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Abstract

There are over three decades of largely unrebutted criticism of regres-
sion analysis as practiced in the social sciences. All of the criticisms apply
to criminology as well. Yet, regression analysis broadly construed remains
for many the method of choice for characterizing conditional relationships,
sometimes interpreted in causal terms. One possible explanation is that
the existing alternatives are seen by too many researchers as unsatisfying.
In this paper, we provide a di↵erent approach. We proceed assuming the
regression model is wrong and consider what can be learned neverthe-
less. The search for a “correct” model is abandoned. We o↵er instead a
rigorous way to learn from regression approximations. These approxima-
tions, not “the truth,” are the estimation targets. For these, we provide
estimators that are asymptotically unbiased and standard errors that are
asymptotically correct. Both can be obtained easily from popular statis-
tical packages.

1 Introduction

There is a large literature on the many di�culties with regression modeling
in the social sciences (e.g., Box, 1976; Leamer, 1983; Holland, 1986; Rubin,
1986; 2008; Freedman, 1987; Breiman, 2001; Berk, 2004; Imbens, 2009; Angrist
and Pischke, 2010). By and large, this literature is unrebutted (Freedman,
2005: Sction 8.9), and regression modeling in criminology is subject to the same
concerns (Blumstein et al., 1978; Welford et al., 2005; Nagin and Pepper, 2012).

Research on the deterrent e↵ect of capital punishment is an instructive il-
lustration. In 1978, an NRC Committee charged with reviewing the relevant

˚Thanks go to John MacDonald and Charles Loe✏er for helpful comments on an earlier
draft of this paper.
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research was “skeptical that the death penalty [as practiced in the United States]
can ever be subjected to the kind of statistical analysis that would validly es-
tablish the presence or absence of a deterrent e↵ect” (Blumstein, 1978: 62).
But researchers proceeded with regression modeling as usual. Thirty-four years
later, another NRC committee was given a similar charge. Although there were
strong criticisms of theoretical foundations on which the research rested, regres-
sion modeling was again indicted.

“The standard procedure in capital punishment research has been
to impose su�ciently strong assumptions to yield definitive findings
on deterrence. ... The use of strong assumptions hides the problem
that the study of deterrence is plagued by model uncertainty and
that many of the assumptions used in the research lack credibility”
(Nagin and Pepper, 2012: 7).

Further,

“The committee concludes that research to date on the e↵ect of
capital punishment on homicide is not informative about whether
capital punishment decreases, increases, or has no e↵ect on homi-
cide rates. ... Consequently, claims that research demonstrates that
capital punishment decreases or increases the homicide rate by a
specific amount or has no e↵ect on the homicide rate should not
influence policy judgments about capital punishment” (Nagin and
Pepper, 2012: 2).

Why in the face of powerful critiques and a disappointing track record do so
many criminal justice researchers maintain their attachment to regression mod-
eling? One reason may be that the existing analysis alternatives for observa-
tional data can sometimes be unattractive. For example, multiple equation and
hierarchical models layer on additional complexity without really addressing the
causal modeling critique (Freedman, 2005: Chapter 8). Matching methods are
more robust (Rosenbaum, 2002; 2010), but borrow heavily from the experimen-
tal paradigm, which some find limiting (Heckman and Smith, 1995). Although
combining the formal logic of causal inference with acyclic graphs (Morgan
and Winship 2007) has considerable appeal, the empirical leverage provided by
graphical models of causation can be substantially overstated (Freedman, 2004).

There is another way. Rather than trying to find acceptable alternatives to
regression modeling, researchers can perhaps learn to make better use of the
regression tools they already have. A key may be to make research aspirations
more consistent with what can actually be accomplished with observational
data. From this point of view, Manski (2003) places bounds around causal
e↵ect estimates to capture the impact of identification weaknesses in certain
estimation procedures. Imbens and Angrist (1994) provide “local” estimates for
subpopulations within which the modeling assumptions may be more credible.

We o↵er another approach that depends on reduced aspirations. In contrast
to conventional regression practice, we explicitly discard the goal of getting a
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model “right.” We consider what can be learned from empirical results that
are manifestly approximations of unknown relationships in a target population.
Our approach has much in common the “correlation model” proposed by Freed-
man (1981), and its foundation is closely related to procedures formulated by
White (1980). Angrist and Pischke (2009; Section 3.1.2) provide very accessible
motivation for regression as approximation.

Section 2 reviews some key properties of the linear regression mean function
with fixed predictors. Section 3 considers the mean function when predictors
are random. The intent is to introduce key issues at a broad conceptual level.
In Section 4, we provide the technical background and justifications for working
with linear approximations. Some readers may choose to skip this section if they
are prepared to accept our main arguments at face value. Section 5 turns to
implementation and practice. In section 6, there is a simple example using real
data. Section 7 briefly broadens the discussion to include parametric nonlinear
regression and smoothers. Section 8 o↵ers some broad conclusions.

2 Conventional Linear Regression with Fixed Pre-
dictors: Once Over Lightly

In this section and the next, we raise issues that help motivate the rest of the
paper. The intent is to highlight problems in a relatively nontechnical manner,
which we later intend to solve. Readers seeking a more formal treatment will
have to wait until Section 4.

