsets of cases, of covariates,

of responses, of transformations and of model types has been aptly named “researcher degrees of

freedom” (Simmons et al., 2011), and these may well be a significant contributing factor in the

current crisis. Classical statistics does not account for them because it is built on a framework

where all modeling decisions are to be made independently of the data on which inference is to

be based. But if the data are in fact used to this end prior to statistical inference, then such

inference loses its justifications and the ensuing validity conferred on it by classical theories. It

is therefore critical that the theory of statistical inference be brought up to date to account for

1

http://arxiv.org/abs/1806.04119v1
mailto:arunku@wharton.upenn.edu


Kuchibhotla et al./PoSI for Linear Regression 2

data-driven modeling. Updating the theory that justifies statistical inferences usually requires

modifying the procedures of inference such as hypothesis tests and confidence intervals. As a

consequence, the new procedures may lose some power relative to the previously stipulated but

illusionary power derived from classical theories. This, however, is a necessary price to be paid

for better justification of statistical inference in the context of the pre-inferential liberties taken

in today’s data-analytic practice. While updating of statistical theories and inference procedures

will not solve all problems underlying the current crisis, it is a necessary step as it may help

mitigate at least some aspects of the crisis. In what follows we refer to all data-analytic decisions

that are made using the data prior to inference as “data-driven modeling”.

A second issue with theories of classical statistical inference is that many of them rely on

the assumption that the data have been correctly modeled in a probabilistic sense. This means

the theories tend to assume that the probability model used for the data correctly captures the

observable features of the data generating process. Justifications of statistical inferences derived

from such theories are therefore invalid if the model is incorrect or (using the technical term)

“misspecified”. With the proliferation of data-analytic approaches in science and business, it is

becoming ever more unrealistic to assume that all statistical models are correctly specified and

inferences are made only after carefully vetting the model for correct specification, for example,

using model diagnostics. Such vetting may never have been realistic in the first place, and it

should also be said that pre-inferential diagnostics should be counted among “researcher degrees

of freedom” as they may result in data-driven modeling decisions. It is therefore a mandate

of realism to use so-called “model-robust” methods of statistical inference, and for statistical

theory to provide their justifications. In matters of misspecification the situation is somewhat

less dire than data-driven modeling as there exists a rich literature on the study of inference when

models are misspecified. We will naturally draw on extant proposals for misspecification-robust

or (using the technical term) “model-robust” inference and adapt them to our purposes.

To summarize, there exist at least two ways in which statistical inferences with justifications

from classical mathematical statistics only can be invalidated, namely,

(P1) data-driven modeling prior to statistical inference, and

(P2) model misspecification.

In light of the replicability and reproducibility crisis in the sciences, it is of considerable interest,

even urgency, to develop methods of statistical inference and associated theoretical justifications

that account for both (P1) and (P2). Even though these problems are manifest in almost all

statistical procedures used in practice, it is no simple task to provide methods of valid statistical

inference that address these problems in greater generality. For this reason the present article

puts forth specifically a method of valid inference for the case that the fitting procedure is
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ordinary least squares (OLS) linear regression. Here there exists a literature that documents

the drastic effects of ignoring (P1) and (P2); see, for example, Buehler and Feddersen (1963),

Olshen (1973), Rencher and Pun (1980), and Freedman (1983). We will address one particular

form of problem (P1), namely, data-driven selection of regressor variables, and we will deal with

several forms of problem (P2).

Some of the earliest work that studies estimators under data-dependent modeling (P1) in-

clude Hjort and Claeskens (2003) and Claeskens and Carroll (2007). Although these articles deal

with a general class of statistical procedures, a major limitation, in view of the current article,

is that the data-dependent modeling is restricted to a very narrow class of principled variable

selection methods such as AIC or some other information criterion. The fact is, however, that

few data analysts will confine themselves to a strict protocol of data-driven modeling. To address

broader aspects of “researcher degrees of freedom” there have more recently emerged propos-

als that provide validity of statistical inference in the case of arbitrary data-driven selection of

regressor variables. The first such proposal was by Berk et al. (2013) who solve the problem

allowing misspecified response means but retaining the classical assumptions of homoskedastic

and normally distributed errors. We refer to Berk et al. (2013) for many other prior works re-

lated to problem (P1) where data-driven modeling consists of selection of regressor variables. A

more recent article that expands on Berk et al. (2013) is by Bachoc et al. (2016). An alternative

approach is by Lee et al. (2016), Tibshirani et al. (2016), Tian et al. (2016) (for example). Sim-

ilar to Hjort and Claeskens (2003), these proposals do not insure validity of inference against

arbitrary regressor selection but against specific selection methods such as the lasso or stepwise

forward selection. This type of post-selection inference is conditional on the selected model and

dependent on distributional assumptions, thereby not addressing problem (P2).

The present article is close in spirit to Berk et al. (2013) and Bachoc et al. (2016) and lends

their approach a considerable degree of generality by covering both fixed regressors (as in these

references) and (newly) random regressors. Bachoc et al. (2016) is the only work we know of

that provides valid statistical inference under arbitrary data-dependent regressor selection and

general misspecification of the regression models. Their framework assumes a situation where

the set of sub-models is finite and of fixed cardinality independent of the sample size. Their

method of statistical inference is NP-hard, hence requires computational heuristics. To overcome

these limitations we propose here a simplified procedure with the following properties: (1) it is

comparatively computationally efficient with at most polynomial complexity in the total number

of covariates, and (2) it allows the set of sub-models to grow almost exponentially as a function

of the sample size. Thus the procedure is also in the spirit high-dimensional statistics where the

total number of covariates is allowed to be much larger than the sample size.
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1.2. Overview

In what follows, the term “model-selection” will always mean arbitrary data-driven selection of

regressor variables, which is the only aspect of problem (P1) that will be addressed in this article.

Furthermore, the only fitting method considered here is OLS linear regression; this limitation is

for expository purposes, and results for more general types of regressions will be given elsewhere.

Problem (P2) will be addressed by the complete absence of modeling assumptions. In particular,

it will not be assumed that the response means behave linearly in the regressors, and equally it

will not be assumed that the errors are homoskedastic and normally distributed. The goal is to

provide confidence regions for linear regression coefficients obtained after model-selection. In the

process, we will prove simple but powerful results about linear regression that lend themselves

to proving the validity of confidence regions. The main contributions of the current paper are

as follows:

1. We treat OLS linear regression as a fitting method for linear equations while treating

the associated Gaussian linear model merely as a working model that is permitted to

be misspecified. We consider the case where the observations are the random vectors

comprised of a response variable and one or more regressor variables/covariates, allowing

the latter to be random rather than fixed. Note that fixed covariates are assumed in the

settings of Berk et al. (2013) and Bachoc et al. (2016). Random covariates require us to

interpret and understand what is being estimated more carefully. See Buja et al. (2014)

for an explanation why under misspecification the treatment of random covariates as fixed

is not justified.

2. Following Berk et al. (2013) and Bachoc et al. (2016) we decouple the inference problem

from model selection, meaning that the inferences proposed here are valid no matter how

the model selection was done. This feature has pluses and minuses. On the plus side,

inferences will be valid even in the presence of ad-hoc and informal selection decisions made

by the data analyst, including, for example, visual diagnostics based on residual plots. On

the minus side, decoupling implies that inferences cannot take into account any properties

of the model selection procedure when in fact only one such procedure was used. A strong

argument by Berk et al. (2013) and Bachoc et al. (2016) in favor of decoupling, however,

is that in reality data analysts will rarely limit themselves to one and only one formal

selection method if it produces unsatisfactory results on the data at hand. Therefore, in

order to truly contribute to solving the crisis in the sciences, unreported informal selection

should be assumed and accounted for. Decoupling of model selection and inference has a

further benefit: It solves the circularity problem by permitting selection to start over and
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over as often as the data analyst pleases; inferences in all selected models will be valid,

whether they are found satisfactory or unsatisfactory for whatever reasons.

3. Our theory provides validity of post-selection inferences even when model selection is

applied to a very large number of covariates — almost exponential in the sample size. Thus

the theory is in the spirit of contemporary high-dimensional statistics which is interested

in problems where the number of variables is larger than the sample size. Of course we

require model selection to produce models of size smaller than the sample size in order to

avoid trivial collinearity when the number of covariates exceeds the sample size.

4. We mostly focus on one simple strategy for valid post-selection inference that has the ad-

vantage of great simplicity, both in theory and in computation — its computational cost

being proportional to the number p of covariates. This is surprising as the computational

complexity of Berk et al. (2013) is exponential in p because it requires searching all covari-

ates in all possible submodels. The drawback of the strategy is that its confidence regions

are not aligned with the coordinate axes in covariate space, hence do not immediately

provide confidence intervals for the slope parameters of the form “estimate ˘ half-width”.

5. Most of the present results are based on deterministic inequalities that allow for valid post-

selection inference even when the random vectors involved are structurally dependent. This

approach may not produce best possible rates in some contexts, but the resulting inferences

will be more robust to independence assumptions.

As a caveat, it should be stated that we do not address the question of when linear regression is

appropriate in a given data analytic situation when misspecification is present. We consider it

a reality that many if not most linear regressions are fitted in the presence of various degrees of

misspecification, and reporting results for interpretation should be accompanied by statistical

inference just the same. Our goal is therefore limited to providing asymptotic justification of

inference in the presence of misspecification and after data-driven model selection.

The remainder of the paper is organized as follows. Section 2 provides the necessary notation

for a rigorous formulation of the problem of valid post-selection inference. In Section 3, the

problem of post-selection inference is shown to be equivalent to a problem of simultaneous

inference. In Section 4 we present the first strategy for valid post-selection inference along with its

main features. Section 5 describes an implementation method based on the multiplier bootstrap.

Section 6 provides a simple generalization to linear regression-type problems. Section 7 points

out an interesting connection between the post-selection confidence regions proposed here and

the estimators proposed in the high-dimensional linear regression literature. In Section 8, we

discuss various advantages and disadvantages of the approach presented in this paper. The final

Section 9 summarizes the results.
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Many of the proofs are deferred to Appendices A, B and D. Most of the discussion in the

paper is based on the assumption of independent random vectors, although comments about

applicability to dependent random vectors are given in appropriate places. Appendix E provides

theoretical background about a high-dimensional central limit theorem and the consistency

of multiplier bootstrap. These results are required for computation of joint quantiles for the

proposed confidence regions. Appendix F describes the functional dependence setting where the

computation of required quantiles is not much different from that of the independence setting.

2. Notation and Problem Formulation

2.1. Notation related to Vectors, Matrices and Norms

For any vector v P R
q and 1 ď j ď q, vpjq denotes the j-th coordinate of v. For any non-empty

subset M Ď t1, 2, . . . , qu, vpMq denotes the sub-vector of v with indices in M . For instance, if

M “ t2, 4u and q ě 4, then vpMq “ pvp2q, vp4qq. If M “ tju is a singleton then vpjq is used

instead of vptjuq. Therefore, vpMq P R
|M | where |M | denotes the cardinality of M .

For any symmetric matrix A P R
qˆq and M Ď t1, 2, . . . , qu, let ApMq denote the sub-matrix

of A with indices in M ˆ M and for 1 ď j, k ď q, let Apj, kq denote the value at the j-th row

and k-th column of A.

Define the r-norm of a vector v P R
q for 1 ď r ď 8 as usual by

‖v‖r :“
ˆ q
ÿ

j“1

|vpjq|r
˙1{r

, for 1 ď r ă 8, and ‖v‖8 :“ max
1ďjďq

|vpjq|.

Let ‖v‖
0
denote the number of non-zero entries in v (note this is not a norm). For any symmetric

matrix A, let λminpAq denote the minimum eigenvalue of A. Also, let the elementwise maximum

and the operator norm be defined, respectively, as

‖A‖8 :“ max
1ďj,kďq

|Apj, kq|, and ‖A‖op :“ sup
‖δ‖

2
ď1

‖Aδ‖
2
.

The following inequalities will be used throughout without special mention:

‖v‖
1

ď ‖v‖
1{2
0

‖v‖
2
, ‖Av‖8 ď ‖A‖8 ‖v‖

1
, and |uJAv| ď ‖A‖8 ‖u‖

1
‖v‖

1
, (1)

where A P R
qˆq and u, v P R

q.

2.2. Notation Related to Regression Data and OLS

Let pXJ
i , YiqJ P R

p ˆ R p1 ď i ď nq represent a sample of n observations. The covariate

vectors Xi P R
p are column vectors. It is common to include an intercept term when fitting the
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linear regression. To avoid extra notation, we assume that all covariates under consideration are

included in the vectors Xi, so the data analyst may take the first coordinate of Xi to be 1. In

case that the number p of covariates varies with n, this should be interpreted as a triangular

array. Throughout, the term “model” is used to refer to the subset of covariates present in

the regression and there will be no assumption that any linear model is true for any choice of

covariates.

In order describe “models” in the sense of subsets of covariates, we use index sets M Ď
t1, 2, . . . , pu as in the previous subsection and write XipMq for the covariate vectors in the

submodel M . For any 1 ď k ď p, define the set of all non-empty models of size no larger than k

by

Mppkq :“ tM : M Ď t1, 2, . . . , pu, 1 ď |M | ď ku,

so that Mpppq is the power set of t1, 2, . . . , pu excluding the empty set.

To proceed further, we assume that the observations are independent but possibly non-

identically distributed. Note that this assumption includes as special cases (i) the setting of

independent and identically distributed observations and (ii) the setting of fixed (non-random)

covariates (by defining the distribution of Xi to be a point mass at the observed Xi). Our setting

is more general than either (i) or (ii) in that some of the covariates are allowed to be fixed while

others are random.

