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Abstract

For high-dimensional problems various para-
metric priors have been proposed to promote
sparse solutions. While parametric priors
has shown considerable success they are not
very robust in adapting to varying degrees of
sparsity. In this work we propose a discrete
mixture prior which is partially nonparamet-
ric. The right structure for the prior and the
amount of sparsity is estimated directly from
the data. Our experiments show that the pro-
posed prior adapts to sparsity much better
than its parametric counterparts. We apply
the proposed method to classification of high
dimensional microarray datasets.

1 Adaptive Sparsity

In high-dimensional prediction/estimation problems
(usually referred to as the large p, small n (p ≫ n)
paradigm, p being the dimension of the model and n
the sample size) it is desirable to obtain sparse solu-
tions. A sparse solution generally helps in better inter-
pretation of the model and more importantly leads to
better generalization on unseen data. While sparsity
can be defined technically in various ways one intuitive
notion is the proportion of model parameters that are
zero (or very close to zero).

For ease of exposition and also analytical tractability
we will focus on the problem of estimating a high-
dimensional vector from a noisy observation. Specif-
ically we are given p scalar observations z1, z2, . . . , zp
satisfying

zi = βi + ϵi, (1)
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where each ϵi is independent and distributed as ϵi ∼
N (ϵi|0, σ2

i ), i.e., a normal distribution with mean zero
and variance σ2

i . Based on the observation z =

(z1, z2, . . . , zp) we need to find an estimate β̂ of the
unknown parameters β = (β1, β2, . . . , βp). In the high-
dimensional sparse scenario a large number of βi’s are
zero (or near zero) but we do not know how many and
which of them are exactly zero. Hence with no infor-
mation on how sparse the vector β is, an estimator β̂
which adapts to the degree of sparsity is desirable.

This problem occurs in a wide range of practical ap-
plications, including model/feature selection in ma-
chine learning/data mining (Guyon and Elisseeff, 2003;
Dudoit et al., 2002; Tibshirani et al., 2002) (where
β could be the regression/classification weights),
smoothing/de-noising in signal processing (Johnstone
and Silverman, 2004), and multiple-hypothesis testing
in genomics/bio-informatics (Abramovich et al., 2006;
Efron and Tibshirani, 2007).

Estimators with following properties are desirable–

1. Shrinkage The maximum-likelihood estimator of
β is the observation z itself. For large p, ∥z∥ is gen-
erally over-inflated, i.e., quite larger than the true
value ∥β∥ (This has to do with the geometry of high-
dimensional distributions.). Hence this estimator can
be considerably improved by suitable shrinkage esti-
mators, which shrinks each estimate zi towards zero.

2. Thresholding For model interpretation, feature
selection, and significance testing applications it is de-
sirable that the estimate have some values to be ex-
actly zero (or almost close to zero).

3. Adaptive Sparsity It is very crucial that both
shrinkage and thresholding properties adapt to the de-
gree of the sparsity in the signal. A very sparse vector
would generally need a large amount of shrinkage while
a non-sparse signal would need no shrinkage. The de-
gree of sparsity is generally unknown and has to be
estimated from the data itself.
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1.1 Bayesian shrinkage

In a Bayesian setting both shrinkage and thresholding
can be achieved by imposing a suitable sparsity pro-
moting prior on β and then using a point estimate
based on the posterior of β (either the mean or me-
dian). Two broad categories of priors commonly used
are the shrinkage priors and the discrete mixture pri-
ors. Commonly used shrinkage priors include the nor-
mal (leading to the James-Stein estimator (James and
Stein, 1961)), Laplace (the Lasso (Tibshirani, 1996)
estimator), student-t (relevance vector machine (Tip-
ping, 2001)), the horseshoe (Carvalho et al., 2009)–all
these priors have zero mean (to encourage sparsity)
and an unknown parameter which controls the amount
of shrinkage/sparsity. Though a full Bayesian treat-
ment is optimal if the presumed prior is accurate, very
often the unknown parameter is considered a hyper-
parameter and is estimated either by cross-validation
or via an empirical Bayesian approach by maximizing
the marginal likelihood.