The standard formulation for linear regression takes the following form:

Y “ X� ` ✏, ✏ „ Np0
N

,�2I
NˆN

q, (1)

where Y is the response variable, N is the number of observations, and X has
p predictors with an additional column of 1s for the intercept.1

The usual interpretation attached to Equation 1 is that one has a true ac-
count of how the N values of the response variable Y are produced by “nature.”
For each case i, one might say that nature first determines the values of the p
predictors in X, then combines them and the leading constant in a linear fashion
using the corresponding regression coe�cients, and adds a random draw from
a distribution of disturbances that has a mean of 0 and a single variance ap-
plicable to each case. That distribution is taken to be normal, although in our
context, normality is not an important assumption. Nature is able to repeat this
process a limitless number of times for each case using the given, fixed values of
the predictors. The disturbances are the only source of randomness in Y. Over
realizations for a given case, the response values can change, but the predictor
values cannot.

Equation 1 is “first order correct” if the mean function corresponds to na-
ture’s “true” conditional means: µ

i

|X
i

.2 These conditional means are found in

1X has N rows and p ` 1 columns.
2That is, µi|Xi “ Xi�.
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the real process that nature employs to generate the response. Unbiased esti-
mates of � and �2 require that Equation 1 is first order correct. Equation 1
is “second order correct” if the disturbances have the properties specified in
Equation 1, although formally, normality is really not a second order condition,
but a convenient assumption about a distributional form.3 Second order cor-
rectness is necessary for statistical tests and confidence intervals to perform as
they should.

When researchers consider whether a regression model is second order cor-
rect, they usually assume that the model is already first order correct. Otherwise
it is very di�cult to empirically distinguish between first order errors and sec-
ond order errors. For example, if the mean function is incorrect, there will likely
be the appearance of nonconstant variance even if �2

i

is the same for each case.
Such confounding can undermine a range of diagnostic tools.

Regression models and their close cousins have been quite properly criticized
because there is usually no definitive way to know if either the first order or
the second order conditions are met.4 The result too often is science by hand
waving. There is a large, accessible literature on such matters that can be
consulted. However, to help motivate our alternative perspective, we have to
briefly consider a particular set of di�culties. We focus on the regression mean
function, which is the statistical bedrock for conventional regression analysis.

2.1 Regression Mean Functions with Fixed X

For expositional purposes, suppose for the moment that the response is a linear,
deterministic function of a single, fixed predictor — there are no disturbances.
When there are no disturbances, the regression mean function is much easier to
visualize.

Figure 1 shows the relationship between the response and that single predic-
tor for the conventional linear model. The black line is nature’s mean function.
The blue circles are hypothetical observations for the response at some predictor
values assuming no disturbances.5 Because one has the correct linear function,
one can determine the value of the response for any value of the predictor, even
when the value of the predictor is not observed. In e↵ect, one can impute the
value of the response using the correct linear function. This means that the re-
gression results can be properly generalized beyond the data’s predictor values.
Put another way, no matter what fixed values X one has, the conditional means
of the response map out the correct linear function.

Under these circumstances, the distribution of the predictor is unrelated to
�̂ and �̂2. It follows that one can condition on the predictor, the usual practice,
and obtain valid estimates of the regression parameters from the data. This

3With a su�ciently large sample size, the normality assumption can be safely ignored.
4Close cousins include the generalized linear model and extensions to models with more

than one response variable. The defining feature is a focus on the conditional distribution of
one or more responses that depend on one or more predictors.

5We will later explain why the observations can be more properly seen as nature’s condi-
tional expectations for the response variable.
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Fixed X and Linear Mean Function

Imputed 

Imputed 

Figure 1: The Canonical Regression Formulation with Y a Deterministic Linear
Function of a Fixed X
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is the usual backstory in a wide variety of applications for which the mean
function is really linear and the researcher knows it. One can think of this as
the conventional hubris (Freedman, 2005).

3 Regression Mean Functions with Random X

Fixed regressors can be an under-appreciated constraint on the conventional re-
gression model. Uncertainty is solely a function of the disturbances. Regression
estimates are seen as varying over realizations of the data with the predictor
values constant.

Three complications can follow. First, if the predictors are actually random
variables, an additional source of uncertainty is neglected. For example, survey
data constructed by random sampling necessarily makes all predictors random
variables. Predictors generated in other ways can be random as well. With
predictors as random variables, some important properties of least squares re-
gression no longer hold (Freedman, 2005: section 4.11).6 A popular response is
to treat the predictor values as fixed once they materialize in the sample. But
that leads to a second complication: generalizations beyond the data on hand
can be jeopardized. Formally, the regression results apply only to the particular
predictor values appearing in the sample.7 Still, as long as mean function is
linear and the researcher knows it, generalization beyond the predictor values
in the data can be justified.

Figure 2 illustrates why. The predictor values in the data are random re-
alizations from the predictor’s underlying distribution. Any time that Y and
X are observed, the values of both random variables could have been di↵er-
ent, not just for Y . In Figure 2, the black line is nature’s mean function. The
blue circles are observations for one random data realization. The red circles
are observations from another random data realization. The implications for a
correct mean function are much the same as before with one important addi-
tion: we are able to map the correct, linear form for the conditional means of
the response no matter which predictor values happen to appear in the data.
Conditioning on the predictor values once again permits valid estimates. This
is another backstory, perhaps less common, but like the first requires that the
mean function is linear and the researcher knows it. Generalizations to nonlin-
ear relationships can sometimes be justified by a similar account, but there can
also be complications we will address later.

Figure 3 tells a much darker and complicated tale. Just as in Figure 2, both
the response and the predictor are random variables. Nature’s mean function,
shown by the broken line in black, is now nonlinear. Clearly, any linear function
will fail to reproduce nature’s true mean function. But there is much more to
the story.