For any M Ď t1, 2, . . . , pu, define the ordinary least squares empirical risk (or objective)

function as

R̂npθ;Mq :“ 1

n

n
ÿ

i“1

 

Yi ´XJ
i pMqθ

(2
, for θ P R

|M |. (2)

Using this, define the expected risk (or objective) function as

Rnpθ;Mq :“ 1

n

n
ÿ

i“1

E

”

 

Yi ´XJ
i pMqθ

(2
ı

, for θ P R
|M |. (3)

(The notations E and P are used to denote expectation and probability computed with respect

to all the randomness involved.) Define the least squares estimator and the corresponding target

for model M as

β̂n,M :“ argmin
θPR|M|

R̂npθ;Mq, and βn,M :“ argmin
θPR|M|

Rnpθ;Mq, (4)

for all M Ď t1, 2, . . . , pu, hence β̂n,M , βn,M PR|M |. Note, however, the following: Suppose M “
t1, 2u and M 1 “ t1u, then it is generally the case that β̂n,M 1p1q ‰ β̂n,M p1q and βn,M 1p1q ‰
βn,M 1p1q, that is, estimates and parameters in submodels are not subvectors of their analogues
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in larger models, except, for example when the columns of XpMq are orthogonal. The reason

for this is the collinearity between the covariates in model M . The comments above applies for

general models M 1 Ă M . This is why we must write M as a subscript and not in parentheses.

(See Section 3.1 of Berk et al. (2013) for a related discussion.)

Next define related matrices and vectors as follows:

Σ̂n :“ 1

n

n
ÿ

i“1

XiX
J
i P R

pˆp, and Γ̂n :“ 1

n

n
ÿ

i“1

XiYi P R
p,

Σn :“ 1

n

n
ÿ

i“1

E
“

XiX
J
i

‰

P R
pˆp, and Γn :“ 1

n

n
ÿ

i“1

E rXiYis P R
p.

(5)

Note that for these quantities there is no need to define separate versions in submodels M

because they are just the submatrices Σ̂npMq and ΣnpMq and subvectors Γ̂npMq and ΓnpMq,
respectively. The OLS estimate of the slope vector and its target in the sub-model M satisfy

the following normal equations:

Σ̂npMqβ̂n,M “ Γ̂npMq, ΣnpMqβn,M “ ΓnpMq. (6)

Remark 2.1 We do not solve the equations (6) on purpose because the confidence regions to

be constructed below will accommodate exact collinearity by including subspaces of degeneracy.

Minimizers of the objective functions R̂npθ;Mq and Rnpθ;Mq defined in (2) and (3) always

exist, even if they are not unique. Estimates β̂n,M can only be unique when |M | ď n because

Σ̂npMq has rank at most mint|M |, nu. Targets βn,M , on the other hand, can be unique without

a constraint on n because they are based on expectations rather than finite averages, so Σn and

ΣnpMq can be strictly positive definite and Rnpθ;Mq strictly convex with a unique minimizer

even when |M | ą n. ˛

2.3. Problem Formulation

Under very mild assumptions, β̂n,M ´ βn,M converges to zero as n tends to infinity for any

fixed, non-random model M (see Kuchibhotla et al. (2018)). This fact justifies calling β̂n,M an

estimator of βn,M or, equivalently, βn,M the target of estimation of β̂n,M . Also, for a fixed M ,

β̂n,M has an asymptotic normal distribution, i.e.,

n1{2
´

β̂n,M ´ βn,M

¯

LÑ N p0, AVM q p0 P R
|M |, AVM P R

|M |ˆ|M |q

for some positive definite matrix AVM that depends on M and some moments of pX,Y q; see
the linear representation in Kuchibhotla et al. (2018). The notation

LÑ denotes convergence in
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law (or distribution). Asymptotic normality lends itself for the construction of p1´αq-confidence
regions R̂n,M such that

lim inf
nÑ8

P

´

βn,M P R̂n,M

¯

ě 1 ´ α

for any fixed α P r0, 1s. We approach statistical inference using confidence regions rather than

statistical tests, but this is a technical rather than a conceptual choice because confidence regions

and tests are in a duality to each other: a confidence region with coverage at least 1´α is a set

of parameter values that could not be rejected at level α if used as point null hypotheses.

The problem of valid post model-selection inference is to construct for given non-random sets

of models Mp a set of confidence regions tR̂n,M : M PMpu such that for any random model

M̂ depending (possibly) on the same data satisfying P

´

M̂ PMp

¯

“1, we have

lim inf
nÑ8

P

´

β
n,M̂

P R̂
n,M̂

¯

ě 1 ´ α. (7)

The guarantee (7) requires the confidence asymptotically because we strive for a theory that

requires few assumptions, whereas finite sample confidence guarantees require strong assump-

tions.

The notation M̂ for random models requires an elaboration of the sources of randomness

envisioned here. With the reproducibility crisis in mind, we cast a wide net for the sources of

model randomness by adopting a broad frequentist perspective that includes not only datasets

but data analysts as well. Conventional frequentism can be conceived as capturing the random

nature of an observed dataset in the actual world by embedding it in a universe of possible

worlds with datasets characterized by a joint probability distribution of the observations. We

broaden the concept by pairing the random datasets with random data analysts who have varying

data analytic preferences and backgrounds. This variability among data analysts may be called

“random researcher degrees of freedom”, a term that alludes to the freedoms we exercise when

analyzing in general, and when selecting covariates in a regression in particular. Some of the

latter freedoms have been described and classified by Berk et al. (2013), Section 1: (1) formal

selection methods such as stepwise forward or backward selection, lasso-based selection using a

criterion to select the penalty parameter, or all-subset search using a criterion such as Cp, AIC,

BIC, RIC, etc.; (2) informal selection steps such as examination of residual plots or influence

measures to judge acceptability of models; (3) post hoc selection such as making substantive

trade-offs of predictive viability versus cost of data collection. The waters get further muddied

even in the case of formal selection methods (1) when “informal meta-selection” is exercised:

trying out multiple formal selection methods, comparing them, and favoring some over others

based on the results produced on the data at hand. This list of “researcher degrees of freedom” in

model selection should make it evident that these freedoms are indeed exercised in practice, but
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in ways that should be called “subjective”, namely, based on personal background, experience

and motivations, as well as historic and institutional contexts. For these reasons it may be

infeasible to capture the randomness contributed by data analysts’ exercise of their freedoms in

terms of stochastic models.

Following Berk et al. (2013), this infeasibility can be bypassed by adding a quantifier “for

all M̂” to the requirement (7), thereby capturing all possible ways in which selection may be

performed. The added gain is that at a technical level the requirement (7) permits a reduction

to a problem of simultaneous inference.

We must, however, impose certain limits on the freedom of model selection: The set of potential

regressors must be pre-specified before examining the data. For example, it is not permissible

to initially declare the regressors X1, . . . ,Xp to be the universe for searching submodels, only to

decide after looking at the data that one would also like to search among product interactions

XjXk. The decision to include interactions in data-driven selection would have to be made before

looking at the data. Thus data-driven expansion of the universe of regressors for selection is not

covered by our framework.

Again following Berk et al. (2013), a curious aspect of the target of estimation has to be

noted: β
n,M̂

has become a random quantity with a random dimension |M̂ |, whereas for a fixed

M the target βn,M is a constant. After data-driven modeling the selected target β
n,M̂

has become

random due to data-driven selection M̂ . This, however, is the only randomness present: among

all possible targets tβn,M : M P Mpu, one is randomly selected, namely, β
n,M̂

. The associated

estimate β̂
n,M̂

in the random model M̂ , in addition to its intrinsic variability, also incurs the

randomness due to selection. On a technical level, note that the random target β
n,M̂

for the

random selection M̂ may exist even if the estimate β̂
n,M̂

may not exist due to collinearity. This

issue requires some care in Lemmas 4.1 and 4.2 below.

The inference criterion in (7) can be decomposed by conditioning on the data-driven selections:

P

´

β
n,M̂

P R̂
M̂

¯

“
ÿ

MPMp

P

ˆ

βn,M P R̂M

ˇ

ˇ

ˇ

ˇ

M̂ “ M

˙

P

´

M̂ “ M
¯

. (8)

Plainly, if a guarantee of the form (7) is available for the marginal probability on the left hand

side, no guarantee can be deduced for the conditional probabilities given the random events

M̂ “ M on the right hand side. The decomposition (8) makes explicit the difference between

our current marginal approach and the approach taken by Lee et al. (2016), Tibshirani et al.

(2016) and Tian et al. (2016), for example.

We mention briefly that Rinaldo et al. (2016) use a notion of “honest confidence” that asks
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for valid inference uniformly over a class of data-generating distributions, that is,

lim inf
nÑ8

inf
PPPn

P

´

β
n,M̂

P R̂
n,M̂

¯

ě 1 ´ α,

for some class of probability distributions Pn of the observations. This “honesty” holds for our re-

sults, too, due to the uniform validity of the multiplier bootstrap proved by Chernozhukov et al.

(2017), but we will not discuss this further.

2.4. Alternative Approaches

There exists an “obvious” approach to valid post-selection inference based on sample splitting,

as examined by Rinaldo et al. (2016): split the data into two disjoint parts, then use one part

for selecting a model M̂ and the other part for inference in the selected model M̂ . If the two

parts of the data are stochastically independent of each other, post-selection inferences will be

valid. For independent observations Rinaldo et al. (2016) were able to provide very general and

powerful results. Sample splitting has considerable appeal due to its universal applicability under

independence of the two parts: it “works” for any type of model selection, formal or informal,

as well as for any type of model being fitted. It has some drawbacks, too, an obvious one being

the reduced sample sizes of the two parts, which increase the sampling variability of both the

model selection stage and the inference stage. Another drawback is that required independence

of the two parts, which makes it less obvious how to generalize sample splitting to dependent

data. For customers of statistical inferences, it may also be somewhat disconcerting to realize

that the splitting procedure incurs a level of artificial randomness and might have produced

different results in the hands of another data analyst who would have used another random

split. Reliance on random splits brings to our attention a greater concern that relates to the

reproducibility crisis in the sciences: sample splitting introduces another “researcher degree of

freedom”, namely, the freedom to choose a particular split after having tried several splits. In

practice it would seem extremely unrealistic to assume that data analysts will in fact commit

themselves to using just one random split and not be tempted to try several. It could even be

argued that using just one split would be irresponsible because it throws away a chance to learn

about the stability of model selection and subsequent inferences under multiple splits. Having

performed such a stability analysis, however, invalidates the post-selection inferences obtained

from the splits because another level of selection arises: that of choosing one of the splits for

final reporting. This would not be a problem if stability analysis showed that the same model is

being selected in the vast majority of splits, but experience with regression shows that this is not

the generic situation: In most regressions, there exist large numbers of submodels with nearly

identical performance, making it likely that model selection will be highly variable between
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sample splits. In summary, while high in intuitive appeal, sample splitting opens up another

pandoras box of selection possibilities that may defeat the solution it was meant to provide.

A different type of post-selection guarantees are available from the approach of Lee et al.

(2016), Tibshirani et al. (2016) and Tian et al. (2016) when model selection is of a pre-specified

form such as lasso selection or stepwise forward selection. The inference guarantees they provide

are conditional on the selected model. Their approach is ingeniously tailored to specific formal

selection methods and takes advantage of their properties. It is, however, a model-trusting ap-

proach that relies much on the correctness of the assumed model as being finite-sample correct

under a Gaussian linear model with fixed covariates. For this reason and because so much condi-

tioning is performed, it is unlikely that this approach enjoys much robustness to misspecification

(see, for example, Section A.20 of Tibshirani et al. (2018)). By comparison, we strive here for

model robustness by limiting ourselves to asymptotically correct coverage that is marginal rather

than conditional, and by allowing covariates to be treated as random rather than fixed.

A larger point to be reiterated here is that tailoring post-selection inference to a specific

formal selection method such as the lasso does not address the issue that data analysts may not

limit themselves to just one formal selection method and nothing else. It may be more realistic

to assume, as we do here, that they exercise broader liberties that include trying out multiple

formal selection methods as well as informal model selection of various kinds. Providing and

recommending valid post-selection inference that casts a wider net on selection methods may

have a better chance of making an at least partial contribution to solving the reproducibility

crisis in the sciences.

3. Equivalence of Post-selection and Simultaneous Inference

The first step towards achieving the goal of constructing a set of confidence regions tR̂n,M :

M P Mpu satisfying (7) is to convert the post-selection inference problem into a simultaneous

inference problem. This conversion is provided by Theorem 3.1, which parallels Berk et al. (2013)

but offers the generality needed here. The theorem is proved for finite samples, but a version

using “lim inf” follows readily.

Theorem 3.1. For any set of confidence regions tR̂n,M : M P Mpu and α P r0, 1s, the following

two statements are equivalent:

p1q The post-selection inference problem is solved, that is,

P

´

β
n,M̂

P R̂
n,M̂

¯

ě 1 ´ α,

for all data-dependent model selections satisfying PpM̂ P Mpq “ 1.
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p2q The simultaneous inference problem over M PMp is solved, that is,

P

¨

˝

č

MPMp

!

βn,M P R̂n,M

)

˛

‚ě 1 ´ α.

Proof. Define for any fixed M P Mp the coverage event AM “ tβn,M P R̂n,Mu, and similarly

A
M̂

“tβ
n,M̂

P R̂
n,M̂

u. Note that A
M̂

is the event in p1q and
Ş

MPMp
AM the event in (2).

p2q ñ p1q: It is sufficient to show that for any random selection procedure M̂ we have

č

MPMp

AM Ď A
M̂
.

Because M̂ takes on values in Mp only,
Ť

M 1PMp
tM̂ “ M 1u is the whole sample space. Hence

A
M̂

“
ď

M 1PMp

tM̂ “ M 1u X AM 1

Ě
ď

M 1PMp

tM̂ “ M 1u X
č

MPMp

AM

“
č

MPMp

AM .

p1q ñ p2q: To prove this implication, it is sufficient to construct a data-driven (hence random)

selection procedure M̂ that satisfies

A
M̂

“
č

MPMp

AM . (9)

This is achieved by letting M̂ be any selection procedure that satisfies

M̂ P argmin
MPMp

1tAMu,

where 1tAu denotes the indicator of event A. It follows that

1tA
M̂

u “ min
MPMp

1tAMu,

which is equivalent to (9). This completes the proof of p1q ñ p2q.