1.2 Discrete mixture priors

A conceptually more suitable prior is the discrete mix-
ture prior, which consists of a mixture prior on each βi

with an atom of probability w at zero and a suitable
prior γ for the nonzero part, i.e.,

p(βi|w, γ) = wδ(βi) + (1− w)γ(βi), (2)

where w ∈ [0, 1] is the mixture parameter and the δ(βi)
is defined as having a probability mass of 1 at βi = 0
and zero elsewhere. This prior captures our belief that
some of the βi, are exactly zero. The mixing parameter
w is the fraction of zeros in β and controls the sparsity
in the signal. The sparsity parameter w is treated as
a hyperparameter and estimated by maximizing the
marginal likelihood. Typically a parametric prior, ei-
ther a normal or a Laplace (Johnstone and Silverman,
2004) is used for the non-zero part. While parametric
priors here have shown considerable success, they are
not very robust because of the specific assumption on
the shape of the prior. Our simulation results show
that the estimate for w is biased and depends heav-
ily on the mismatch between the distribution of the
observation and shape of the prior used.

In this work we propose to use an unspecified dis-
tribution for the non-zero part of the mixture. We
show that the non-zero part of the prior is only in-
volved through the marginal density of the observa-
tions. Specifically under the mixture prior (2) our final
estimator is of the form (§ 4)

β̂i = (1− p̂i)

[
zi +

ĝ′(zi)

ĝ(zi)

]
, (3)

where ĝ(zi) is an estimate of the marginal density
g(zi) =

∫
N (µi|zi, 1)γ(µi)dµi corresponding to the

non-zero means, ĝ′(zi) is the derivative of this esti-
mate and p̂i is the estimated posterior probability of
βi being zero. Notice that γ, the prior for the non-zero
part is only involved through the marginal g. In our
approach both ĝ(zi) and p̂i are directly constructed
from the observations z. We use a weighted nonpara-
metric kernel density to estimate the marginal and its
derivative. We do not have to specify any prior or par-
ticular form of prior for the non-zero part, nor do we
need to directly construct an estimate for that prior.

The hyperparameter w is estimated by maximizing the
log marginal likelihood. Conditional on γ the marginal
likelihood for w depends directly on the marginal dis-
tribution of z under γ , and not otherwise on the prior
γ . Thus, given the estimate ĝ of the marginal distri-
bution of z under γ we estimate w by using this esti-
mated marginal distribution calculated at ĝ . Finally,
the weights in the weighted kernel density estimator
depend on the posterior probability that the corre-
sponding observation comes from the non-zero part
of the prior. For given w and γ these weights depend
on w and g, and we estimate these weights from the
corresponding formulas evaluated at ŵ and ĝ. The
estimation procedure can be fully explained by a pat-
tern of logic that resembles the logic in the familiar
Expectation-Maximization(EM) algorithm (Dempster
et al., 1977), but with the kernel density estimator of
g used in one of the M-steps rather than a true maxi-
mum likelihood estimator.

The rest of the paper is organized as follows. In § 2
we describe the nonparametric mixture prior used and
derive the posterior. We then describe an EM algo-
rithm (§ 3) to estimate the hyperparameter w and the
marginal g jointly. The estimated hyperparameters
are then plugged in to derive the posterior mean(§ 4).
Our simulation results(§ 5) show that the proposed al-
gorithm adapts to sparsity much better than its para-
metric counterparts. In § 6 we apply the proposed
procedure for regularization of high dimensional clas-
sification problems.

2 The Bayesian Setup

We will assume that the σ2
i are all equal and then

assume without loss of generality that the zi are scaled
such that σ2

i = 1 .

2.1 Likelihood

The likelihood of the parameters β = (β1, . . . , βp)
given independent observations z = (z1, . . . , zp) can
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be factored as

p(z|β) =
p∏

i=1

p(zi|βi) =

p∏
i=1

N (zi|βi, 1). (4)

The maximum-likelihood estimator of β is the observa-
tion z itself. As noted, this is not an effective estimator
in the context of our intended applications.

2.2 Mixture Prior

We will assume that each βi comes independently from
a mixture of a delta function with mass at zero and a
completely unspecified nonparametric density γ, i.e.,

p(βi|w, γ) = wδ(βi) + (1− w)γ(βi), (5)

where w ∈ [0, 1] describes the prior probability that
each βi = 0. This prior thus captures our belief that
some of the βi = 0 are zero, and w describes the
expected fraction of zeros. In model selection appli-
cations this corresponds to the number of irrelevant
parameters. We treat w as a hyperparameter and es-
timate it using an empirical Bayes approach by maxi-
mizing marginal likelihood.