6With fixed X, when the regression model is first order and second order correct, regression
coe�cient estimates from least squares regression are the “best linear unbiased estimates”
(BLUE) available. But with random X, least squares estimates are nonlinear in X.

7This is necessarily true when the predictors are fixed.
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Figure 2: The Canonical Regression Formulation with Y a Deterministic Linear
Function of a Random X

X

Y

Population Linear 
Approximation 

An Observation

Random X and a Nonlinear Mean Function

Red Sample Estimate

Blue Sample Estimate

Figure 3: Nonlinear Mean Function and Random X
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Because of the nonlinear mean function, the predictor values in one’s sample
matter in new and important ways. If a researcher happens to get the data
shown with the red circles, the conditional means from a linear least squares
regression result in a substantially steeper slope than if the researcher happens to
get the data shown with the blue circles. The population predictor distribution,
therefore, is related to �̂ and �̂2. For example, if the predictor distribution is
concentrated at low values, blue circles rather than red circles are more likely
to be realized. If the predictor distribution is concentrated as high values, the
reverse is true. Regression estimates no longer have their desirable properties.

But it’s worse. For the moment, imagine a population that could be gen-
erated by nature. Imagine being able to compute a bivariate least squares
regression in that population. One can quite properly interpret that regression
as a feature of the population. In the population, the nonlinear mean function
is still the correct functional form. The population regression is a linear approx-
imation of the true mean function. The approximation is shown as the straight
gray line in Figure 3.

Suppose the data on hand can be seen as random sample from such a popula-
tion. How well do linear regressions computed from di↵erent samples estimate
the population linear approximation? Figure 3 shows that the least squares
regressions computed from the red data or the blue data fail to get the pop-
ulation linear approximation right. In a least squares regression, researchers
condition on the predictor values realized in the sample. In actual samples, the
least squares regression will almost surely di↵er systematically from a popula-
tion linear approximation. From any given sample, a researcher only gets to
see a random piece of that nonlinear truth. As shown in Figure 2, this is not a
problem when the true relationship is actually linear. From Figure 3, one learns
that with a nonlinear mean function and random variable predictor, a linear
mean function computed from real data will misrepresent the population non-
linear mean function and likely misrepresent a linear, population least squares
mean function as well. Any given sample will not have all of the information
required.8

Building on randomX, there is nevertheless a defensible way to proceed. The
true mean function is taken to be unknown and with no requirement of linearity.
One accepts that the true mean function cannot be properly estimated from the
data. But perhaps a population linear approximation of the truth has useful
substantive information even through it is almost surely incorrect. It is this
population linear approximation that one seeks to estimate. The same approach
can apply when there are many predictors. The estimation target is then a
population hyperplane.

Despite the disappointing conclusions from Figure 3, it is possible to obtain
suitable estimates of the linear approximation and appropriate standard errors,
at least in large samples. We turn to a more technical discussion to make

8We have been assuming that the regression predictor is a random variable because we
will make good use of random predictors shortly. But the problems just described have some
similar counterparts with fixed predictors, although a somewhat di↵erent formation from the
ground up is required to characterize them.
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the rationale and results much more precise. Readers interested primarily in
practical implications may wish to skip to Section 5.

4 Conceptual Formalities

We begin with a set of q random variables Z1, Z2, . . . , Zq

characterized by a joint
probability distribution. Because Z1, Z2, . . . , Zq

are random variables, they have
mathematically defined properties such as means (usually called expectations),
variances, and covariances, much like a real data set. It can be instructive,
therefore, to refer to the joint probability distribution as a “population.” We
will on occasion refer to this population as a feature of “nature.”

It is important to stress that in contrast to populations associated with
conventional regression, in this population all variables are random variables.
We assume each random variable has second moments that exist and that the
covariance matrix of the random variables is full rank (i.e., no subset of variables
is an exact linear function of another subset of variables). These requirements
for the random variables are not important constraints in practice. No particular
distributional form is imposed (e.g., multivariate normality).

A researcher designates one of the random variables as a response variable,
denoted by Y. The researcher also designates p other random variables as pre-
dictors, denoted by X1, X2, . . . , Xp

. All predictors are collected in a matrix X
with p ` 1 columns that includes a leading column of 1s. The distinction be-
tween a response and its predictors is not inherent in nature’s population. It
derives from subject-matter knowledge and interests that a researcher imposes
on the random variables.

Data on hand are treated as random realizations from nature’s joint prob-
ability distribution. Each observation i is one such realization, and all of the
observations are realized independently. One usefully can think of each obser-
vation as a random, independent draw from nature’s population. Even though
a researcher has made a distinction between Y and X, the data are not in gen-
eral a realization from the regression formulation shown in Equation 1. This
is a fundamental di↵erence between conventional regression modeling and the
formulation to follow.

4.1 Some Features of the Population

For this formulation to play through, it is essential to be far more precise about
the population and its properties. For a more detailed discussion see Buja et al.
(2013).

1. As a notational convenience, we write the set of random variables
›Ñ
X “

p1, X1, . . . , Xp

qT as a column vector that includes a 1 for the intercept.
The variables may be quantitative or categorical. This notation will make
some of the expressions to follow seem unfamiliar.
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2. There is a “true response surface” µp›Ñ
Xq in nature’s population, that is the

expectation of the response conditional on given values for the predictors›Ñ
X. More formally,

µp›Ñ
Xq “ ErY |›ÑXs. (2)

A possible population target for estimation is a set of expected values one
might conventionally denote by µ

i

|X
i

. But the conventional notation does
not indicate that the population “means” are actually expected values, so
the notation in Equation 2 is preferred. This is a key di↵erence from the
usual inferential approach and is a game-changer. There is randomness in
the population that cascades though any regression analysis.