Remark 3.1 The proof makes no use of the regression context at all; it is merely about

indexed sets/events AM and random selections M̂ of the indexesM . The second part of the proof

constructs an adversarial random selection procedure M̂ that requires simultaneous coverage

over all M . ˛
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Remark 3.2 The theorem establishes the equivalence of family-wise simultaneous coverage

and post-selection coverage allowing for arbitrary random selection. The argument, because it

makes no use of the regression context, applies to any type of regression. ˛
Remark 3.3 Lemma 4.1 in Berk et al. (2013) (“Significant triviality bound”) corresponding

to Theorem 3.1 is much more intuitive because it is based on maxima over pivotal t-statistics

rather than confidence regions. The gain in intuition, however, is purchased at a price: an

injection of mathematically irrelevant detail. The bare-bones nature of the underlying structure

is revealed by the above proof which does not even involve probability but set theory only. ˛
Remark 3.4 (Inherent High-dimensionality) Returning to regression, note that in view of

Theorem 3.1, valid post-selection inference is inherently a high-dimensional problem in the sense

that the number of parameters subject to estimation and inference is large, indeed, often larger

than the sample size. For illustration, consider a common regression setting where the number

of covariates is p “ 10 and the sample of size n “ 500. Estimation and testing of the slopes in

the full model seems unproblematic because there are 50 observations per parameter. Now, for

the post-selection inference problem with all non-empty sub-models, there are 2p ´ 1 “ 1023

vector parameters of varying dimensions, adding up to a total of p2p´1 “ 5120 parameters in the

various submodels, exceeding the sample size n “ 500 by a factor of ten and thus constituting

an inference problem in the high-dimensional category. ˛
Theorem 3.1 shows that in order to achieve universally valid post-selection inference, that

is, inference that satisfies (7) for all data-driven selection procedures M̂ , it is necessary and

sufficient to construct a set of confidence regions R̂n,M such that

lim inf
nÑ8

P

¨

˝

č

MPMp

!

βn,M P R̂n,M

)

˛

‚ě 1 ´ α. (10)

All of our solutions to the post-selection inference problem in this article are constructed to

satisfy (10).

4. An Approach to Post-Selection Inference

4.1. Valid Confidence Regions

Equipped with the required notation, we proceed to construct confidence regions R̂n,M for linear

regression. From Equations (2) and (3), we see that the least squares estimator and target given
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in (4) can be written as

β̂n,M “ argmin
θPR|M|

!

θJΣ̂npMqθ ´ 2θJΓ̂npMq
)

, and

βn,M “ argmin
θPR|M|

 

θJΣnpMqθ ´ 2θJΓnpMq
(

.
(11)

The differences between the two objective functions in (11) can be controlled in terms of two

error norms below related to the Σ matrices and the Γ vectors defined in (5). Define therefore

the estimation errors of Σ̂n and Γ̂n as follows:

DΣ

n :“
∥

∥

∥
Σ̂n ´ Σn

∥

∥

∥

8
“ max

MPMpp2q

∥

∥

∥
Σ̂npMq ´ ΣnpMq

∥

∥

∥

8
,

DΓ

n :“
∥

∥

∥
Γ̂n ´ Γn

∥

∥

∥

8
“ max

MPMpp1q

∥

∥

∥
Γ̂npMq ´ ΓnpMq

∥

∥

∥

8
.

(12)

The equalities on the right are useful trivialities given here for later use: Mpp2q and Mpp1q
are the sets of all models of sizes bounded by 2 and 1, respectively, where size 1 is sufficient

for “max” to reach all elements of the Γ vectors, but size 2 is needed for “max” to reach all

off-diagonal elements of the Σ matrices as well. Importantly, neither DΣ
n nor DΓ

n is a function of

submodels M .

The quantities DΣ
n and DΓ

n are statistics whose quantiles will play an essential role in the

construction of the confidence regions to be defined next. In each submodelM P Mpppq, we will
construct for the parameter vector βn,M two confidence regions: The first satisfies finite sample

guarantees at the cost of lesser transparency, whereas the second satisfies asymptotic guarantees

with the benefit of greater simplicity. The motivations for the particular forms of these regions

will become clear in the course of the elementary proofs of the theorems to follow. With these

preliminary remarks in mind, we define

R̂n,M :“
!

θ P R
|M | :

∥

∥

∥
Σ̂npMq

!

β̂n,M ´ θ
)∥

∥

∥

8
ď CΓ

n pαq ` CΣ

n pαq ‖θ‖
1

)

, (13)

R̂:
n,M :“

!

θ P R
|M | :

∥

∥

∥
Σ̂npMq

!

β̂n,M ´ θ
)∥

∥

∥

8
ď CΓ

n pαq ` CΣ

n pαq
∥

∥

∥
β̂n,M

∥

∥

∥

1

)

, (14)

where CΓ
n pαq and CΣ

n pαq are bivariate joint quantiles of DΓ
n and DΣ

n in (12), that is,

P
`

DΓ

n ď CΓ

n pαq and DΣ

n ď CΣ

n pαq
˘

ě 1 ´ α. (15)

Remark 4.1 (Restriction of Models for Selection) The confidence regions defined in (13)

and (14) do not take advantage of restricted model universes such as “sparse model selection”

where M̂ P Mppkq searches only models of sizes up to k pă pq. It might, however, be of practical

interest to consider the post-selection inference problem when the set of models used in selection
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is indeed a strict subset of the set Mpppq of all models. This can be accommodated with an

obvious tweak whereby

DΓ

npMpq :“ sup
MPMp

∥

∥

∥
Γ̂npMq ´ ΓnpMq

∥

∥

∥

8
and DΣ

n pMpq :“ sup
MPMp

∥

∥

∥
Σ̂npMq ´ ΣnpMq

∥

∥

∥

8

become functions of the restricted model universeMp pĹ Mpppqq. Note, however, that according
to (12) we have DΓ

npMpq “ DΓ
n as long as the model universe Mp includes all models of size one,

and DΣ
n pMpq “ DΣ

n as long as Mp includes all models of size two. This is the case, for example,

when “sparse model selection” is used, meaning Mp “ Mppkq for k ă p. Thus confidence

regions of the form (13) do not gain from “sparse model selection.” This is so because the

regions depend effectively only on marginal and bivariate properties of the observations pXi, Yiq
and their distributions through Γn, Γ̂n, Σn and Σ̂n. ˛

Further observations on pDΓ
n ,D

Σ
n q and pCΓ

n pαq, CΣ
n pαqq:

• Bivariate quantiles are not unique: one may marginally increase one and decrease the

other suitably, maintaining the bivariate coverage probability 1´α. Allowed is any choice

of CΓ
n pαq and CΣ

n pαq that satisfies (15).

• These quantiles are not known and must be estimated from the data. A bootstrap proce-

dure to estimate them is described in Section 5.

• The estimation errors DΓ
n and DΣ

n , being based on averages of quantities of dimensions

pˆ1 and pˆp, respectively, converge by the law of large numbers to zero as n Ñ 8 under

mild conditions (see Lemma 4.2). Therefore, CΓ
n pαq and CΣ

n pαq converge to zero as n Ñ 8.

4.2. Validity of the Confidence Regions R̂n,M

We proceed to proving validity of the simultaneous inference guarantee (10). This will be done

in Theorem 4.1 for the confidence regions R̂n,M where M P Mpppq, and in Theorem 4.2 for the

confidence regions R̂:
n,M where M P Mppkq for some k ď p.

Theorem 4.1. The set of confidence regions tR̂n,M : M P Mpppqu defined in (13) satisfies

P

¨

˝

č

MPMpppq

!

βn,M P R̂n,M

)

˛

‚ě 1 ´ α, (16)

Furthermore, for any random model M̂ with PpM̂ P Mpppqq “ 1, we have

P

´

β
n,M̂

P R̂
n,M̂

¯

ě 1 ´ α.
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As mentioned earlier, this theorem is non-asymptotic as it provides guarantees for finite sam-

ples. It is, however, not directly actionable because, as mentioned earlier also, the bivariate

quantiles used in the construction of the confidence regions need to be estimated. Hence action-

able versions of these regions end up having only asymptotic guarantees as well.

Proof. The proof is surprisingly elementary and involves simple manipulation of the estimating

equations. We start by subtracting the normal equations of the target from those of the estimates,

see (6). This holds for all M P Mpppq:

Σ̂npMqβ̂n,M ´ ΣnpMqβn,M “ Γ̂npMq ´ ΓnpMq.

Telescope the left side by subtracting and adding Σ̂npMqβn,M :

Σ̂npMq
´

β̂n,M ´ βn,M

¯

`
´

Σ̂npMq ´ ΣnpMq
¯

βn,M “ Γ̂npMq ´ ΓnpMq,

Move the second summand on the left to the right side of the equality, take the sup norm and

apply the triangle inequality on the right side:

›

›

›Σ̂npMq
´

β̂n,M ´ βn,M

¯›

›

›

8
ď

›

›

›Γ̂npMq ´ ΓnpMq
›

›

›

8
`
›

›

›

´

Σ̂npMq ´ ΣnpMq
¯

βn,M

›

›

›

8
,

Applying the second inequality in (1) to the last term it follows that

∥

∥

∥

Σ̂npMq
!

β̂n,M ´ βn,M

)∥

∥

∥

8
ď

∥

∥

∥

Γ̂npMq ´ ΓnpMq
∥

∥

∥

8
`

∥

∥

∥

Σ̂npMq ´ ΣnpMq
∥

∥

∥

8
‖βn,M‖

1
.

Because Γ̂npMq ´ΓnpMq and Σ̂npMq ´ΣnpMq are a subvector and a submatrix of Γ̂n ´Γn and

Σ̂n ´ Σn, respectively, this inequality implies

∥

∥

∥
Σ̂npMq

!

βn,M ´ β̂n,M

)∥

∥

∥

8
ď

∥

∥

∥
Γ̂n ´ Γn

∥

∥

∥

8
`

∥

∥

∥
Σ̂n ´ Σn

∥

∥

∥

8
‖βn,M‖

1
. (17)

This inequality is deterministic and holds for any sample. It also holds for allM P Mpppq. These
facts allow us to take the intersection of the events (17) over all submodels M and transform it

into a “probability one” statement. Using DΓ
n and DΣ

n defined in (12), we have

P

¨

˝

č

MPMpppq

!∥

∥

∥

ΣnpMq
!

βn,M ´ β̂n,M

)∥

∥

∥

8
ď DΓ

n ` DΣ

n ‖βn,M‖
1

)

˛

‚ “ 1. (18)

From the definitions of CΓ
n pαq and CΣ

n pαq in (15) follows the required result (16). The second

result of post-selection guarantees for random models follows by an application of Theorem 3.1.
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Remark 4.2 (Reach of the Validity Guarantee) It is interesting to note that the guarantee

(16) in Theorem 4.1 is valid for every sample size n and any number of covariates p. In particular,

p " n and p “ 8 are covered without difficulty even though Σ̂npMq is necessarily singular for

|M | ą n. For this to make sense recall that for singular Σ̂npMq the confidence region R̂n,M

simply contains a non-trivial affine subspace of Rp. ˛
Remark 4.3 (Estimation of Bivariate Quantiles) The finite sample guarantee (16) requires

the bivariate quantiles CΓ
n pαq and CΣ

n pαq of DΓ
n and DΣ

n , respectively, to satisfy (15) for all

p, n ě 1. In general, these bivariate quantiles can only be estimated consistently in the asymptotic

sense as explained in Section 5. ˛
Remark 4.4 (Independence of Observations) For simplicity in the discussion above, we used

the assumption of independence of random vectors pXi, Yiq, 1 ď i ď n. Theorem 4.1 holds

without this assumption because no use of this assumption was made in its proof. However,

validity of the post-selection guarantee holds as long as CΓ
n pαq and CΣ

n pαq are valid quantiles in

the sense of (15). ˛

4.3. Asymptotic Validity of the Confidence Regions R̂
:
n,M

The confidence region R̂n,M is difficult to analyze in terms of its shape and its Lebesgue mea-

sure. (However, with a different parametrization of R̂n,M , Belloni et al. (2017) prove that this

confidence region is a convex polyhedron; see Equation (42) of the supplement of Belloni et al.

(2017).) Because of these difficulties we also prove asymptotic validity of more intuitive con-

fidence regions of the form R̂:
n,M defined in (14). Because these regions depend on estimates

β̂n,M whose variability explodes under increasing collinearity, we need to control the minimum

eigenvalue of the matrix ΣnpMq for models up to size k to preclude too much collinearity in the

limit:

Λnpkq :“ min
MPMppkq

λminpΣnpMqq.

We then make use of the following assumption:

(A1)(k) The estimation error DΣ
n satisfies

kDΣ

n “ op pΛnpkqq as n Ñ 8.

This assumption is used for uniform consistency of the least squares estimator in ‖¨‖
1
-norm as

in Lemma 4.1. The rate of convergence of DΣ
n to zero implies a rate constraint on k. Here, as

before, k “ kn is allowed to be a sequence depending on n. As can be expected, the dependence

structure between the random vectors pXi, Yiq, 1 ď i ď n and their moments determine the rate
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at which DΣ
n converges to zero. See Lemma 4.2 for more details. The theorem is stated with

this high level assumption so that it is more widely applicable in particular to various structural

dependencies on observations. Note that assumption (A1)(k) allows for the minimum eigenvalue

of Σn to converge to zero or even be zero as n Ñ 8 if p “ pn changes with n.

Before proceeding to the proof that R̂:
n,M are asymptotically valid post-selection confidence

regions, we prove uniform-in-model consistency of β̂n,M to βn,M . See Appendix A for a detailed

proof. Also, see Kuchibhotla et al. (2018) for more results of this flavor.

Lemma 4.1. For all k ě 1 satisfying kDΣ
n ď Λnpkq and for all M P Mppkq,

∥

∥

∥

β̂n,M ´ βn,M

∥

∥

∥

1

ď |M |
`

DΓ
n ` DΣ

n ‖βn,M‖
1

˘

Λnpkq ´ kDΣ
n

. (19)

The following theorem proves the validity of the simultaneous inference guarantee for R̂:
n,M .

Theorem 4.2. For every 1 ď k ď p that satisfies (A1)(k), the confidence regions R̂:
n,M defined

in (14) satisfy

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

βn,M P R̂:
n,M

)

˛

‚ě 1 ´ α.