Very often we do not have any prior information about
the distribution of the true non-zero scores. The choice
of γ also plays a very important role in how well the hy-
perparameter w can be estimated. The normal and the
Laplace prior have been previously used for γ (John-
stone and Silverman, 2004) and our simulations show
that the estimate of w is then biased due to the prior
mis-specification. A novel aspect of our prior is that
we will leave the nonzero part of the prior γ completely
unspecified. We will later show that the non-zero part
of the prior is only involved through the marginal den-
sity of the observations and propose an algorithm to
estimate it directly from the data.

2.3 Posterior

Given the hyper-parameter w and the prior γ the pos-
terior of β given the data z can be written as

p(β|z, w, γ) =
∏p

i=1 p(zi|βi)p(βi|w, γ)
m(z|w, γ)

, where (6)

m(z|w, γ) =
p∏

i=1

∫
p(zi|βi)p(βi|w, γ)dβi (7)

is the marginal of the data given the hyper-parameters.
For the likelihood (4) and the mixture prior (5)∫

p(zi|βi)p(βi|w, γ)dβi = wN (zi|0, 1) + (1− w)g(zi),

where

g(zi) =

∫
N (βi|zi, 1)γ(βi)dβi. (8)

Note g is the marginal density of zi given that βi is
non-zero. The posterior in (6) can now be factored as
follows p(β|z, w, γ) =

∏p
i=1 p(βi|zi, w, γ), where

p(βi|zi, w, γ)

=
wδ(βi)N (zi|0, 1) + (1− w)γ(βi)N (zi|βi, 1)

wN (zi|0, 1) + (1− w)g(zi)

= piδ(βi) + (1− pi)G(βi). (9)

Here

pi = p(βi = 0|zi, w, γ) =
wN (zi|0, 1)

wN (zi|0, 1) + (1− w)g(zi)
(10)

is the posterior probability of βi being 0 and

G(βi) =
N (βi|zi, 1)γ(βi)∫
N (βi|zi, 1)γ(βi)dβi

(11)

is the posterior density of βi when it is not 0.

3 Adapting to unknown sparsity

The hyperparameter w is estimated by maximizing the
marginal likelihood. The posterior of β is then com-
puted by plugging in the estimated ŵ and the mean of
the posterior is used as a point estimate of β.

3.1 Type II MLE for w

The hyperparameter w is the fraction of zeros in β. We
chose w to maximize the marginal likelihood–which is
the likelihood integrated over the model parameters.

ŵ = argmax
w

m(z|w, γ) = argmax
w

logm(z|w, γ).
(12)

This is also known as the Type II maximum likelihood
estimator for the hyperparameter. From (7) and (2.3)
the log-marginal can be written as

logm(z|w, γ) =
p∑

i=1

log [wN (zi|0, 1) + (1− w)g(zi)] ,

(13)
where g is the marginal density of the non-zero
{z′is}. Note that γ, the prior for the non-zero
part is only involved through the marginal g(zi) =∫
N (βi|zi, 1)γ(βi)dβi. If we can estimate g(zi) directly

then we do not have to specify any prior for the non-
zero part.

3.2 Nonparametric estimate of the marginal

However g is the marginal of the non-zero part. So to
estimate g we need to know whether each zi comes
from the zero part (βi = 0) or the non-zero part
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(βi ̸= 0). This feature of the likelihood suggests defin-
ing latent (unobserved) random variables δi which de-
scribes whether βi = 0 . These variables takes the
value δi = 1 if βi = 0, and δi = 0 otherwise. If we
know δi we can estimate g through a nonparametric
kernel density estimate (Wand and Jones, 1995) ĝδ of
the following form

ĝδ(z) =
1

n+h

p∑
j=1

(1− δj)K

(
z − zj

h

)
, (14)

where K is a function satisfying
∫
K(x)dx = 1 called

the kernel, h is the bandwidth of the kernel, and
n+ =

∑p
j=1(1 − δj) is the total number of non-zeros.

A widely used kernel is a normal density of zero mean
and unit variance, i.e., K(x) = N (x|0, 1). We set the
bandwidth of the kernel using the normal reference
rule (Wand and Jones, 1995) as h = O(p−1/5).