3. There is no assumption of linearity for the true response surface. Indeed,
the working assumption is that it is nonlinear. It might be truly nonlinear
or be nonlinear because of omitted variables or other factors. At this point,
no distinctions are made between di↵erent reasons for the nonlinearity.

4. There is a population linear least squares approximation of the response
variable’s conditional expectations.

�T

›Ñ
X “ �0 ` �1X1 ` . . . ` �

p

X
p

, (3)

where

� “ argmin
�̃

ErpY ´ �̃T

›Ñ
Xq2s “ Er›ÑX›Ñ

X
T s´1Erµp›Ñ

Xq›Ñ
Xs. (4)

The regression coe�cients are a function of expectations that depend on
the predictors. In e↵ect, one is working with expectations of cross-product
matrices rather than realized cross-product matrices.

5. The usual covariance adjustments are in play, but are now a function of
the random predictors. Consider the p-vector of regression coe�cients
denoted by �

j‚:

�
j‚ “ argmin

�̃

ErpX
j

´ �̃T

›Ñ
X

notj

q2s “ Er›ÑX
notj

›Ñ
X

T

notj

s´1Er›ÑX
notj

X
j

s.
(5)

Then the adjusted jth predictor is9

X
j‚ “ X

j

´ �T

j‚
›Ñ
X

notj

(6)

Finally, the population regression coe�cient for that predictor is

�
j

“ ErY X
j‚s

ErX2
j‚s , (7)

which is just the jth component of Equation 4.

9The subscript notj is all predictors but the jth predictor. The intercept �0 is also subject
to adjustment, but it is still interpreted as a constant.
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6. Because the linear approximation from Equation 4 is just an approxima-
tion of the true response surface from Equation 2, there must be explicit
allowance for mean function error ⌘p›Ñ

Xq that is responsible for disparities
between the two:

⌘p›Ñ
Xq “ �

T

›Ñ
X ´ µp›Ñ

Xq. (8)

Both terms to the right of the equal sign are random variables because›Ñ
X is random. Hence, the di↵erence between the two terms is a random
variable as well. In e↵ect, there is a new kind of disturbance term. This
will have important implications for how uncertainty in statistics from
samples is addressed.

7. There is, in addition, “pure noise” (also called “irreducible error”) ✏ de-
fined as

✏ “ Y ´ µp›Ñ
Xq. (9)

Even if one knows the true response surface, the population fit of Y will
not likely be exact. The best one can usually do is the true conditional
means, and there will be a distribution of response values around each.
This is a consequence of the joint probability distribution formulation.
The variance of ✏ can vary over predictor values. There is no requirement
of homoscedasticity. Even more, the conditional distribution itself of ✏ can
di↵er over di↵erent locations in the predictor space.10

8. It follows that in the population the total disparity between any hypothet-
ical value of the response and the population linear approximation can be
written as,

⇠ “ Y ´ �T

›Ñ
X “ ⌘p›Ñ

Xq ` ✏. (10)

Figure 4 is a visual aide. The di↵erence between a hypothetical value of the
response and the population mean function ⌘p›Ñ

Xq we call “total error.” It can
be decomposed into mean function error and irreducible error, both random
quantities. The decomposition will figure significantly in later material.11

4.2 Sample Properties

Suppose least squares regression computations are applied to the realized data
in the usual way. In conventional matrix notation (because we are working with
a sample),

�̂ “ p�̂0, �̂1, . . . , �̂p

qT “ (11)

argmin
�̃

pY ´ X�̃q2 “ (12)

pXTXq´1XTY. (13)

10In general, the “pure noise” ✏ is not stochastically independent of the predictors, though
it is uncorrelated with them.

11In equation form, Y “ �T
›Ñ
X ` ⌘p›Ñ

Xq ` ✏.
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Yi

Figure 4: A Decomposition of “Total Error” in the Population

The intent is not to estimate nature’s true mean function. The intent is to
estimate the population linear approximation of µ|X. We have given up on
trying to estimate the “truth,” and the model we are applying is explicitly
permitted to be wrong. Nevertheless, the usual expressions follow. For the hat
or projection matrix:

H “ XpXTXq´1XT . (14)

For the fitted values:
Ŷ “ X�̂ “ HY. (15)

For sample residuals, which are not the population “residuals” ⇠,

r “ Y ´ X�̂ “ pI ´ HqY. (16)

In summary, the estimation target is not nature’s response surface. The
estimation target is nature’s linear approximation of that surface. How closely
the two correspond is unknown. Researchers are to make the best they can of
the linear approximation that with respect to the “truth” is explicitly allowed
to be wrong. We have even more thoroughly parted company with conventional
least squares regression.

5 Working with the Linear Approximation

5.1 Interpreting the Regression Coe�cients

What is the nature of the slopes for the population linear approximation? The
regression coe�cients are just the usual slopes of a linear least squares fit. Each
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slope represents the di↵erence in the expectation of the response for a unit
di↵erence in the predictor, after adjusting for the predictor’s linear association
with all other predictors. What the population slopes convey with respect to
the true conditional means is rather di↵erent.

For ease of exposition, consider the slope when there is a single predictor.