Proof. The starting point of this proof is Equation (18). Under assumption (A1)(k), Lemma 4.1

(inequality (19)) implies that for all M P Mppkq,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DΓ
n ` DΣ

n

∥

∥

∥
β̂n,M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖βn,M‖
1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
DΣ
n

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖βn,M‖
1

ď DΣ
n

DΓ
n ` DΣ

n ‖βn,M‖
1

¨ |M |
 

DΓ
n ` DΣ

n ‖βn,M‖
1

(

Λnpkq ´ |M |DΣ
n

ď kDΣ
n

Λnpkq ´ kDΣ
n

.

Therefore, for 1 ď k ď p satisfying assumption (A1)(k),

sup
MPMppkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DΓ
n ` DΣ

n

∥

∥

∥

β̂n,M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖βn,M‖
1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď kDΣ
n {Λnpkq

1 ´ pkDΣ
n {Λnpkqq “ opp1q.

Hence,

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!∥

∥

∥
ΣnpMq

!

βn,M ´ β̂n,M

)∥

∥

∥

8
ď DΓ

n ` DΣ

n

∥

∥

∥
β̂M

∥

∥

∥

1

)

˛

‚“ 1.

The definition of pCΓ
n pαq, CΣ

n pαqq in (15) proves the required result.
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4.4. Further Remarks on the Confidence Regions R̂n,M and R̂
:
n,M

Remark 4.5 (Centering and Scaling) The confidence regions R̂n,M and R̂:
n,M are not equivariant

with respect to linear transformation of covariates or the response. Equivariance is an important

feature for practical interpretation. A simple way to obtain equivariance with respect to diagonal

linear transformations of the random vectors would be to use linear regression with covariates

centered and scaled to have sample mean zero and sample variance 1. Since the validity of

confidence regions does not require independence, as mentioned in Remark 4.4, this centering

and scaling based on the data will not affect the post-selection guarantee as long as marginal

means and variances are estimated consistently. This might also have an effect on the volume of

the confidence regions not in terms of rate but in terms of constants since the intercept is not

longer needed in ‖βn,M‖
1
. See Section 8 for more details. ˛

Remark 4.6 (Shape of R̂:
n,M) The confidence region R̂:

n,M is a polyhedron, because it can be

described by 2|M | linear inequalities (with random coefficients). More specifically, it is a paral-

lelepiped because the inequalities come in pairs of parallel constraints. The Lebesgue measure of

this confidence region is much easier to study than that of the region R̂n,M (see Proposition 4.1

below). ˛
Remark 4.7 (Comparison of R̂n,M and R̂:

n,M in Testing) As mentioned before, the shape

of the confidence region R̂n,M is not easily described. There are, however, scenarios where the

advantages of R̂n,M over R̂:
n,M can be clearly understood. Consider the problem of significance

testing, that is, H0,M : βn,M “ 0. The level α test based on the confidence region R̂n,M rejects

H0,M if
∥

∥

∥
Σ̂npMqβ̂n,M

∥

∥

∥

8
ě CΓ

n pαq.

By comparison, the level α test based on the confidence region R̂:
n,M rejects H0,M if

∥

∥

∥

Σ̂npMqβ̂n,M
∥

∥

∥

8
ě CΓ

n pαq ` CΣ

n

∥

∥

∥

β̂n,M

∥

∥

∥

1

.

Thus R̂n,M results in more rejections and hence greater power than R̂:
n,M at the same level α.

A similar argument holds even if the null hypothesis is changed to H0 : βn,M “ θ0 P R
|M | for

some sparse θ0. ˛

4.5. Rate Bounds on D
Γ

n, D
Σ

n and Lebesgue Measure of the Regions

Before proceeding further with the study of the confidence regions, it might be useful to un-

derstand the rates at with DΓ
n and DΣ

n converge to zero under some assumptions on the initial
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random vectors pXi, Yiq, 1 ď i ď n. As mentioned in Remark 4.4, the validity of post-selection

coverage guarantee does not require independence of random vectors and so, a rate result under

“functional dependence” is presented in Appendix F. Set Zi “ pXJ
i , YiqJ for 1 ď i ď n and

define

Ω̂n :“ 1

n

n
ÿ

i“1

ZiZ
J
i , and Ωn :“ 1

n

n
ÿ

i“1

E
“

ZiZ
J
i

‰

P R
pp`1qˆpp`1q.

Observe that

maxtDΓ

n ,D
Σ

n u ď
∥

∥

∥

Ω̂n ´ Ωn

∥

∥

∥

8
.

The following lemma from Kuchibhotla et al. (2018) proves a finite sample bound for the ex-

pected value of the maximum absolute value of Ω̂n ´ Ωn. For this result, set for γ ą 0 and any

random variable W ,

‖W‖ψγ
:“ inf

"

C ą 0 : E

„

ψγ

ˆ |W |
C

˙

ď 1

*

,

where ψγpxq “ exppxγq ´ 1 for x ě 0. For 0 ă γ ă 1, ‖¨‖ψγ
is not a norm but is a quasi-norm. A

random variable W satisfying ‖W‖ψγ
ă 8 is called a sub-Weibull random variable of order γ.

The special cases γ “ 1 and γ “ 2 correspond to the well-known classes of sub-exponential and

sub-Gaussian random variables.

Lemma 4.2. Fix n, p ě 2. Suppose the random vectors Zi, 1 ď i ď n are independent and

satisfy for some 0 ă γ ď 2

max
1ďiďn

max
1ďjďp`1

‖Zipjq‖ψγ
ď Kn,p, (20)

for some positive constant Kn,p. Then

E

”?
n
∥

∥

∥
Ω̂n ´ Ωn

∥

∥

∥

8

ı

ď Cγ

!

An,p
a

log p`K2

n,pplog p log nq2{γn´1{2
)

,

and for all α P p0, 1s,

maxtCΓ

n pαq, CΣ

n pαqu ď 7An,p

d

log
`

3

α

˘

` 2 log p

n
`
CγK

2
n,pplogp2nqq2{γplog

`

3

α

˘

` 2 log pq2{γ

n
,

where Cγ is a positive universal constant that grows at the rate of p1{γq1{γ as γ Ó 0 and

A2

n,p :“ max
1ďjďkďp`1

1

n

n
ÿ

i“1

Var pZipjqZipkqq .

Proof. See Theorem 4.1 of Kuchibhotla and Chakrabortty (2018). A similar result holds for

γ ą 2 (the case in which the random variables have tails lighter than the Gaussian). See Theorem

3.4 of Kuchibhotla and Chakrabortty (2018) for a result in this direction.
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The confidence regions R̂:
n,M are simple parallelepipeds and can be seen as linear transfor-

mations of ‖¨‖8-norm balls. Hence, their Lebesgue measures can be computed exactly. Since

the confidence regions are valid over a large number of models, we present a relative Lebesgue

measure result uniform over a set of models. For A Ď R
q with q ě 1, let LebpAq denote the

Lebesgue measure of A with the measure supported on R
q. For convenience, we do not use

different notations for the Lebesgue measure for different q ě 1.

Proposition 4.1. For any k ě 1 such that assumption (A1)(k) are satisfied, the uniform relative

Lebesgue measure result holds:

sup
MPMppkq

Leb
´

R̂:
n,M

¯

Λ
|M |
n pkq

pCΓ
n pαq `CΣ

n pαq ‖βn,M‖
1
q|M |

“ Opp1q.

Hence, it can be said that LebpR̂:
n,M q “ OppDΓ

n ` DΣ
n ‖βn,M‖

1
q|M | uniformly for M P Mppkq if

Λ´1
n pkq “ Op1q. Moreover, additionally under the setting of Lemma 4.2,

Leb
´

R̂:
n,M

¯

“ Op

˜
c

|M | log p
n

¸|M |

uniformly for M P Mppkq, (21)

if p and n satisfy

plog pq2{αplog nq2{α´1{2 “ opn1{2q. (22)

Proof. See Appendix B for a detailed proof.

Remark 4.8 (Is the rate optimal?) Even though the problem of post-selection inference

is studied from various perspectives as discussed in Section 2.3, we do not know of a result

regarding the optimal size of confidence regions in the post-selection problem. The following

argument hints that the rate derived in (21) is indeed optimal. Since by Theorem 3.1 shows

simultaneous inference has to be solved for post-selection guarantees, we need to infer about the

set of “parameters” or functionals

tβn,M pjq : M P Mppkqu.

The total number of functionals here is given by

k
ÿ

ℓ“1

ˆ

p

ℓ

˙

ℓ ď k

k
ÿ

ℓ“1

ˆ

p

ℓ

˙

ď k

k
ÿ

ℓ“1

pℓ

ℓ!
ď k

k
ÿ

ℓ“1

kℓ

ℓ!

´p

k

¯ℓ

ď k
´ep

k

¯k

ď
ˆ

2ep

k

˙k

.

Even assuming
?
npβ̂n,M pjq ´ βn,M pjqq is exactly normal for all M P Mppkq and j P M , we get

that

max
MPMppkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

σn,Mpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ Op

´

a

k logpep{kq
¯

. (23)
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See, for example, Equation (4.3.1) of de la Peña and Giné (1999) and the discussion follow-

ing. Here σn,Mpjq represents the variance of
?
npβ̂n,M pjq ´ βn,M pjqq. Note that the normality

assumption implies that
∥

∥

∥

?
n
´

β̂n,M pjq ´ βn,M pjq
¯∥

∥

∥

ψ2

ă 8,

which is enough to apply Equation (4.3.1) of de la Peña and Giné (1999).

It is possible to get a bound sharper than (23) with model size dependent scaling. For instance,

applying Proposition 4.3.1 of de la Peña and Giné (1999), we get

max
1ďℓďk

1
a

logp1 ` ℓq
max

MPMppℓqXMc
ppℓ´1q

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

{σn,Mpjq
ˇ

ˇ

ˇ

a

ℓ logpep{ℓq
“ Opp1q. (24)

See Appendix C for a precise statement and proof. This hints that for any model M , the

confidence region for βn,M in the context of simultaneous inference has Lebesgue measure of

order p
a

|M | log p{nq|M |. Note that the arguments above are all upper bounds and so they do

not prove a lower bound for the Lebesgue measure. This suggests that the Lebesgue measure of

our confidence region R̂:
n,M in (14) is of optimal rate, in general. ˛

4.6. Confidence Regions under Fixed Covariates

Since most of the post-selection inference literature as reviewed in Section 2.1 deals with the

case of fixed covariates, it is of particular interest to understand how our confidence regions

behave in this case. In our framework we can interpret fixed covariates as having point mass

distributions at the observed value Xi, hence:

Σn “ 1

n

n
ÿ

i“1

E
“

XiX
J
i

‰

“ 1

n

n
ÿ

i“1

XiX
J
i “ Σ̂n.

Therefore, DΣ
n “

∥

∥

∥

Σ̂n ´ Σn

∥

∥

∥

8
“ 0 and so, C2pαq “ 0. Also, note that in this case

βn,M “
˜

1

n

n
ÿ

i“1

XipMqXJ
i pMq

¸´1
˜

1

n

n
ÿ

i“1

XipMqE rYis
¸

.

Hence, in case of fixed covariates,

R̂n,M “ R̂:
n,M “

!∥

∥

∥

Σ̂npMq
!

β̂n,M ´ βn,M

)∥

∥

∥

8
ď CΓ

n pαq
)

.

Note that under fixed covariates assumption (A1)(k) is trivially satisfied since DΣ
n “ 0. Thus by

Theorem 4.1 (or 4.2), finite sample valid post-selection inference holds for all model sizes in case
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of fixed covariates under no model or distributional assumptions as were required in Berk et al.

(2013).

A nice feature of the methodology proposed in Berk et al. (2013) is that the inference is tight

in the sense there exists a model selection procedure such that the post-selection confidence

interval has coverage exactly 1´α. Even though the confidence region R̂n,M is derived under a

more general framework, this tightness holds in this generality. This can be easily seen by noting

that

sup
MPMpppq

∥

∥

∥
ΣnpMq

!

β̂n,M ´ βn,M

)∥

∥

∥

8
“ sup

MPMpppq

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

XipMqpYi ´ E rYisq
ˇ

ˇ

ˇ

ˇ

ˇ

“ sup
1ďjďp

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

XipjqpYi ´ E rYisq
ˇ

ˇ

ˇ

ˇ

ˇ

“ DΓ

n .

Take M̂ “ tĵu, where

ĵ P argmax
1ďjďp

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

XipjqpYi ´ E rYisq
ˇ

ˇ

ˇ

ˇ

ˇ

.

For this random model M̂ , the coverage of R̂
n,M̂

is exactly equal to p1 ´ αq.

4.6.1. Lebesgue Measure and Comparison with Berk et al. (2013)

The rate bound (21) of Lemma 4.1 is written explicitly for general random covariates. As shown

in Remark 4.6, under the assumption of fixed covariates, CΣ
n pαq “ 0 and R̂n,M “ R̂:

n,M . So,

from the proof of Lemma 4.1, we get,

Leb
´

R̂n,M

¯

ď |ΣnpMq|´1
`

CΓ

n pαq
˘|M |

, for all M P Mpppq.

Under the setting of Lemma 4.2, it follows that

Leb
´

R̂n,M

¯

“ Op
`

|ΣnpMq|´1
˘

˜

c

log p

n

¸|M |

. (25)

Clearly, this is much smaller than the size shown in (21) for general random covariates. One

possible explanation for this discrepancy between fixed and random covariates is as follows: The

confidence regions R̂n,M (13) and R̂:
n,M (14) are written in terms of

Σ̂npMq
´

β̂n,M ´ βn,M

¯

.

But in case of fixed covariates

Σ̂npMqβn,M “ ΓnpMq. (26)
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So, even though the confidence regions are written for βn,M , they can be thought of as confidence

regions for the population “parameter” or functional ΓnpMq. Also note that over all models

M P Mpppq, the set of all functionals ΓnpMq can be inferred just based on Γn P R
p. Since this is

a p-dimensional functional, a confidence region with length
a

log p{n on each coordinate can be

constructed. This explains why the smaller size in (25) is possible. In case of random covariates,

(26) is not true and the randomness due to the covariates brings in some error.