3.3 EM algorithm

The estimation and maximization outlined above can
be considerably simplified by proceeding in the manner
of the EM algorithm (Dempster et al., 1977). The EM
algorithm is an efficient iterative procedure to compute
the maximum-likelihood solution in presence of miss-
ing/hidden data. We will use the unknown indicator
variable δi as the missing data. If we know the missing
data δ = (δ1, . . . , δp) then the complete log marginal
likelihood can be written as

logm(z, δ|w, g)

=

p∑
i=1

log [δiwN (zi|0, 1) + (1− δi)(1− w)g(zi)] .

Each iteration of the EM algorithm consists
of two steps: an Expectation(E)-step and a
Maximization(M)-step. The M-step involves maxi-
mization of a lower bound on the log-likelihood that is
refined in each iteration by the E-step.

[1] E-step. Given the observation z and the current
estimate of w and g the conditional expectation (which
is a lower bound on the true likelihood) is

Eδ|z,ŵ,ĝ [logm(z, δ|ŵ, ĝ)]

=

p∑
i=1

p̂i logwN (zi|0, 1) + (1− p̂i) log ((1− w)ĝ(zi))

=

p∑
i=1

[p̂i logw + (1− p̂i) log(1− w)] + C, (15)

where the expectation is with respect to p(δ|z, ŵ, ĝ),
and p̂i = p(δi = 1|zi, ŵ, ĝ) = p(βi = 0|zi, ŵ, ĝ) and is
given by (10). The constant C is irrelevant to w. We

have used the fact that if δi are independent Bernoulli
random variables with probability p̂i and ai, bi are any
set of nonnegative constants then E[log(aiδi + bi(1 −
δi))] = p̂i log ai + (1− p̂i) log bi.

[2] M-step The parameter ŵ is then re-estimated by
maximizing (15)). By equating the gradient of (15) to
zero we obtain the following estimate

ŵ =

∑p
i=1 p̂i
p

. (16)

A new estimate of ĝ is obtained as follows

ĝ(zi) =
1

p̃h

p∑
j=1

(1− p̂j)K

(
zi − zj

h

)
, (17)

where p̃ =
∑p

j=1(1− p̂j). Each point gets weighted by
1 − p̂j . Here p̂j is computed through (10) with ĝ(zi)
updated from the last iteration, i.e.,

p̂i =
ŵN (zi|0, 1)

ŵN (zi|0, 1) + (1− ŵ)ĝ(zi)
. (18)

The final algorithm consists of the following two steps
which are repeated till convergence.

1. Compute p̂i using the current estimate ŵ and ĝ
as follows

p̂i =
ŵN (zi|0, 1)

ŵN (zi|0, 1) + (1− ŵ)ĝ(zi)
. (19)

2. Re-estimate ŵ and ĝ(zi) using the current estima-
tor p̂i as follows

ŵ =
1

p

p∑
i=1

p̂i, (20)

ĝ(zi) =
1

p̃h

p∑
j=1

(1− p̂j)K

(
zi − zj

h

)
. (21)

4 Posterior mean

The estimated hyperparameter ŵ can be plugged into
the posterior, and we use the posterior mean as a point
estimate for β.

β̂i = (1− p̂i)EG[βi]. (22)

The mean of the posterior also depends only on the
marginal and its derivative. Notice that

EG[βi] =

∫
βiN (βi|zi, 1)γ(βi)dβi∫
N (βi|zi, 1)γ(βi)dβi

= zi +
ĝ′(zi)

ĝ(zi)
. (23)

The marginal g and its derivative g′ are both estimated
through a weighted kernel density estimate. The ker-
nel density derivative estimate is given by

ĝ′(z) =
1

p̃h2

p∑
j=1

(1− p̂j)K
′
(
z − zj

h

)
. (24)
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5 Experimental validation

In order to validate our proposed procedure we design
the following simulation setup. A sequence β of length
p = 500 is generated with different degree of sparsity
and non-zero distribution. The sequence has βi = 0 at
wp randomly chosen positions, where the parameter
0 < w < 1 controls the sparsity and is equal to the
fraction of zeros in the sequence. The non-zero values
in β are sampled from different distributions a few of
which are illustrated in Figure 1. For each of these
distributions there is parameter V which controls the
strength of the signal. The observation zi is gener-
ated by adding N (0, 1) noise for each βi. Given z we
are interested in estimating the hyperparameter w and
recovering the true signal β.