� “ E

»

–
Y ´EpY q
X´EpXq pX ´ EpXqq2
ErpX ´ EpXqq2s

fi

fl , (17)

From the fraction in the numerator, the slope for any hypothetical case is based
on the slope of a line segment from the center point pEpXq, EpY qq to a hypo-
thetical data point pX,Y q.12 Each such slope is weighted by the ratio of the
squared deviation score pX´EpXqq2 and the expected value of such squared de-
viation score in the population. Slopes of line segments farther from the EpXq
are given more weight because they have greater influence on the population
slope.

X

Y

Linear Approximation as an Average  Slope

X,Y

Linear Approximation

Figure 5: Linear Approximation Slope as an Average of Slopes for a Single
Predictor

One can interpret � as an average slope. Figure 5 provides a visual rendering
of what is being estimated. (As before, one allows the population true mean

12The term “hypothetical” is used because the population is a joint probability distribution.
There are no realized observations.
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function to be nonlinear.) In Figure 5, there are six line segments, one for each
observation shown. These are slopes. Each slope goes through the expectations
of the response and the predictor, shown by the large black circle, as it should.
The population least squares linear approximation, shown with a thick black
line, has a slope that is the weighted average of the six. It gets the slope wrong
for each observation. Nevertheless, it may be an instructive summary of how X
and Y are related within the population. The population linear approximation
is properly estimated by the sample least squares line.

When there is more than one predictor, the same interpretation applies
with the qualification that each slope is a “partial” slope subject to the usual
covariance adjustments. In e↵ect, each predictor is residualized by removing
any linear associations it has with all other predictors. Each slope represents
the average di↵erence in the expectation of the response for a one unit di↵erence
in the residualized predictor.

One must be careful not to ask more of the population linear approximation
than it can deliver. The impact of any omitted variables that are true con-
founders13 are absorbed in the regression coe�cients used in the linear approx-
imation. The residualization process cannot address that confounding. More-
over, the slope is an average. Consequently, it will likely overstate or understate
the slope at any particular observation. For example, the slope for one more
year of education beyond 9th grade could be very di↵erent from the slope for
one more year of education beyond 11th grade. Yet, the linear approximation
imposes the same slope. One risks both misleading description and misleading
causal inferences. If it makes sense to talk about causal e↵ects, they may ac-
tually di↵er by predictor values, but under the linear approximation all causal
e↵ects are of the same direction and size.14

Still, working with an average slope may not be as limiting as it first appears.
In randomized experiments, for example, it is common to seek estimates of the
average treatment e↵ect (ATE). This is an average over study subjects for which
heterogeneity in potential responses under both the experimental or control
condition is assumed (Holland, 1986). The slope of our linear approximation is
in the same spirit, even when given no causal interpretation.

5.2 Estimation

We have abandoned trying to estimate nature’s true conditional expectations
µ|›ÑX, and are prepared to settle for a linear approximation �T

›Ñ
X. We seek to

estimate the linear conditional mean function within nature’s joint probability
distribution. We do this with the available data.

But, as already noted, the estimated least squares regression coe�cients
depend on which predictor values happen to appear in the data. Moreover, the

13They are correlated with the response variable and one or more predictors.
14The issues can be subtle. In the presence of confounding, one is at best getting an estimate

of the average causal e↵ect when both the designated predictor and the omitted predictors
with which it is confounded are manipulated. What are those omitted predictors and are they
actually manipulable?
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estimates from any given sample will be derived from incomplete information
because response values can only be observed for a random subset of predictor
values. Empirical realizations for the full response surface not available. The
result is that any given sample will provide incorrect estimates of the population
linear approximation, and over realizations of the data, those mistakes do not
cancel out. There is bias.

With larger samples, however, the regions of the true response surface that
are not observed will be fewer. One can imagine that as the sample size grows
without limit, the entire response surface will be observed. There is, then, no
bias in the linear approximation. Stated more conventionally, the population
linear approximation can be estimated with conventional least squares so that
the bias disappears asymptotically. This means that in practice, the bias can
be small in large samples.

The joint distribution of the regression coe�cients is asymptotically normal.
The marginal distributions are as well. This means that the stage is nearly set
for conventional statistical inference, at least in large samples.

It may be important to underscore that the regression coe�cients can be
estimated in an asymptotically unbiased manner even in the presence of con-
founding. Omitted variables can raise interpretative problems to be sure, but in
contrast to conventional regression, do not preclude valid statistical inference.

5.3 Standard Errors

If uncertainty in estimates of the linear approximation is to be properly ad-
dressed, appropriate standard errors can be essential. One might think that
because the linear approximation is just least squares regression, the usual re-
gression standard errors would su�ce. They don’t.

One problem is that by working with random rather than fixed predictors,
there is an additional source of uncertainty. Estimates are not limited to the
predictor values in the data. Another problem is that because the disparities
between the expectations of the fitted values from the linear approximation and
the expectations of nature’s conditional mean are not constant, neither is the
variance around the linear approximation. There can be nonconstant variance in
the overall error ⇠ even if the variance in the irreducible error ✏ is constant (i.e.,
homoscedastisic).To emphasize this point, the expression for the misspecification
disparities is reproduced subscripted for each possible observation.

⌘p›Ñ
X

i

q “ �T

›Ñ
X

i

´ µp›Ñ
X

i

q. (18)

Because ⌘p›Ñ
X

i

q is a function of the random predictors, it is also a random
quantity. And as such, it contributes to the random variation around the ex-
pectations of the linear approximation’s fitted values and causes the variances
to di↵er.