It is striking and somewhat surprising that the smaller size (25) is possible. In our construction

it is not just possible, the confidence region can be computed in polynomial time using bootstrap

discussed in Section 5. The other post-selection methods that can be used in this fixed covariate

setting are those of Berk et al. (2013) and Bachoc et al. (2016). The confidence regions in both

these works are based on the quantiles of the statistic

max
MPMppkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

σn,Mpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (27)

for some “variance” σn,M pjq (The choices of this quantity differ between the works. For simplicity,

we assume this quantity is known.) Based on the “max-|t|” statistic (27), a confidence region

for βn,M is

R̂max´t

n,M :“

$

&

%

θ P R
|M | : max

1ďjď|M |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ θpjq
¯

σn,Mpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cn,kpαq

,

.

-

,

where Cn,kpαq is the quantile of the max-|t| statistic. Under fixed covariates and Gaussian

response,
?
n
´

β̂n,M ´ βn,M

¯

is normally distributed. As shown in (23), the max-|t| statistic (27)
can be of the order

a

k logpep{kq. This implies that Cn,kpαq can be of the order
a

k logpep{kq
and so, the Lebesgue measure of the confidence region R̂max´t

n,M satisfies

Leb
´

R̂max´t

n,M

¯

“ Op p1q
˜

c

k log p

n

¸|M |

uniformly over all M P Mppkq. (28)

This shows that the confidence region R̂max´t

n,M is worse than R̂:
n,M in at least two aspects.

Firstly, the size of the confidence region has an additional factor
?
k that makes the region huge

in comparison. Secondly, the Lebesgue measure does not scale with model size |M |. For example,

after searching over the set of models Mppkq, if the analyst settles on a (random) model of size

1, then the post-selection confidence region R̂max´t

n,M has a size that still scales with k. In sharp

contrast, our confidence region R̂:
n,M , even in the random design case, has size scaling only with

the model M (and does not depend on the largest model considered in selection process).
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4.6.2. Fixed Covariates with the Restricted Isometry Property (RIP)

The rate bound (28) is derived using the fact that Cn,kpαq can in general be of the order
a

k logpep{kq. Under orthogonal designs (Σ̂n “ Ip, the identity matrix in R
pˆp), Berk et al.

(2013) proved that Cn,kpαq “ Op
?
log pq, and so the size of the region R̂max´t

n,M matches that of

our confidence region. Since the construction of Berk et al. (2013) is based on normality, the exact

size of the confidence region R̂max´t

n,M could be better than the region R̂:
n,M . It is also interesting

to note under orthogonal design R̂:
n,M provides a rectangle with sides parallel to the coordinate

axis and so is of the same shape as that of R̂max´t

n,M . Recently, Bachoc et al. (2018) showed that

the orthogonal design restriction can be relaxed to RIP. A symmetric matrix A P R
pˆp is said

to satisfy RIP of order k with RIP constant δ if for all M P Mppkq and for all θ P R
|M |,

p1 ´ δq ‖θ‖2 ď θJApMqθ ď p1 ` δq ‖θ‖2 .

This is equivalent to

max
|M |ďk

∥

∥ApMq ´ I|M |

∥

∥

op
ď δ, (29)

where ‖¨‖op denotes the operator norm. So, Σ̂n satisfying RIP implies that all k subset covariates

are nearly orthogonal. Theorem 3.3 of Bachoc et al. (2018) proves that for fixed covariates and

Gaussian response,

Cn,kpαq “ O

˜

c

log p

n
` δcpδq

c

k logpep{kq
n

¸

,

under the assumption that Σ̂n is RIP of order k. Here cpδq is an increasing non-negative function,

satisfying cpδq Ñ 1 as δ Ñ 0. So, under the RIP condition with δ
?
k Ñ 0, the Lebesgue measure

of the confidence region R̂max´t

n,M matches again with that of our confidence region R̂:
n,M . It is

also interesting to note that under RIP condition for Σ̂n with δ Ñ 0, the confidence region R̂:
n,M

provides a parallelepiped with sides near parallel to the coordinate axis. More strikingly, the

following result holds for fixed covariates:

Proposition 4.2. Define the confidence region

R̂RIP

n,M :“
!

θ P R
|M | :

∥

∥

∥

β̂n,M ´ θ
∥

∥

∥

8
ď CΓ

n pαq
)

.

If, for any 1 ď k ď p, the matrix Σ̂n satisfies the RIP condition of order k with RIP constant δ

and δ
?
k “ op1q as n Ñ 8, then

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

βn,M P R̂RIP

n,M

)

˛

‚ě 1 ´ α.
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Proof. From the proof of Theorem 4.1, we know that for all M P Mppkq,
∥

∥

∥
Σ̂npMq

´

β̂n,M ´ βn,M

¯∥

∥

∥

8
ď DΓ

n .

Observe that

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

8
ď

∥

∥

∥
Σ̂npMq

´

β̂n,M ´ βn,M

¯∥

∥

∥

8
`

∥

∥

∥

´

Σ̂npMq ´ I|M |

¯´

β̂n,M ´ βn,M

¯∥

∥

∥

8

ď
∥

∥

∥
Σ̂npMq

´

β̂n,M ´ βn,M

¯∥

∥

∥

8
`

∥

∥

∥

´

Σ̂npMq ´ I|M |

¯´

β̂n,M ´ βn,M

¯∥

∥

∥

2

ď
∥

∥

∥
Σ̂npMq

´

β̂n,M ´ βn,M

¯∥

∥

∥

8
` δ

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

2

ď DΓ

n ` δ
∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

2

. (30)

From Remark 4.3 of Kuchibhotla et al. (2018), we get that

sup
MPMppkq

∥

∥

∥

β̂n,M ´ βn,M

∥

∥

∥

2

ď
?
kDΓ

n

Λnpkq . (31)

(Note that in the notation of Kuchibhotla et al. (2018), DΓ
n is different and can be bounded as

shown in Proposition 3.1 there the bound above holds.) Therefore, combining (30) and (31), we

get that for all M P Mppkq,

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

8
ď DΓ

n

˜

1 ` δ
?
k

Λnpkq

¸

.

From the RIP property (29), Λnpkq ě 1 ´ δ and so, for all M P Mppkq,

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

8
ď DΓ

n

˜

1 ` δ
?
k

p1 ´ δq

¸

.

Therefore, under δ
?
k Ñ 0 and using the definition of CΓ

n pαq,

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

βn,M P R̂RIP

n,M

)

˛

‚ě 1 ´ α.

This completes the proof.

Remark 4.9 (RIP is Restrictive) The Restricted Isometry Property is a well-known condition

in high-dimensional linear regression literature and is also known to be a very restrictive condi-

tion. It implies a requirement of near orthogonal covariate subsets, which is often not justified

in practice. ˛
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Remark 4.10 (Generalization of the Result of Bachoc et al. (2018)) Theorem 3.3 of Bachoc et al.

(2018) proves a bound on the expectation of supt}β̂n,M ´ βn,M}8 : M P Mppkqu for fixed co-

variates and Gaussian response. Inequality (31) above proves a deterministic inequality on this

supremum quantity. This deterministic inequality along with Lemma 4.2 proves the rate bound

in a more general setting. ˛

5. Computation by Multiplier Bootstrap

All the confidence regions defined in the previous section (and the ones to be defined in the

forthcoming sections) depend only on the available data except for the (joint) quantiles CΓ
n pαq

and CΣ
n pαq. Computation or estimation of joint bivariate quantiles CΓ

n pαq and CΣ
n pαq is the

most important component of an application of approach 1 for valid post-selection inference.

In this section, we apply the high-dimensional central limit theorem and multiplier bootstrap

for estimating these quantiles. We note that either a classical bootstrap or the recently popu-

larized method of multiplier bootstrap works for estimating these joint quantiles in the setting

described in Lemma 4.2. See Chernozhukov et al. (2017) and Zhang and Cheng (2014) for a

detailed discussion. For simplicity, we will only describe the method of multiplier bootstrap for

the case of independent random vectors. The discussion here applies the central limit theorem

and multiplier bootstrap result proved in Appendix E. And we refer to Zhang and Cheng (2014)

for the case of dependent settings described in Appendix F.

Define vectors Wi P R
q for 1 ď i ď n containing

ptXipjqYiu , 1 ď j ď p; tXiplqXipmqu , 1 ď l ď m ď pq , (32)

with

q “ 2p` ppp´ 1q
2

“ Opp2q.

As shown in Equation (44) in Appendix E, for any t1, t2 P R
` Y t0u, the set

tDΓ

n ď t1,D
Σ

n ď t2u,

can be written as a rectangle in terms of

SWn :“ 1?
n

n
ÿ

i“1

tWi ´ E rWisu .

In the unified framework of linear regression, pXi, Yiq are possibly non-identically distributed and

so, E rWis are not all equal. Let e1, e2, . . . , en be independent standard normal random variables

and define

SeWn :“ 1?
n

n
ÿ

i“1

eipWi ´ W̄nq, where W̄n :“ 1

n

n
ÿ

i“1

Wi.



Kuchibhotla et al./PoSI for Linear Regression 29

Write SeWn pIq for the first p coordinates of SeWn and SeWn pIIq for the remaining coordinates

of SeWn . The following algorithm gives the pseudo-program for implementing the multiplier

bootstrap.

1. Generate Bn random vectors from Nnp0, Inq, with In denoting the identity matrix of

dimension n. Let these be denoted by tei,j : 1 ď i ď n, 1 ď j ď Bnu.
2. Compute the j-th replicate of SeWn as

S‹
n,j :“

∥

∥

∥

∥

∥

1

n

n
ÿ

i“1

ei,jpWi ´ W̄nq
∥

∥

∥

∥

∥

8

, for 1 ď j ď Bn.

3. Find any two numbers pĈΓ
1npαq, ĈΣ

2npαqq such that

1

Bn

Bn
ÿ

i“1

1

!

∥

∥S‹
n,jpIq

∥

∥

8
ď ĈΓ

1npαq,
∥

∥S‹
n,jpIIq

∥

∥

8
ď ĈΣ

2npαq
)

ě 1 ´ α.

Here 1tAu is the indicator function of a set A.

The following theorem proves the validity of multiplier bootstrap under assumption (20) of

Lemma 4.2. Recall the definition of Wi from (32). Note that we only prove asymptotic conser-

vativeness instead of consistency which does not hold. See Remark E.1 in Appendix E. This

inconsistency can be easily understood by noting that E rWis is replaced by the average W̄n

which is not a consistent estimator. Define

Ln,p :“ max
1ďjďq

1

n

n
ÿ

i“1

E

”

|Wipjq ´ E rWipjqs|3
ı

.

Theorem 5.1. Suppose pXJ
i , YiqJ, 1 ď i ď n are independent random variables satisfying

min
1ďjďq

1

n

n
ÿ

i“1

Var pWiq ě B ą 0,

and

max
1ďiďn

max

"

max
1ďjďp

‖Xipjq‖ψγ
, ‖Yi‖ψγ

*

ď Kn,p. (33)

If n, p ě 1 are such that

max
!

L´1

n,pKn,p plog pq1`6{γ , L2

n,p log
7 p, K6

n,p log q, K
2

n,qplog p log nq4{γ
)

“ opnq,

then the multiplier bootstrap described above provides a conservative inference in the sense that

lim
nÑ8

inf
t1,t2ě0

´

P
`

DΓ

n ď t1,D
Σ

n ď t2
˘

´ P

´

∥

∥SeWn,j pIq
∥

∥

8
ď t1,

∥

∥SeWn,j pIIq
∥

∥

8
ď t2

ˇ

ˇZn

¯¯

ě 0,

where Zn :“ tpXJ
i , YiqJ : 1 ď i ď nu.



Kuchibhotla et al./PoSI for Linear Regression 30

Proof. Theorems E.1 and E.2 (stated in Appendix E) apply in the setting above since under

assumption (33),

max
1ďiďn

max
1ďjďq

‖Wipjq‖ψγ{2
ď max

1ďiďn
max

"

max
1ďjďp

‖Xipjq‖ψγ
, ‖Yi‖ψγ

*2

ď K2

n,p.

And the rate restriction on n and p ensure that the bounds in Theorem E.1 and E.2 both

converge to zero. See Remark E.1 for the conservative property.

By Theorem 5.1, the estimates pĈΓ
1npαq, ĈΣ

2npαqq are consistent for some quantities that can

replace the quantiles pCΓ
n pαq, CΣ

n pαqq of pDΓ
n ,D

Σ
n q in (15).

Remark 5.1 (Consistency under Identical Distributions) Under the general framework of

just independent random vectors without any assumption on the heterogenity of the distribu-

tions, it is impossible to prove consistency as shown in Kuchibhotla et al. (2018). The result

of Kuchibhotla et al. (2018) is proved under a much simpler setting but applies here too. If in

addition identical distribution of the random vectors is assumed, then it is easy to show from

the results of Appendix E that the multiplier bootstrap described above is in fact consistent

under the same assumptions of Theorem 5.1. ˛

6. A Generalization for Linear Regression-type Problems

A simple generalization of Theorems 4.1 and 4.2 as stated in Theorem 6.1 allows valid post-

selection inference in linear regression-type problems. The importance of this generalization can

be seen from Remark 6.1 and the discussion in Section 8. To describe this generalization, consider

the following setting. Let Σ̂‹
n,Σ

‹
n be two p-dimensional matrices and Γ̂‹

n, Γ̂
‹ be two p-dimensional

vectors. Consider the error norms

DΓ‹
n :“

∥

∥

∥
Γ̂‹
n ´ Γ‹

n

∥

∥

∥

8
and DΣ‹

n :“
∥

∥

∥
Σ̂‹
n ´ Σ‹

n

∥

∥

∥

8
.

Define for every M P Mpppq, the estimator and the corresponding target as

ξ̂n,M :“ argmin
θPR|M|

!

θJΣ̂‹
npMqθ ´ 2θJΓ̂‹

npMq
)

,

ξn,M :“ argmin
θPR|M|

 

θJΣ‹
npMqθ ´ 2θJΓ‹

npMq
(

.