Figure 2(a) shows an example of a sequence β used
in our simulations with w = 0.9 (a moderately sparse
signal) and the non-zero samples coming from a Bi-
modalGaussian distribution (with V = 6). Figure 2(b)
shows the noisy observation z. Figure 2(c) shows

our estimate β̂ (the mean of the posterior) for the
proposed method using a nonparametric prior. The
proposed nonparametric method estimated w as 0.89.
Figure 2(d) plots the value of the estimator as a func-
tion of the value of the observed signal. The estimates
shrink towards zero. The shrinkage profile is deter-
mined by the estimated w and also the distribution of
the non-zero part, which we have implicity determined
from the data based on the marginal.

Figure 2(e)-(h) shows the estimated marginal of the
non-zero part for four different stages of the EM algo-
rithm. When we start the iteration we assume all ob-
servations come from the non-zero part. Hence we see
a large peak at zero since most of the values are zero.
It can be seen that as the EM algorithm proceeds w
gets refined and marginal adapts to the non-zero part
(in this case a BimodalGaussian).

We compare our proposed method with the following
different empirical Bayesian methods all of which use
a mixture prior p(βi|w, γ) = wδ(βi) + (1− w)γ(βi).

1. Nonparametric The proposed procedure where
the non-zero part γ is completely unspecified.

2. Parametric normal γ = N(0, a2) is a normal
density where a is unknown.

3. Parametric Laplace (Johnstone and Silverman,
2004) γ is a Laplace density with an unknown disper-
sion parameter a.

4. Nonparametric without mixing Here γ is un-
specified but there is no mixing, i.e., w = 0. This is
very similar to the approach used in Greenshtein and
Park (2009).
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Figure 1: The different distributions used in our sim-
ulation setup for the non-zero part of the sequence.

The mean squared error MSE = 1/p
∑p

i=1(βi − β̂i)
2

is used to evaluate the accuracy of the estimation pro-
cedure. Note that the maximum likelihood estima-
tor(MLE) has a MSE of one. Figure 3 plots the esti-
mated ŵ and the MSE as a function of the actual w–
the fraction of zeros in the signal for different methods
and different choices of the non-zero distribution 1.
The results are averaged over 100 repetitions. Fig-
ure 3(c) and (f) plots the estimated ŵ and the MSE as
a function of V –the signal strength for different meth-
ods and different sparsity w. The following observa-
tions can be made–

• It can be seen that the proposed nonparametric
prior estimates w quite accurately and has the
lowest MSE among all the competing methods.

• The prior is clearly mis-specified when we assume
a normal or a Laplace and as a result there is a
large bias in the estimation of the hyperparameter
w–especially for less sparse signals. For less sparse
signals the proposed method has much lower MSE
than the estimators which use parametric priors.

• The nonparametric method adapts quite well to
sparsity. The parametric priors show good per-
formance only for very sparse signals.

• For all the methods as the sparsity of the signal
increases the estimation of w is more accurate.

• For the parametric methods the normal prior does
a better job at estimating w than the laplace prior
and also has a lower MSE.

• The nonparametric method without mixing has a
comparable MSE. By using a mixture prior the
proposed procedure results in a much lower MSE.

1Due to lack of space we show results for two differ-
ent choices of the nonparametric prior. Similar results are
observed for different choices of the non-zero distribution.
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Figure 2: (a) A sample sequence β used in our simulation studies. The p = 500 length sequence has 5% (w = 0.9)
of the values which are non-zero drawn from BimodalGaussian distribution with V = 6. (c) The observed noisy

signal z. (c) The estimate β̂ obtained by the proposed nonparametric method. (d) The shrinkage profile.
(e),(f),(g), and (h) The marginal estimated during four different iterations of the EM algorithm

6 High dimensional classification

In a typical binary classification scenario we are given a
training set D = {(xj , yj)}nj=1 containing n instances,
where xj ∈ Rp is an instance and yj ∈ Y = {0, 1} is
the corresponding known label. The task is to learn a
classification function δ : Rp → Y, which minimizes
the error on the training set and generalizes well on
unseen data. Very often it is convenient to learn a
discriminant function f : Rp → R. The classification
function can then be written as δ(x) = I(f(x) > θ),
where I is the indicator function and θ determines the
operating point of the classifier. The Receiver Oper-
ating Characteristic (ROC) curve is obtained as θ is
swept from −∞ to ∞.