Figure 6 illustrates how. Observations Y1 and Y2 happen to have the same
sized irreducible errors shown in blue. Yet, the total error, shown in red, is larger
for Y2. The reason is that the mean function error, shown in magenta, is larger
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Figure 6: Source of Nonconstant Variance in Linear Approximation Estimates

for Y2. Because the true mean function is nonlinear, its distance from the linear
approximation will vary, and that varying distance is built into the variance of
disparities between observations and the linear approximation. The result is
nonconstant variance around the fitted values from the linear approximation.
Conventional least squares regression standard errors estimated from the data
are incorrect and potentially misleading. In general, they will be too small.
There is false power.

One might think that the problems with the conventional standard errors
are less serious in larger samples. Actually, the problems remain. As the sample
size increases, the mean squared error of the estimated approximation decreases.
However, it still will have two components. The first is the irreducible error
resulting from variation around nature’s true conditional means. The second
results from the misspecification inherent in the linear approximation coupled
with random predictors. Both decline in larger samples, but at the same rate;
the consequences of model misspecification do not decline relative to the irre-
ducible error. No matter what the sample size, therefore, one is still faced with
nonconstant variability in the estimated linear approximation.

5.3.1 Huber-White Standard Errors

There are two good ways to obtain asymptotically valid standard errors. The
first uses Huber-White robust standard errors, sometime called the “sandwich
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estimator.” It’s trick is to allow the square of each case’s residual, which will
vary in response to nonconstant variance, to directly a↵ect the calculations one
by one.15

Within our joint probability distribution framework, the Huber-White variance-
covariance matrix for the linear approximation’s regression coe�cients can be
written as,

VC
�̂

“ Er›ÑX›Ñ
X

T s´1Er�2p›Ñ
Xq›Ñ

X
›Ñ
X

T sEr›ÑX›Ñ
X

T s´1. (19)

The square root of the main diagonal elements are the standard errors. In

practice, estimates will depend on the usual predictor matrix X.16 Er›ÑX›Ñ
X

T s
is estimated pXTXq{N , and the estimated mean squared error �̂2 is obtained
from the standard regression output.

5.3.2 Bootstrap Standard Errors

The bootstrap is essentially a simulation of the frequentist thought experiment.
There are two approaches. The “parametric” method takes the regression model
as at least first order correct. It follows that the simulation addresses uncertainty
in Y caused by the disturbances only. Because the predictors are taken to
be fixed, they cannot be a source of uncertainty in Y . The “nonparametric”
method, consistent with the perspective taken here, treats uncertainty in Y as a
result of the disturbances and the predictors, which are random variables. The
nonparametric approach proceeds in the following manner.

1. There is a joint probability distribution F , as described earlier, that is the
source of the data.

2. The data are a random realization of size n.

3. There are in the data observed units u1, u2, . . . , un

that are of the same
type as found in the population. Here, the units might be individual
o↵enders.

4. For each realized unit, there are observed measurements for the response
variable and the predictor variables that are the same types as in the
joint probability distribution. For example, there might be measures of
criminal activity and the usual background variables. These measures
have an empirical joint distribution F̂ . F̂ is an estimate of F .

15There are several proposals that appear to improve the perfomance of Huber-White stan-
dard errors in remarkably small samples (Long and Ervin, 2000). The formal rationale,
however, is incomplete and may not be appropriate in our setting.

16There is more going on than might initially be apparent. The notational use of �2 does
not convey that the variance of the disturbances depends on the values of the predictors.
Other notation, such as �

2p›Ñ
Xq, could have been used, but would probably be unfamiliar. In

addition, each squared residual is an inconsistent estimate of the corresponding disturbance
variance. The bias does not go to 0 as the sample size increases without limit. It is the
expectation that is a consistent estimate. Nevertheless, Equation 19 “works” asymptotically.
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5. There are “plug-in” estimates for the parameter(s) ✓ “ tpF q that take the
form ✓̂ “ tpF̂ q. One can use the same function tp.q with the data that one
would use in the population if one could get to it. For example, ✓ can be
the set of regression coe�cients from the population linear approximation
and ✓̂ could be the regression coe�cient estimates from the data.

6. There are B samples drawn from the dataset sometimes called bootstrap
samples, s˚1, s˚2, . . . , s˚B . The samples at generated by random sampling
with replacement, although more complicated sampling designs are used
if they were used to generate the actual data originally. In practice, B
can be as small as 30 or larger than 1,000, depending on the data and the
purpose of the bootstrap.

7. There are plug-in estimates one computes for each of the B bootstrap
samples is tpY ˚1,X˚1q, tpY ˚2,X˚2q, . . . , tpY ˚B ,X˚Bq. For example, from
each bootstrap sample one might compute regression coe�cients.

8. The set of plug-in estimates can be used to construct an empirical sam-
pling distribution ✓̂. The standard deviation of the empirical sampling
distribution for each plug-in estimate is an estimate of the standard error.
For example, the standard deviation for each regression coe�cient over
bootstrap samples is an estimate of each regression coe�cient’s standard
error. It is also possible to undertake statistical tests and/or confidence
intervals directly from the empirical sampling distribution of the plug-in
estimates.

Both the Huber-White standard errors and the bootstrap standard errors
are only justified asymptotically and are asymptotically comparable. Which one
uses seems at this point to be a matter of convenience. We are exploring whether
the two approaches have di↵erent performance characteristics in samples of the
size one often sees in the social sciences.