Consider the confidence regions R̂‹
n,M and R̂‹:

n,M , analogues to those before, as

R̂‹
n,M :“

!

θ P R
|M | :

∥

∥

∥
Σ̂‹
npMq

´

ξ̂n,M ´ θ
¯∥

∥

∥

8
ď CΓ‹

n pαq ` CΣ‹
n pαq ‖θ‖

1

)

,

R̂‹:
n,M :“

!

θ P R
|M | :

∥

∥

∥
Σ̂‹
npMq

´

ξ̂n,M ´ θ
¯∥

∥

∥

8
ď CΓ‹

n pαq ` CΣ‹
n pαq

∥

∥

∥
ξ̂n,M

∥

∥

∥

1

)

.
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where CΓ‹
n pαq and CΣ‹

n pαq are constants (or joint quantiles) that satisfy,

P
`

DΓ‹
n ď CΓ‹

n pαq and DΣ‹
n ď CΣ‹

n pαq
˘

ě 1 ´ α.

Finally, let Λ‹
npkq “ mintλminpΣ‹

npMqq : M P Mppkqu.

Theorem 6.1. The set of confidence regions tR̂‹
n,M : M P Mpppqu satisfies

P

¨

˝

č

MPMpppq

!

ξn,M P R̂‹
n,M

)

˛

‚ě 1 ´ α,

and if for any 1 ď k ď p that satisfies kD‹
2n “ oppΛ‹

npkqq “ opp1q,

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

ξn,M P R̂‹:
n,M

)

˛

‚ě 1 ´ α.

Proof. The proof is exactly the same as for Theorems 4.1 and 4.2. The reader just has to realize

that we did not use any structure of Σ̂n, Γ̂n or that they are unbiased estimators of Σn,Γn

respectively, in the proof there.

Remark 6.1 The result in Theorem 6.1 allows one to deal with the case of missing data

or outliers in linear regression setting. In case of missing data or when the data is suspected

of containing outliers, it might be more useful to use estimators of Σn and Γn that take this

concern into account. For the case of missing data/errors-in-covariates/multiplicative noise, see

Loh and Wainwright (2012, Examples 1, 2 and 3) and references therein for estimators other

than Σ̂n and Γ̂n. For the case of outliers either in the classical sense or in the adversarial

corruption setting, see Chen et al. (2013). For correct usage of this theorem, it is crucial that

the sub-matrix and sub-vector of Σ‹
n and Γ‹

n, respectively are used for sub-models. For example,

if we use full covariate imputation in case of missing data, then the sub-model estimator should

be based on a sub-matrix of this full covariate imputation. Also, see Kuchibhotla et al. (2018,

pages 11–12) for other settings of applicability. ˛

7. Connection to High-dimensional Regression and Other Confidence Regions

The confidence regions R̂n,M and R̂:
n,M have a very close connection to a well-known estimator

in the high-dimensional linear regression literature called the Dantzig Selector proposed by

Candes and Tao (2007) and the closely related ones by Rosenbaum and Tsybakov (2010) and

Chen et al. (2013). These papers or methods are not related to post-selection inference and

were proposed under a linear model assumption. The Dantzig selector estimates β0 P R
p, using
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observations pXJ
i , Yiq, 1 ď i ď n that satisfy Yi “ XJ

i β0 ` εi for independent and identically

distributed errors εi with a mean zero normal distribution. Candes and Tao (2007), like many

others, assumed fixed covariates Xi, 1 ď i ď n. In our notation, the Dantzig selector is defined

by the optimization problem

minimize ‖β‖
1

subject to ‖Γn ´ Σnβ‖8 ď λn,

for some tuning parameter λn that converges to zero as n increases. To relate this to our confi-

dence regions R̂:
n,M (in (13)), note that for β “ β0 in the constraint set, the quantity inside the

norm is Σnpβ̂ ´β0q where β̂ is any least squares estimator. The estimator defined in Chen et al.

(2013) and Rosenbaum and Tsybakov (2010) resembles

minimize ‖β‖
1

subject to ‖Γn ´ Σnβ‖8 ď λn ` δn ‖β‖1 ,

for some tuning parameters λn and δn both converging to zero as n increases. This constraint

set corresponds to our confidence regions R̂n,M in Theorem 4.1.

The following theorem proves that there exist valid post-selection confidence regions that

resemble the objective functions of lasso (Tibshirani (1996)) and sqrt-lasso (Belloni et al. (2011)).

The proof is deferred to Appendix D. These relations to high-dimensional linear regression

literature poses the interesting question: “is there a more deeper connection between post-

selection inference and high-dimensional estimation?”. Other than the results in linear regression,

we do not yet have an answer to this interesting question.

Define for every M P Mpppq, the confidence regions

R̊n,M :“
!

θ P R
|M | :

R̂npθ;Mq ď R̂npβ̂n,M ;Mq ` 2CΓ

n pαq
”∥

∥

∥

β̂n,M

∥

∥

∥

1

` ‖θ‖
1

ı

` CΣ

n pαq
„

∥

∥

∥

β̂n,M

∥

∥

∥

2

1

` ‖θ‖2
1

*

,

R̊:
n,M :“

"

θ P R
|M | : R̂npθ;Mq ď R̂npβ̂n,M ;Mq ` 4CΓ

n pαq
∥

∥

∥
β̂n,M

∥

∥

∥

1

` 2CΣ

n pαq
∥

∥

∥
β̂n,M

∥

∥

∥

2

1

*

,

R̆n,M :“
!

θ P R
|M | :

R̂1{2
n pθ;Mq ď R̂1{2

n pβ̂n,M ;Mq ` C1{2
n pαq p1 ` ‖θ‖

1
q ` C1{2

n pαq
´

1 `
∥

∥

∥
β̂n,M

∥

∥

∥

1

¯)

,

R̆:
n,M :“

!

θ P R
|M | : R̂1{2

n pθ;Mq ď R̂1{2
n pβ̂n,M ;Mq ` 2C1{2

n pαq
´

1 `
∥

∥

∥
β̂n,M

∥

∥

∥

1

¯)

,

where R̂np¨;Mq is the empirical least squares objective function defined in Equation (2) and

Cnpαq is the p1 ´ αq-upper quantile of maxtDΓ
n ,D

Σ
n u.
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Theorem 7.1. For any n ě 1, p ě 1, the following simultaneous inference guarantee holds:

P

¨

˝

č

MPMpppq

!

βn,M P R̊n,M

)

˛

‚ě 1 ´ α, (34)

P

¨

˝

č

MPMpppq

!

βn,M P R̆n,M

)

˛

‚ě 1 ´ α, (35)

and for any 1 ď k ď p satisfying (A1)(k), we have

lim inf
nÑ8

P

¨

˝

č

MPMpppq

!

βn,M P R̊:
n,M

)

˛

‚ě 1 ´ α, (36)

lim inf
nÑ8

P

¨

˝

č

MPMpppq

!

βn,M P R̆:
n,M

)

˛

‚ě 1 ´ α, (37)

Remark 7.1 (Intersection of Confidence Regions) All our confidence regions are based on de-

terministic inequalities as mentioned before. This implies that the intersection of the confidence

regions R̂n,M , R̂
:
n,M and R̊n,M provides a valid simultaneous and post-selection inference. That

means, for any 1 ď k ď p such that (A1)(k) holds,

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

R̂n,M X R̂:
n,M X R̊n,M

)

˛

‚ě 1 ´ α. (38)

To prove this, let Ĉn,M , Ĉ
:
n,M and C̊n,M represent the confidence sets R̂n,M , R̂

:
n,M and R̊n,M with

pCΓ
n pαq, CΣ

n pαqq replaced by pDΓ
n ,D

Σ
n q. From the proofs of Theorems 4.1, 4.2 and 7.1, it is clear

that

lim inf
nÑ8

P

¨

˝

č

MPMppkq

!

Ĉn,M X Ĉ:
n,M X C̊n,M

)

˛

‚“ 1.

So by the definition of pCΓ
n pαq, CΣ

n pαqq (15), the result of (38) follows. Provably the intersection

of confidence regions is smaller. By the same argument it is possible to include the confidence

regions R̊:
n,M , R̆n,M , and R̆:

n,M in the intersection . ˛
Remark 7.2 (Usefulness of Lasso-based Regions) The confidence regions discussed in this

section are given solely for the purpose of illustrating and making solid the connection between

post-selection inference and high-dimensional linear regression. The shape of all these confidence

regions is ellipsoid and have larger volume than the confidence region R̂:
n,M in terms of the rate.

This result is not presented here but is not difficult to prove. This rate comparison is only

asymptotic and the intersection argument presented in Remark 7.1 might still be useful in finite

samples. ˛
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8. Discussion of the Current Approach

The confidence regions R̂n,M and R̂:
n,M constitute what we call approach 1. Various advantages

and disadvantages of this approach are discussed in this section. Some of these comments also

apply to the confidence regions mentioned in Theorem 6.1.

The following are some of the advantages of this approach. The confidence regions are asymp-

totically valid for post-selection inference. This is the first work that provides valid post-selection

inference in this generality. The confidence region for any model M depend only on the joint

quantiles CΓ
n pαq, CΣ

n pαq and the least squares linear regression estimator corresponding to the

model M , β̂n,M . So, the computational complexity of these confidence regions is no more than a

multiple of the computational complexity of β̂n,M . Computation of CΓ
n pαq, CΣ

n pαq takes no more

than a linear function of p operations, as shown in Section 5. This computational complexity is

in sharp contrast to the valid post-selection inference method proposed by Berk et al. (2013) or

Bachoc et al. (2016) which requires essentially solving for the least squares estimators of all the

models for a confidence region with some model M . Therefore, implementation of their proce-

dure is NP-hard, in general. The Lebesgue measure of the confidence regions R̂:
n,M converges to

zero at a rate that is the minimax rate in high-dimensional linear regression literature. So, we

suspect this might be the optimal rate here too but at present we do not have a proof or even an

optimality framework. Note that the volume of the confidence region for model M is computed

with respect to the Lebesgue on R
|M |.

There is one more advantage which might not seem like one at first glance. The confidence

region for βn,M for a particular model does not require information on how many models are

being used for model selection. The volume of the confidence region for βn,M depends only on

the features of the model M except for the quantiles. This implies that the confidence regions

R̂:
n,M ,M P Mppkq can often have much smaller volumes than the ones produced using the

approach of Berk et al. (2013).

There are some disadvantages and some irking factors associated with this approach. Firstly,

notice that the confidence regions are not invariant under linear transformations of the observa-

tions as briefed in Remark 4.5. Most methods in high-dimensional linear regression procedures

that induce sparsity also share this feature. Even from a naive point of view, invariance under

change of units for all variables involved is crucial for interpretation. This translates to invari-

ance under diagonal linear transformations of the observations. Normalizing all the variables

involved to have a unit standard deviation is a commonly suggested method to attain invariance

under diagonal transformations. Formally, this means one should use

X˚
i “

ˆ

Xip1q ´ X̄p1q
snp1q , . . . ,

Xippq ´ X̄ippq
snppq

˙

, Y ˚
i “ Yi ´ Ȳ

snp0q ,
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in place of pXi, Yiq, 1 ď i ď n, where for 1 ď j ď p,

X̄pjq “ 1

n

n
ÿ

i“1

Xipjq, and s2npjq “ 1

n

n
ÿ

i“1

“

Xipjq ´ X̄pjq
‰2
,

and

Ȳ “ 1

n

n
ÿ

i“1

Yi, and s2np0q “ 1

n

n
ÿ

i“1

“

Yi ´ Ȳ
‰2
.

This leads to the matrix and vector,

Σ̂‹
n “ 1

n

n
ÿ

i“1

X˚
i X

˚J
i , and Γ̂‹

n “ 1

n

n
ÿ

i“1

X˚
i Y

˚
i .

Note that the observations pX˚
i , Y

˚
i q, 1 ď i ď n are not independent even if we start with

independent observations pXi, Yiq. This is one of the reasons why we did not assume independence

for Theorems 4.1, 4.2 and 6.1. Of course one needs to prove the rates for the error norms DΓ‹
n and

DΣ‹
n in this case for an application of these results. We leave it to the reader to verify that the

rates are exactly the same obtained in Lemma 4.2 (one needs to use a Slutsky-type argument).

See Cui et al. (2016) for a similar derivation. We conjecture that much weaker conditions than

listed in Lemma 4.2 are enough for those same rates, in particular, exponential moments are not

required. See van de Geer and Muro (2014, Theorem 5.3) for a result in this direction. Getting

back to invariance under arbitrary linear transformations, we do not know if it is possible come

up with a procedure that retains the computational complexity of approach 1 while satisfying

this invariance. We conjecture that this is not possible and that there is a strict trade-off between

computational efficiency and affine invariance.

Another disadvantage of approach 1 is that it is mostly based on deterministic inequalities. As

the reader may have suspected, this might lead to some conservativeness of the method. Note that

non-identical distributions of the observations already introduces some conservativeness. The

confidence regions R̂n,M and R̂:
n,M cover βn,M with probability (at least) 1 ´ α asymptotically.

In particular, these confidence regions provide valid post-selection inference for the full vector

βn,M instead of each of the coordinates of βn,M . The region R̂:
n,M is defined by a system of linear

inequalities and hence the local inference (or inference on coordinates) for βn,M pjq, 1 ď j ď |M |
can be obtained by solving a linear program. However, these can be very conservative for local

inference guarantees.

We emphasize before ending this section that the main focus of approach 1 is validity and

better computational complexity not optimality. However, optimality holds for our confidence

regions as mentioned in Remark 4.6 for fixed covariates. It should be understood that without

validity there is no point in proving any kind of optimality properties about the size of confidence

region.
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9. Conclusions and Future Directions

In this paper, we have considered a computationally efficient approach to valid post-selection

inference in linear regression under arbitrary data-driven method of variable selection. The ap-

proach here is very different from the other methodologies available in the literature and is based

on the estimating equation of linear regression. At present it is not clear if this approach can be

extended to other M -estimation problems. Since our confidence regions are based on determin-

istic inequalities, our results provide valid post-selection inference even under dependence and

non-identically distributed random vectors. For this reason, the setting of the current work is

the most general available in the literature of post-selection inference.