Let f0 and f1 be the class-conditional densities of x
in class 0 and 1 respectively, i.e, f0(x) = Pr[x|y =
0] and f1(x) = Pr[x|y = 1]. Also let π0 and
π1 be the prior probability of class 0 and 1 respec-
tively. If f0, f1, π0, and π1 are known then the
optimal classifier is the Bayes rule given by δ(x) =
I (log f1(x)/f0(x) > log π0/π1). Linear Discriminant
Analysis (LDA)(also known as the Fisher’s rule) as-
sumes that f0 and f1 are p-variate normal distributions
with means µ0 and µ1 respectively and the same co-
variance matrix Σ. The corresponding discriminant
function can be written as

f(x) = log
f1(x)

f0(x)
= (µ1 − µ0)

⊤Σ−1(x− µ), (25)

where µ = (µ1 + µ0)/2, the overall mean of x. For
p ≫ n we cannot fit a full LDA model since the
covariance matrix Σ will be singular–hence we need

some sort of regularization. The simplest and one
of the most effective form of regularization for high-
dimensional data assumes that the features are inde-
pendent within each class–the covariance matrix is di-
agonal, i.e., Σ = diag(σ2

1 , . . . , σ
2
p). This is known as

diagonal linear discriminant analysis (DLDA) (Dudoit
et al., 2002) or the naive Bayes classifier. For a feature
vector x = [x1, . . . , xp] the corresponding discriminant
function can be written as

f(x) =

p∑
i=1

βi

(
xi − µi

σi

)
, βi =

µ1i − µ0i

σi
. (26)

DLDA estimates β by plugging the empirical estimates
for the population means µ1 and µ0, and the pooled
estimate for the common population variance, i.e.,

β̂i =
µ̂1i − µ̂0i

σ̂i
. (27)

In spite of strong independence assumptions, for high
dimensional problems, DLDA works remarkably well
in practice, often better than more sophisticated clas-
sifiers (Dudoit et al., 2002; Bickel and Levina, 2004).

In the high-dimensional setting when p ≫ n the plug-
in estimates β̂j are generally over-inflated (quite larger
than the true value βi) due to the limited sample
size–thus leading to poor generalization performance
on unseen data. We propose further regularization
by using the proposed estimator to shrink the esti-
mates. Note that zi = cβ̂i is approximately normal,
i.e., ∼ N (cβi, 1), where c =

√
n+n−/n and n+ and

n− are the number of positive and negative examples
respectively. Thus we can directly apply the proposed
procedure directly on zi and then rescale the estimates.
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6.1 Microarray example

We will demonstrate our procedure on a prostrate
cancer microarray dataset (Singh et al., 2002). The
dataset consists of p = 6033 genes measured on n =
102 subjects (50 healthy controls and 52 prostate can-
cer patients). Given a new microarray measuring the
same 6033 genes the task is to predict whether or not
the subject develops prostate cancer.

Figure 4(a) shows the leave-one-patient-out cross-
validated ROC curve and also the area under the ROC
curve (AUC) for the DLDA classifier and DLDA with
shrinkage based on parametric (normal/Laplace) and
the proposed nonparametric priors. It can be seen
that shrinkage estimators show a substantial improve-
ment over the plug-in estimates used by DLDA. The
nonparametric prior has a larger AUC than the para-
metric counterparts.

Figure 4(b) shows the profile of the different shrinkage
estimators and also the estimated w–which can be in-
terpreted as the fraction of irrelevant features/genes.
It can be seen that all shrinkage estimators achieve
effective feature selection by shrinking the right pro-
portion of the estimates to zero. The nonparametric
prior does a better job of adapting to the unknown
sparsity by estimating w more accurately and selects
the most sparse model.

7 Conclusions

In this work we propose a nonparametric discrete mix-
ture prior which adapts well to the unknown sparsity
in the signal. The key idea is to assume that there is
a prior on the parameter but to impose no structural
assumptions on that prior distribution and estimate
it directly from the data. An iterative EM algorithm
based on weighted non-parametric kernel density es-
timate was developed to estimate the sparsity in the
signal. Our experiments show that the proposed prior
adapts to sparsity much better than its parametric
counterparts. We applied this procedure for the high-
dimensional classification problems.

References

F. Abramovich, Y. Benjamini, D. L. Donoho, and I. M.
Johnstone. Adapting to Unknown Sparsity by Con-
trolling the False Discovery Rate. The Annals of
Statistics, 34(2):584–653, 2006.

P. Bickel and E. Levina. Some theory for Fisher’s lin-
ear discriminant function, ‘naive Bayes’, and some
alternatives when there are many more variables
than observations. Bernoulli , 10(6):989–1010, 2004.