6 A Simple Example

Consider a joint probability distribution of random variables for individuals
on probation in a large city. There is a dataset that can be sensibly seen
as a random realization from that joint distribution. For example, the joint
distribution characterizes all individuals on probation in that city for a five year
period, whereas the data are for all individuals from an arbitrary four-month
interval.17

Although the joint probability distribution is composed of many random
variables, only two are available:

17In practice, one would have to establish that the composition of the probationer population
and the process by which individuals were sentenced to parole did not change in important
ways over that five-year period.
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1. The number of prior charges for a serious crime at the time the individual
was sentenced to probation; and

2. The age at which an o↵ender had his/her first arrest leading to a court
appearance charged an adult.

The researcher treats the first as the response and treats the second as a pre-
dictor. A “serious” prior charge includes murder, attempted murder, robbery,
aggravated assault, and rape. At the time when an individual begins probation
supervision, what is the relationship between the age at which a first arrest
occurs and the number of prior charges for serious crimes?

The blue dots in Figure 7 represent the conditional expectations in the joint
probability distribution, which can be seen as the population. These conditional
expectations constitute the unknowable true response surface. Although for
visualization purposes they are plotted against the single predictor, they would
in practice be related to other predictors not included on the available data.
Those missing predictors might help explain why the conditional expectations
for the number of serious priors does not decline for the two youngest age groups
in contrast to the smooth, nearly monotonic decline thereafter. For example,
some of the charges for those under 18 may be treated as juvenile o↵enses and
not become part of the adult record. The number of prior charges is too small.
The conditional expectation for the youngest age group could be 13, not 10.2.18

The smaller red dots are a random realizations from the joint probability
distribution. The red dots are what the researcher gets to see. In this example,
the sample size is small to make the plot more visually accessible.19 The solid
black line is the estimated linear approximation. Its intercept is 6.2, and its
slope is -.13. As usual, the intercept is required to vertically locate the estimated
linear approximation, but in this instance has no substantive interpretation.20

The estimated slope indicates that on the average, the estimated mean number
of serious priors declines by .13 for every additional year of age at first arrest. For
some age intervals, however, the true slope is more steep. For other age intervals,
the true slope is less steep. For the two youngest ages, the true slope is actually
positive. Clearly, the linear approximation is missing important features of
the true relationship between conditional expectations of the response and the
predictor.

At the same time, both the estimated intercept and slope are asymptotically
unbiased estimates of the intercept and slope of the linear approximation within
nature’s joint probability distribution. In practice, a researcher would need to
decide whether the estimated linear approximation is substantively instructive.
Is it instructive to know the average slope between the age at first arrest and
the number of priors for serious priors?

18For this illustration, the blue dots are the means of the response for each arrest age from a
real dataset with nearly 200,000 observations. With so large a dataset, conditional means can
be treated for this illustration as if they were the population conditional expectations. Our
theoretical work, however, is based on a joint probability distribution, not a finite empirical
population.

19The realizations were randomly drawn for the empirical, finite population.
20It is the estimated mean number of serious priors at birth.
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Figure 7: A Linear Approximation in Practice

Some might argue that the relationship is uninteresting because criminal
activity that starts at an earlier age simply provides more time to acquire pri-
ors. However, individuals who start committing serious crimes at an early age
probably spend more time incarcerated. Despite being incapacitated for signif-
icant intervals, criminals who start early still manage to accumulate a greater
number of serious priors. One policy implication may be that the incarcerations
do not overcome a proclivity of early o↵enders to commit serious crimes. An-
other policy implication may be that the criminogenic impact of prison coupled
with its impact of subsequent employment dilute incapacitation and potential
deterrence.21

The conventional standard error for the slope is .021. The Huber-White
standard error .032. Even with larger Huber-White standard error, one would
reject the null hypothesis that the slope of the population linear approximation
was equal to zero. However, one would have more confidence in the test’s
validity with a somewhat larger sample. Because the Huber-White estimate is
substantially di↵erent from the conventional standard error, there is evidence
that there is misspecification of first order (nonlinearity) and/or second order
(heteroscedasticity) (Buja et al., 2013).

21An o↵ender’s current age would seem to be an obvious confounder. Older individuals
have more time to accumulate priors. However, whether current age is also related to the age
at which a first arrest occurs is an empirical question. And in these data, there is e↵ectively
no relatonship. Current age is not a confounder.
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In most applications, there would likely be additional predictors included in
analysis. Then the estimated slopes would be adjusted in the usual manner. One
would be estimating the population hyperplane in an asymptotically unbiased
fashion, and each regression coe�cient would be an average slope with all other
predictors “held constant.” The same asymptotically justified tests could follow.

7 Extensions

All of the discussion to this point applies to any conventional parametric regres-
sion. Any sensible basis functions can be used as long as they are determined
before the data analysis begins.22 For example, one might decide in advance to
fit cubic functions of certain predictors and indicator variables for others. One
is not limited to linear relationships between the response and the predictors.
In short, one should be able to work with linear or nonlinear approximations as
long as they are parametric.

More challenging is nonparametric regression in which tuning parameters
are determined by the data. Consider, for example, smoothing splines.23 There
can be one smoothed function with the response for each predictor, and each
smoothed function can have its own tuning parameter determining the degree
of smoothing.

A key complication is that the tuning parameters can legitimately vary with
sample size. With a larger sample, one can fit a more complex function to
reduce the bias with no necessary increase in the variance. Smaller values for
the tuning parameters follow. Under these circumstances, it is di�cult to think
about population smoothers, especially if that population has a limitless number
of observations. What does a population of limitless size mean for the values
of a tuning parameter? And how can any population smoother be a legitimate
estimation target for a smoother from a finite sample of a particular size? The
sample function and the population function will not be the same.