In addition to providing several valid confidence regions, we compare the Lebesgue measure

of our confidence regions with the ones from Berk et al. (2013) and Bachoc et al. (2016). This

comparison shows that our confidence regions are much smaller (in terms of volume) in case of

fixed (non-stochastic) covariates. In general, the volume of our confidence regions scales with the

cardinality of model M̂ chosen. This is a feature not available from the works of Berk et al. (2013)

and Bachoc et al. (2016). Note that the confidence regions from selective inference literature have

infinite expected length as shown in Kivaranovic and Leeb (2018).

An interesting finding of our work is the connection between post-selection confidence regions

and high-dimensional sparsity inducing linear regression estimators. If this finding were to hold

for other M -estimation problems, then computationally efficient valid post-selection confidence

regions are possible in general.
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APPENDIX

Appendix A: Proof of Lemma 4.1

Fix M P Mppkq with kDΣ
n ď Λnpkq. Observe that the least squares estimator satisfies

β̂n,M ´ βn,M “ pΣnpMqq´1

´”

Γ̂npMq ´ ΓnpMq
ı

´
”

Σ̂npMq ´ ΣnpMq
ı

βn,M

¯

,

and for all M P Mppkq,
∥

∥

∥
Σ̂npMq ´ ΣnpMq

∥

∥

∥

op
ď sup

‖θ‖
0

ďk,
‖θ‖

2
ď1

ˇ

ˇ

ˇθJ
´

Σ̂n ´ Σn

¯

θ
ˇ

ˇ

ˇ ď k
∥

∥

∥
Σ̂n ´ Σn

∥

∥

∥

8
“ kDΣ

n . (39)

Thus, for all M P Mppkq,

Λnpkq ´ kDΣ

n ď ‖ΣnpMq‖op ´ kDΣ

n ď
∥

∥

∥

Σ̂npMq
∥

∥

∥

op
ď ‖ΣnpMq‖op ` kDΣ

n .

Hence, for k satisfying kDΣ
n ď Λnpkq,

∥

∥

∥
β̂n,M ´ βn,M

∥

∥

∥

2

ď

∥

∥

∥
Γ̂npMq ´ ΓnpMq

∥

∥

∥

2

`
∥

∥

∥
rΣ̂npMq ´ ΣnpMqsβn,M

∥

∥

∥

2

Λnpkq ´ kDΣ
n

ď |M |1{2

∥

∥

∥

Γ̂npMq ´ ΓnpMq
∥

∥

∥

8
`

∥

∥

∥

rΣ̂npMq ´ ΣnpMqsβn,M
∥

∥

∥

8

Λnpkq ´ kDΣ
n

ď |M |1{2
`

DΓ
n ` DΣ

n ‖βn,M‖
1

˘

Λnpkq ´ kDΣ
n

.

Now applying
∥

∥

∥

β̂n,M ´ βn,M

∥

∥

∥

1

ď |M |1{2
∥

∥

∥

β̂n,M ´ βn,M

∥

∥

∥

2

,

the result follows.

Appendix B: Proof of Proposition 4.1

For any fixed model M , the Lebesgue measure of the confidence region is given by

LebpR̂:
M q “ |ΣnpMq|´1

´

CΓ

n pαq ` CΣ

n pαq
∥

∥

∥
β̂M

∥

∥

∥

1

¯|M |
, (40)

which converges to zero as n tends to infinity. Here for any matrix A P R
pˆp, |A| denotes the

determinant of A. This equality follows since the confidence region R̂:
M can be written as

R̂:
M “

!

rΣnpMqs´1 pθ ` β̂M q : ‖θ‖8 ď
´

CΓ

n pαq ` CΣ

n pαq
∥

∥

∥

β̂n,M

∥

∥

∥

1

¯)

.
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By inequality (39), for all M P Mppkq

|ΣnpMq|´1 ď
`

Λnpkq ´ kDΣ

n

˘´|M |
.

We know that CΓ
n pαq and CΣ

n pαq converge to zero at a rate depending on the tails of the joint

distribution of pXi, Yiq. The result now follows from equation (40) and uniform consistency of

β̂n,M in the ‖¨‖
1
-norm as shown in Lemma 4.1 under (A1)(k).

To prove the second result, first note that from Lemma 4.2,

maxtCΓ

n pαq, CΣ

n pαqu “ O

˜

c

log p

n

¸

,

since the second term in the expectation bound in Lemma 4.2 is of lower order than the first

term under the assumption (22) of Lemma 4.1. The result is now proved if we prove that for all

M P Mppkq,

‖βn,M‖2
1

ď |M |
Λnpkq

˜

1

n

n
ÿ

i“1

E
“

Y 2

i

‰

¸

. (41)

By definition of βn,M it follows that

0 ď 1

n

n
ÿ

i“1

E
“

Y 2

i

‰

´ 1

n

n
ÿ

i“1

βJ
n,ME

“

XipMqXJ
i pMq

‰

βn,M “ 1

n

n
ÿ

i“1

E

”

`

Yi ´XJ
i pMqβn,M

˘2
ı

.

Therefore, by definition of Λnpkq,

Λnpkq ‖βn,M‖2
2

ď
˜

1

n

n
ÿ

i“1

E
“

Y 2

i

‰

¸

.

Now using the inequality ‖βn,M‖
1

ď
a

|M | ‖βn,M‖
2
, inequality (41) follows.

Appendix C: Proof of (24)

Proposition C.1. Suppose there exists a constant Bn,k,p and γ ą 0, such that

sup
MPMppkq

max
1ďjď|M |

∥

∥

∥

∥

∥

∥

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

σn,M pjq

∥

∥

∥

∥

∥

∥

ψγ

ď Bn,k,p.

Then

max
1ďℓďk

1

ψ´1
γ pℓq

max
MPMppℓqXMc

ppℓ´1q

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

{σn,M pjq
ˇ

ˇ

ˇ

ψ´1
γ pp2ep{ℓqℓq

“ Opp1q
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Proof. From the proof of Proposition A.5 of Kuchibhotla and Chakrabortty (2018), we get

∥

∥

∥

∥

∥

∥

max
MPMppℓqXMc

ppℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,Mpjq
¯

σn,Mpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∥

∥

∥

∥

∥

∥

ψγ

ď ψ´1

γ

´

pep{ℓqℓ
¯

CγBn,p,k,

for some constant Cγ depending only on γ. Here the fact

|MppℓqzMppℓ ´ 1q| “
ˆ

p

ℓ

˙

ď
´ep

ℓ

¯ℓ

,

is used. Now take

ξℓ :“
1

ψ´1
γ ppep{ℓqℓq

max
MPMppℓqXMc

ppℓ´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

?
n
´

β̂n,M pjq ´ βn,M pjq
¯

σn,Mpjq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

and apply Proposition 4.3.1 of de la Peña and Giné (1999), to get the result. Also, see Proposi-

tion A.7 of Kuchibhotla and Chakrabortty (2018) for an alternative proof to Proposition 4.3.1

of de la Peña and Giné (1999). If γ “ 2, then ψγ corresponds to sub-Gaussian random variables

and

ψ´1

2
pxq “

a

logp1 ` xq.

This proves (24).

Appendix D: Proof of Theorem 7.1

Only the proof of (34) and (36) is provided and the steps to prove (35) and (37) are sketched

since the proof is similar.

It is easy to verify that for any M Ď Mpppq and θ P R
|M |

ˇ

ˇ

ˇθJΣ̂npMqθ ´ 2θJΓ̂npMq ´ θJΣnpMqθ ` 2θJΓnpMq
ˇ

ˇ

ˇ ď ‖θ‖2
1
DΣ

n ` 2 ‖θ‖
1
DΓ

n . (42)

Therefore, for every M P Mpppq,

βn,M Σ̂npMqβn,M ´ 2βJ
n,M Γ̂npMq

ď βn,MΣnpMqβn,M ´ 2βJ
n,MΓnpMq ` 2DΓ

n ‖βn,M‖
1

` DΣ

n ‖βn,M‖2
1

ď β̂n,MΣnpMqβ̂n,M ´ 2β̂J
n,MΓnpMq ` 2DΓ

n ‖βn,M‖
1

` DΣ

n ‖βn,M‖2
1

ď β̂n,M Σ̂npMqβ̂n,M ´ 2β̂J
n,MΓnpMq ` 2DΓ

n

”∥

∥

∥

β̂n,M

∥

∥

∥

1

` ‖βn,M‖
1

ı

` DΣ

n

„

∥

∥

∥
β̂n,M

∥

∥

∥

2

1

` ‖βn,M‖2
1



.
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Here the first inequality follows from inequality (42) with θ “ βn,M , the second inequality follows

from the definition of βn,M (see Equation (11)) and the third inequality follows from inequality

(42) with θ “ β̂n,M . Adding the sample average of tY 2

i : 1 ď i ď nu on both sides, we get for all

M P Mpppq,

R̂n pβn,M ;Mq ď R̂n

´

β̂n,M ;M
¯

` 2DΓ

n

”∥

∥

∥
β̂n,M

∥

∥

∥

1

` ‖βn,M‖
1

ı

` DΣ

n

„

∥

∥

∥
β̂n,M

∥

∥

∥

2

1

` ‖βn,M‖2
1



. (43)

This implies the first result (34). To prove the second result (36), note that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

DΓ
n ` DΣ

n

∥

∥

∥

β̂M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖β0,M‖
1

˛

‚

2

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DΓ
n ` DΣ

n

∥

∥

∥

β̂M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖β0,M‖
1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DΓ
n ` DΣ

n

∥

∥

∥

β̂M

∥

∥

∥

1

DΓ
n ` DΣ

n ‖β0,M‖
1

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

which converges to zero under assumption (A1)(k), following the proof of Theorem 4.2. This

implies that the error

„

2DΓ

n

∥

∥

∥
β̂n,M

∥

∥

∥

1

` DΣ

n

∥

∥

∥
β̂n,M

∥

∥

∥

2

1



´
”

2DΓ

n ‖βn,M‖
1

` DΣ

n ‖βn,M‖2
1

ı

,

is of smaller order than each of the terms uniformly in M P Mppkq. The second result (36) then

follows trivially by substituting the estimated parameters for the targets in inequality (43) and

using the definition of pCΓ
n pαq, CΣ

n pαqq.
To prove the results with square-root lasso based regions, note that from inequality (43)

R̂1{2
n pβn,M ;Mq ď R̂1{2

n pβ̂n,M ;Mq ` maxtDΓ

n ,D
Σ

n u1{2
´

1 `
∥

∥

∥

β̂n,M

∥

∥

∥

1

¯

` maxtDΓ

n ,D
Σ

n u1{2
`

1 ` ‖βn,M‖
1

˘

.

Appendix E: High-dimensional CLT and Bootstrap Consistency

Suppose Wi, 1 ď i ď n are independent random vectors in R
q with finite second moment. Let

Gi, 1 ď i ď n be independent Gaussian random vectors in R
q with mean zero satisfying

E
“

GiG
J
i

‰

“ E
“

WiW
J
i

‰

for all 1 ď i ď n.

Set

SWn :“ 1?
n

n
ÿ

i“1

tWi ´ E rWisu and SGn :“ 1?
n

n
ÿ

i“1

Gi.
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Before deriving the exact rate under the assumption (20) of Lemma 4.2, we prove that a central

limit theorem for SWn implies a CLT for pDΓ
n ,D

Σ
n q. Observe that for any t1, t2 P R

` Y t0u,
 

DΓ

n ď t1, DΣ

n ď t2
(

“
#

´t1 ď 1

n

n
ÿ

i“1

tXipjqYi ´ E rXipjqYisu ď t1 for all 1 ď j ď p

+

č

#

´t2 ď 1

n

n
ÿ

i“1

tXiplqXipmq ´ E rXiplqXipmqsu ď t2 for all 1 ď l ď m ď p

+

.

(44)

The right hand side here is a rectangle in terms of the vector SWn with vectors Wi containing

pXipjqYi, 1 ď j ď p; XiplqXipmq, 1 ď l ď m ď pq . (45)

Note that Wi’s are vectors in R
q with

q “ 2p ` ppp´ 1q
2

.

Let Ar denote the set of all rectangles in R
q, that is, Ar consists of all sets A of the form

A “ tz P R
q : apjq ď zpjq ď bpjq for all 1 ď j ď qu,

for some vectors a, b P R
q. Define

Ln,q :“ max
1ďjďq

1

n

n
ÿ

i“1

E

”

|Wipjq ´ ErWipjqs|3
ı

.

Finally, set for any class A of (Borel) sets in R
q,

ρn pAq :“ sup
APA

ˇ

ˇP
`

SWn P A
˘

´ P
`

SGn P A
˘ˇ

ˇ .

The following theorem proved in Section 6 of Kuchibhotla and Chakrabortty (2018) provides a

central limit theorem for SWn over all rectangles. The proof there is based on Theorem 2.1 of

Chernozhukov et al. (2017).

Theorem E.1. Suppose W1, . . . ,Wn are independent mean zero random vectors in R
q satisfying

for some γ,B,Kn,q ą 0,

min
1ďjďq

1

n

n
ÿ

i“1

Var
“

W 2

i pjq
‰

ě B and max
1ďiďn

max
1ďjďq

‖Wipjq‖ψγ
ď Kn,q. (46)

Assume further that for some constant K2 ą 0 (depending only B),

1

8K2Kn,q

ˆ

nLn,q

log q

˙1{3

ě maxt1, 21{γ´1u
!

plog qq1{γ ` p6{γq1{γ ` 1
)

. (47)
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Then there exist constants K1 ą 0 depending only on B, and Cγ,B ą 0 depending only on B, γ

such that

ρn pAreq ď K1

˜

L2
n,q log

7 q

n

¸

1{6

` Cγ,B
K6
n,q log q

n
.

Based on (44), it is clear that Theorem E.1 implies a CLT for pDΓ
n ,D

Σ
n q. This does not require

the observations to be identically distributed or equal expectations for the Wi vectors defined

in (45).