C. M. Carvalho, N. G. Polson, and J. G. Scott. Han-

dling sparsity via the horseshoe. In In proceedings of
the 12th International Conference on Artificial In-
telligence and Statistics, pages 73–80, 2009.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society:
Series B, 39(1):1–38, 1977.

S. Dudoit, J. Fridlyand, and T. P. Speed. Compari-
son of discrimination methods for the classification
of tumors using gene expression data. Journal of
the American Statistical Association, 97(457):77–87,
2002.

B. Efron and R. Tibshirani. On testing the significance
of sets of genes. The Annals of Applied Statistics, 1
(1):107–129, 2007.

E. Greenshtein and J. Park. Application of non para-
metric empirical bayes estimation to high dimen-
sional classification. Journal of Machine Learning
Research, 10:1687–1704, 2009.

I. Guyon and A. Elisseeff. An introduction to vari-
able and feature selection. The Journal of Machine
Learning Research, 3:1157–1182, 2003.

W. James and C. Stein. Estimation with quadratic
loss. In Proc. 4th Berkeley Symp. Math. Statist.
Prob., pages 361–379, 1961.

I. M. Johnstone and B. W. Silverman. Needles and
straw in haystacks: Empirical Bayes estimates of
possibly sparse sequences. The Annals of Statistics,
32(4):1594–1649, 2004.

D. Singh, P. G. Febbo, K. Ross, D. G. Jackson,
J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw,
A. V. D’Amico, J. P. Richie, E. S. Lander, M. Loda,
P. W. Kanto, T. R. Golub, and W. R. Sellers. Gene
expression correlates of clinical prostate cancer be-
havior. Cancer Cell, 1(2):203–209, 2002.

R. Tibshirani. Regression shrinkage and selection via
the lasso. J. Royal. Statist. Soc B, 58(1):267–288,
1996.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu.
Diagnosis of multiple cancer types by shrunken cen-
troids of gene expression. Proceedings of the Na-
tional Academy of Sciences, 99(10):6567–6572, 2002.

M. E. Tipping. Sparse bayesian learning and the rele-
vance vector machine. Journal of Machine Learning
Research, 1:211–244, 2001.

M. P. Wand and M. C. Jones. Kernel Smoothing.
Chapman and Hall, 1995.



         636

Nonparametric prior for adaptive sparsity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Less Sparse ...      Sparsity      ... More Sparse

E
st

im
a
te

d
 w

 (
a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)
p=500 UnimodalConstant V=6

Nonparametric
Parametric normal
Parametric laplace

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Less Sparse ...      Sparsity      ... More Sparse

E
st

im
a
te

d
 w

 (
a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)

p=500 BimodalGaussian V=6

Nonparametric
Parametric normal
Parametric laplace

(b)

3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

V (strength of the signal)

E
st

im
a
te

d
 w

 (
a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)

N=500 Sparsity=0.80 UnimodalConstant

Nonparametric
Parametric normal
Parametric laplace

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Less Sparse ...       Sparsity      ... More Sparse

M
S

E
 (

a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)

p=500 UnimodalConstant V=6

Nonparametric
Nonparametric without mixing
Parametric normal
Parametric laplace
MLE

(d)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Less Sparse ...       Sparsity      ... More Sparse

M
S

E
 (

a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)
p=500 BimodalGaussian V=6

Nonparametric
Nonparametric without mixing
Parametric normal
Parametric laplace
MLE

(e)

3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

V (strength of the signal)

M
S

E
 (

a
ve

ra
g
e
d
 o

ve
r 

1
0
0
 t
ri
a
ls

)

N=500 Sparsity=0.80 UnimodalConstant

Nonparametric
Nonparametric without mixing
Parametric normal
Parametric laplace
MLE

(f)

Figure 3: (a),(b),(d), and (e)–The estimated ŵ and the mean squared error (MSE) as a function of sparsity–
the fraction of zeros in the signal–for different methods and two different choices of the non-zero distribution
(Unimodal constant and Bimodal Gaussian). A sequence of length p = 500 with signal strength parameter set to
V = 6 was used. (c) and (e) The estimated ŵ and the MSE as a function of V –the signal strength for different
methods. All the results are averaged over 100 repetitions.
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Figure 4: (a) The leave-one-patient-out cross-validated ROC curve for the prostrate cancer dataset for different
classifiers. (b) The profile of the different shrinkage estimators and also the estimated w.