A major challenge, therefore, is how to arrive at sensible values for the tun-
ing parameters. In the case of a single predictor with a single tuning parameter,
Chaudhuri and Marron (2000) propose using a number of di↵erent tuning pa-
rameter values chosen to represent a range of sensible possibilities. Any given

22If they are determined as part of a data analysis in which di↵erent mean functions are
exained, there will be model selection bias. Estimates from the model selected will be biased,
and statistical tests and confidence intervals will be invaldiated. The only question is how
serious in practice those problems will be (Berk et al., 2010).

23For a single predictor,

PSSpf̂ ,�q “
Nÿ

i“1

rYi ´ f̂pXiqs2 ` �

ª
rf̂2ptqs2dt. (20)

PSS denotes penalized sum of squares to be minimized subject to a penalty tuning parameter
�, and f̂pXiq is the unknown function to be determined. The integral of the second derivatives
over X defines the complexity penalty. The expression can be generalized so that for p

predictors there are p such expressions combined additively to form the generalized additive
model (Hastie et al., 2009: section 9.1)
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turning parameter would define a population smoother. That tuning parameter
would also be applied to the sample. Then, fitted values from the sample would
be an asymptotically unbiased estimate of the fitted, conditional expectations
in the population for that turning parameter. The same approach would follow
for each tuning parameter value. One would not have single set of fitted values,
but a suite of fitted values. The estimation target would not be a approximation
line, but an approximation band.

Although this idea has real merit, there are to date serious practical limi-
tations. For example, it is not clear how one would work with more than one
predictor if for no other reason than computational demands. One would re-
quire a multidimensional grid of tuning parameter values. A second di�culty
is constructing proper confidence intervals and statistical tests. Although there
has been some progress (Chaudhuri and Marron, 1999), the existing procedures
are not designed for conventional confidence intervals or tests and are based on
incomplete formal justification. In short, estimation for population smoothers
as approximations is an ongoing research topic.24

8 Conclusions

The good news is that by and large, one can work with linear and nonlinear
parametric approximations using conventional regression software. The bad
news is that nevertheless, interpretation of the results requires substantial care.

A major conceptual complication is getting the right standard errors. One
can properly interpret the estimated regression coe�cients obtained from the
usual regression output, but the usual standard errors will be wrong. Fortu-
nately, many statistical packages provide access to Huber-White and/or non-
parametric bootstrap standard errors for regression coe�cients. As long as one
keeps in mind that the estimated approximation and standard errors are only
justified asymptotically, proper use can follow. In practice, this means that all
bets are o↵ in small samples (e.g., † 50). Then the only legitimate regression
enterprise is description of relationships in the data on hand. And that can be
very useful. It is still possible to learn lots of interesting things.

Proper interpretation of the results is more challenging. One has an esti-
mate of the approximation only. One does not have an estimate of the true
mean function. All substantive conclusions must rest on how instructive the ap-
proximation is for the questions being addressed. Recall that in the parametric
case, each slope estimates a weighted average slope over the range of a given
predictor once that predictor is residualized for all other predictors. But if the
average treatment e↵ect is instructive for analyses of randomized experiments,
perhaps the average slope is instructive for analyses of observational data.

If one is only working with approximations, why not proceed with a conven-
tional regression analysis and just interpret the regression as an approximation?

24Using smoothing results from a sample to estimate nature’s true response surface, raises
another set of very di�cult problems (Chaudhuri and Marron, 1999, section 2; Berk et al.,
2013).
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We suspect that this is often de facto practice. Researchers not really prepared
to defend their models as “truth.”

There are several reasons why this is a bad idea. First, in conventional
regression the estimation target is the true conditional means of Y with X
fixed. Within our formulation, the estimation target is the population linear
approximation with X random. There two di↵erent answers to the question
“estimates of what?” If one’s regression model is only an approximation, the
estimator target should be no di↵erent.

Second, it follows that in conventional regression, the estimates are likely to
be biased in finite samples and asymptotically as well. The bias is undesirable in
its own right, and undermines statistical tests and confidence intervals. In our
approach, the estimates are unbiased asymptotically. Surely this is preferable.

Third, conventional estimates of the standard errors are likely to be biased
in finite samples and asymptotically. All statistical tests and confidence inter-
vals can be very misleading. Huber-White standard error estimates can provide
asymptotically unbiased standard error estimates for the regression coe�cients,
but one is still undercut by the biased estimates of regression coe�cients and
fitted values. Statistical tests and confidence intervals will not perform as in-
tended. In our approach, the estimated standard errors are asymptotically un-
biased and at least in reasonably large samples, statistical tests and confidence
intervals will behave as they should. This too should be preferable.

Fourth, in conventional regression, there can be strong incentives to treat
regression coe�cients as estimates of causal e↵ects even though it is very unusual
for a social science causal model to meet the requisite assumptions when the
data are observational. Our approximation approach is explicitly agnostic with
respect to cause and e↵ect, and there are no claims that one is getting causal
e↵ect estimates. In that sense, our approach is conservative.

Finally, the conventional concerns about model misspecification and the
properties of the model’s disturbances (and all the diagnostics that can follow)
are at least substantially diluted. Recall that estimates of the population linear
approximation are asymptotically unbiased even in the presence of confounders.
Valid statistical inference can follow.

In short, to the degree that the many critiques of conventional regression
analysis have merit, we o↵er a constructive option. But one must be prepared
to abandon a framework in which with observational data one proceeds as if
valid estimates of nature’s true conditional means can be routinely obtained.
In practice, however, not much is being given up. Such estimates are rarely
available anyway.
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