E.1. Bootstrap Consistency

In this sub-section, we consider the consistency of multiplier bootstrap based on Section 4.1

of Chernozhukov et al. (2017). It is also possible to consider the empirical bootstrap in high-

dimensions and prove its consistency based on the proof of Proposition 4.3 of Chernozhukov et al.

(2017). We do not prove it here as the proof techniques are the same.

Let e1, e2, . . . , en be a sequence of independent standard normal random variables independent

of Wn :“ tW1, . . . ,Wnu. Set

W̄n :“ 1

n

n
ÿ

i“1

Wi P R
q,

and consider the normalized sum

SeWn :“ 1?
n

n
ÿ

i“1

ei
`

Wi ´ W̄n

˘

.

Note that

SeWn
ˇ

ˇWn „ N

˜

0,
1

n

n
ÿ

i“1

`

Wi ´ W̄n

˘ `

Wi ´ W̄n

˘J

¸

P R
q.

To prove consistency of multiplier bootstrap, we bound a quantity similar to ρn pAreq, defined
as

ρMB
n pAreq :“ sup

APAre

ˇ

ˇP
`

SeWn P A
ˇ

ˇWn

˘

´ P
`

SG‹
n P A

˘ˇ

ˇ ,

where

SG‹
n „ N

˜

0,
1

n

n
ÿ

i“1

E

”

pWi ´ µ̄nq pWi ´ µ̄nqJ
ı

¸

, with µ̄n :“ E
“

W̄n

‰

“ 1

n

n
ÿ

i“1

E rWis .

Note that Var
`

SWn
˘

‰ Var
`

SG‹
n

˘

unless ErW1s “ ErW2s “ ¨ ¨ ¨ “ ErWns. Define

∆n,q :“
∥

∥

∥

∥

∥

1

n

n
ÿ

i“1

`

Wi ´ W̄n

˘ `

Wi ´ W̄n

˘J ´ 1

n

n
ÿ

i“1

E

”

pWi ´ µ̄nq pWi ´ µ̄nqJ
ı

∥

∥

∥

∥

∥

8

.
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Based on Theorem 4.1 and Remark 4.1 of Chernozhukov et al. (2017), we prove the following

theorem under assumption (46).

Theorem E.2. If Wi, 1 ď i ď n are independent mean zero random vectors, then under as-

sumption (46),

E

”

ρMB
n pAreq

ı

ď C log2{3 q

«

A1{3
n,q

ˆ

log q

n

˙

1{6

`K2{3
n,q

plog q log nq
2

3γ

n1{3

ff

,

for some constant C depending only on γ,B. Here

An,q :“ max
1ďlďmďq

1

n

n
ÿ

i“1

Var pWiplqWipmqq .

Proof. As proved in Remark 4.1 of Chernozhukov et al. (2017), we have

ρMB
n pAreq ď C∆1{3

n,q log
2{3 q.

So, to prove the result, all we need is to prove

E

”

∆1{3
n,q

ı

ď Mγ

«

An,q

c

log q

n
`K2

n,qplog q log nq2{γn´1

ff

1{3

,

for some constant Mγ . This follows from Theorem 4.2 of Kuchibhotla and Chakrabortty (2018).

Remark E.1 (Inconsistency under unknown unequal means) Since VarpSWn q and Var
`

SG‹
n

˘

are not equal (in general), Theorem E.2 does not prove that

sup
APAre

ˇ

ˇP
`

SeWn P A
ˇ

ˇWn

˘

´ P
`

SGn P A
˘ˇ

ˇ Ñ 0.

It was proved in Kuchibhotla et al. (2018) that variance of an average of non-identically dis-

tributed random variables cannot be consistently estimated if the expectations are unknown

and the same comment applies to the high-dimensional multiplier bootstrap. When E rWis are

not all the same for all 1 ď i ď n, then the variance of SWn cannot be consistently estimated

and so the distribution of SWn cannot be estimated consistently using bootstrap. However, The-

orem E.2 implies conservative inference. Observe that

Var
`

SWn
˘

“ 1

n

n
ÿ

i“1

Var pWiq ĺ
1

n

n
ÿ

i“1

E

”

`

Wi ´ E
“

W̄n

‰˘ `

Wi ´ E
“

W̄n

‰˘J
ı

.
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Hence by Anderson’s Lemma (Corollary 3 of Anderson (1955)), for all A P Asre,

P
`

SG‹
n P A

˘

ď P
`

SGn P A
˘

.

Here Asre represents the set of all rectangles that are symmetric around zero. Thus, we get that

lim inf
nÑ8

inf
APAsre

`

P
`

SGn P A
˘

´ P
`

SeWn P A
ˇ

ˇWn

˘˘

ě 0.

Observe that the sets in (44) are centrally convex symmetric sets and so, Anderson’s Lemma

applies. Therefore, the multiplier bootstrap provides an asymptotically conservative inference

for pDΓ
n ,D

Σ
n q, in general. ˛

Appendix F: Rate Bounds on D
Γ

n and D
Σ

n under Dependence

In this section, we derive rate of convergence of }Ω̂n´Ωn}8 under dependence. We first describe

some classical notions of dependence that include well-known dependent processes as special

cases. The description is essentially taken from Pötscher and Prucha (1997). Let tξt : t P Zu be

a stochastic process on some measure space. Let Fm,n (for m ă n) be the σ-field generated by

tξi : m ď i ď nu with possibility of m “ ´8 and n “ 8 included. Define

αpjq :“ sup
kPZ

sup t|P pA XBq ´ PpAqPpBq| : A P F´8,j , B P Fk`j,8u ,

φpjq :“ sup
kPZ

sup t|P pB|Aq ´ PpBq| : A P F´8,j, B P Fk`j,8,PpAq ą 0u .

If αpjq (or correspondingly φpjq) converges to zero as j approaches infinity then the process

tξt : t P Zu is called α-mixing (or correspondingly φ-mixing). It is clearly seen that every

φ-mixing process is α-mixing since for any event A with PpAq ą 0,

|P pAXBq ´ PpAqPpBq| ď PpAq|P pB|Aq ´ PpBq|.

A process tξt : t P Zu is said to be m-dependent if αpjq “ 0 for all j ě m. Evidently, m-

dependent processes are φ-mixing for any m and so α-mixing too. One very useful feature

of α-mixing processes is that measurable functions of finitely many elements of the process

themselves α-mixing.

The dependence notion used in this section is the one called functional dependence introduced

by Wu (2005). It is possible to derive the results under the classical dependence notions like α-,ρ-

mixing too, however, verifying the mixing assumptions can often be hard and many well-known

processes do not satisfy them. See Wu (2005) for more details. It has also been shown that
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many econometric time series can be studied under the notion of functional dependence; see

Wu and Mielniczuk (2010), Liu et al. (2013) and Wu and Wu (2016).

The dependence notion of Wu (2005) is written in terms of an input-output process that is

easy to analyze in many settings. The process is defined as follows. Let tεi, ε1
i : i P Zu denote a

sequence of independent and identically distributed random variables on some measurable space

pE ,Bq. Let the q-dimensional (stochastic) process Wi has a causal representation as

Wi “ Gip. . . , εi´1, εiq P R
q,

for some vector-valued function Gip¨q “ pgi1p¨q, . . . , giqp¨qq. By Wold representation theorem for

stationary processes, this causal representation holds in many cases. Define the non-decreasing

filtration

Fi :“ σ p. . . , εi´1, εiq .

Using this filtration, we also use the notation Wi “ GipFiq. To measure the strength of depen-

dence, define for r ě 1 and 1 ď j ď q, the functional dependence measure

δs,r,j :“ max
1ďiďn

‖Wipjq ´Wi,spjq‖r , and ∆m,r,j :“
8
ÿ

s“m

δs,r,j,

where

Wi,spjq :“ gijpFi,i´sq with Fi,i´s :“ σ
`

. . . , εi´s´1, ε
1
i´s, εi´s`1, . . . , εi´1, εi

˘

. (48)

The σ-field Fi,i´s represents a coupled version of Fi. The quantity δs,r,j measures the dependence

using the distance in terms of ‖¨‖r-norm between gijpFiq and gijpFi,i´sq. In other words, it is

quantifying the impact of changing input εi´s on the output gijpFiq; see Definition 1 of Wu

(2005). The dependence adjusted norm for j-th coordinate is given by

‖tW pjqu‖r,ν :“ sup
mě0

pm ` 1qν∆m,r,j, ν ě 0.

To summarize these measures for the vector-valued process, define

‖tW u‖r,ν :“ max
1ďjďq

‖tW pjqu‖r,ν and ‖tW u‖ψβ ,ν
:“ sup

rě2

r´1{β ‖tW u‖r,ν .

Remark F.1 (Independent Sequences) Any notion of dependence should at least include

independent random variables. It might be helpful to understand how independent random

variables fits into this framework of dependence. For independent random vectors Wi, the causal

representation reduces to

Wi “ Gip. . . , εi´1, εiq “ Gipεiq P R
q.
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It is not a function of any of the previous εj, j ă i. This implies by the definition (48) that

Wi,s “

$

&

%

Gipεiq “ Wi, if s ě 1,

Gipε1
iq “:W 1

i , if s “ 0.

Here W 1
i represents an independent and identically distributed copy of Wi. Hence,

δs,r,j “

$

&

%

0, if s ě 1,

‖Wipjq ´W 1
i pjq‖r ď 2 ‖Wipjq‖r , if s “ 0.

It is now clear that for any ν ą 0,

‖tW u‖r,ν “ sup
mě0

pm` 1qν∆m,r “ ∆0,r ď 2 max
1ďjďq

‖Wipjq‖r .

Hence, if the independent sequence Wi satisfies assumption (20), then ‖tW u‖ψβ ,ν
ă 8 for all

ν ą 0, in particular for ν “ 8. Therefore, independence corresponds to ν “ 8. As ν decreases

to zero, the random vectors become more and more dependent. ˛
Recall that

∥

∥

∥
Ω̂n ´ Ωn

∥

∥

∥

8
:“ max

1ďj,kďp`1

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pZipjqZipkq ´ E rZipjqZipkqsq
ˇ

ˇ

ˇ

ˇ

ˇ

,

which is a maximum of pp`1q2 many averages. To prove bound on the quantity above, consider

the following assumption:

(DEP) Assume that there exist n vector-valued functions Gi and an iid sequence tεi : i P Zu
such that

Zi :“ pXi, Yiq “ Gip. . . , εi´1, εiq P R
p`1.

Also, for some ν, β ą 0,

‖tZu‖ψβ ,ν
ď Kn,p and max

1ďiďn
max

1ďjďp`1

|E rZipjqs | ď Kn,p.

Based on Remark 4.4, Assumption (DEP) is equivalent to the assumption of Lemma 4.2 for

independent data. For independent random variables, the second part of Assumption (DEP)

about the expectations follows from the ψβ-bound assumption. The reason for this expectation

bound in the assumption here is that the functional dependence measure δs,r does not have any

information about the expectation since

‖Wipjq ´Wi,spjq‖r “ ‖pWipjq ´ E rWipjqsq ´ pWi,spjq ´ E rWi,spjqsq‖r .
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The coupled random variable Wi,s has the same expectation as Wi. Since the quantities we need

to bound involve product of random variables, such a bound on the expectations is needed for

our analysis.

The following result proves a bound on }Ω̂n ´ Ωn}8 under assumption (DEP). Define

Υ4,p :“ max
1ďjďp`1

ˆ

‖tZpjqu‖
4,0 ` max

1ďiďn
|E|Zipjq||

˙

‖tZpjqu‖
4,ν .

Theorem F.1. Fix n, k ě 1 and let t ě 0 be any real number. Then under assumption (DEP),

with probability at least 1 ´ 8e´t,

}Ω̂n ´ Ωn}8 ď 2eBν

c

Υ4,ppt` logp4pqq
n

` CβK
2

n,p

plog nq1{spβ{2qκnpνqpt ` logp4pqq1{T1pspβ{2qq

n
,

where T1pλq “ mintλ, 1u, spλq “ p1{2 ` 1{λq´1 and

κnpνq “ 2ν ˆ

$

’

’

’

&

’

’

’

%

5pν ´ 1{2q´3, if ν ą 1{2,
2plog2 nq5{2, if ν “ 1{2,
5p2nq1{2´νp1{2 ´ νq´3, if ν ă 1{2.

Here Bν and Cβ are positive constants depending only on ν and β.

Proof. The proof follows from Lemma B.4 and Theorem 5.1 (or Theorem B.1) of Kuchibhotla et al.

(2018).

Remark F.2 (Rate of Convergence under Dependence) Theorem F.1 readily implies bounds

on CΣ
n pαq and CΓ

n pαq along with rate bounds on DΓ
n and DΣ

n . ˛


	1 Introduction and Motivation
	1.1 Motivation of the Problem
	1.2 Overview

	2 Notation and Problem Formulation
	2.1 Notation related to Vectors, Matrices and Norms
	2.2 Notation Related to Regression Data and OLS
	2.3 Problem Formulation
	2.4 Alternative Approaches

	3 Equivalence of Post-selection and Simultaneous Inference
	4 An Approach to Post-Selection Inference
	4.1 Valid Confidence Regions
	4.2 Validity of the Confidence Regions n,M
	4.3 Asymptotic Validity of dagger
	4.4 Further Remarks
	4.5 Rate Bounds and Lebesgue Measure
	4.6 Confidence Regions under Fixed Covariates
	4.6.1 Fixed design and comparison with Berk et al. (2013)
	4.6.2 Fixed Covariates with the Restricted Isometry Property (RIP)


	5 Computation by Multiplier Bootstrap
	6 A Generalization for Linear Regression-type Problems
	7 Connection to High-dimensional Regression and Other Confidence Regions
	8 Discussion of the Current Approach
	9 Conclusions and Future Directions
	References
	A Proof of Lemma 4.1
	B Proof of Proposition 4.1
	C Proof of blah
	D Proof of Theorem 7.1
	E High-dimensional CLT and Bootstrap Consistency
	E.1 Bootstrap Consistency

	F Rate Bounds on Dn and Dn under Dependence

