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Fast Computation of Kernel Estimators

Vikas C. RAYKAR, Ramani DURAISWAMI, and Linda H. ZHAO

The computational complexity of evaluating the kernel density estimate (or its deriv-
atives) at m evaluation points given n sample points scales quadratically as O(nm)—
making it prohibitively expensive for large datasets. While approximate methods like
binning could speed up the computation, they lack a precise control over the accuracy
of the approximation. There is no straightforward way of choosing the binning para-
meters a priori in order to achieve a desired approximation error. We propose a novel
computationally efficient ε-exact approximation algorithm for the univariate Gaussian
kernel-based density derivative estimation that reduces the computational complexity
from O(nm) to linear O(n + m). The user can specify a desired accuracy ε. The al-
gorithm guarantees that the actual error between the approximation and the original
kernel estimate will always be less than ε. We also apply our proposed fast algorithm
to speed up automatic bandwidth selection procedures. We compare our method to the
best available binning methods in terms of the speed and the accuracy. Our experimen-
tal results show that the proposed method is almost twice as fast as the best binning
methods and is around five orders of magnitude more accurate. The software for the
proposed method is available online.

Key Words: Bandwidth estimation; Binning; Fast Fourier transform; Kernel density
derivative estimation; Kernel density estimation.

1. INTRODUCTION

Density estimation techniques are widely used in exploratory data analysis, data mod-
eling, and various inference procedures in statistics and machine learning. The task of den-
sity estimation is to compute an estimate f̂ based on n iid samples x1, . . . , xn ∈ R drawn
from an unknown density f . One of the most popular nonparametric methods for density
estimation is the kernel density estimator (KDE) (see Wand and Jones 1995 for a review)

f̂ (x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
, (1.1)
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where K is the kernel function (such that K(u) ≥ 0 and
∫

R
K(u)du = 1) and h ∈ R

+
is the bandwidth of the kernel. Naive direct evaluation of (1.1) at m different evaluation
points xe1, . . . , xem ∈ R requires O(nm) kernel evaluations and O(nm) multiplications and
additions, making it prohibitively expensive for large datasets.

Estimation of the bandwidth (that is optimal in some sense) is also a computationally in-
tensive task. A plethora of techniques have been proposed for automatic data-driven band-
width selection (see Jones, Marron, and Sheather 1996 for a review). The most successful
state-of-the-art methods rely on the estimation of general integrated squared density deriv-

ative functionals. This is the most computationally intensive task, the computational cost
being O(n2). The core task contributing to this is the computation of an estimate of the
density derivative. For this reason we will also address the density derivative estimation
problems as well.

A simple estimator for the density derivative is obtained by taking the derivative of the
kernel density estimate (Bhattacharya 1967; Schuster 1969). If the kernel K is differen-
tiable r times, then the r th density derivative estimate f̂ (r)(x) can be computed as

f̂ (r)(x) = 1

nhr+1

n∑
i=1

K(r)

(
x − xi

h

)
, (1.2)

where K(r) is the r th derivative of the kernel K . The direct approach of evaluating the
density derivative (1.2) at m evaluation points given n sample points from the density also
requires O(nm) kernel evaluations and O(nm) additions and multiplications.

The most commonly used method to reduce the computational burden for KDE is to use
an approximation technique commonly known as binning (Scott 1981; Silverman 1982;
Scott and Sheather 1985; Härdle and Scott 1992). The main idea behind binning is to sub-
divide the interval into an equally spaced mesh of G (� n) grid points, g1 < · · · < gG,
and replace the data by grid counts c1, . . . , cG, where cj is a weight chosen to represent
the amount of data near gj . By computing the kernel estimates based on the grid counts,
the number of kernel evaluations and the number of additions and multiplications reduce
to O(Gm). If the evaluation points are also on a regular grid (this is usually the case for
graphical analysis of data)—so that m = G—then further savings can be obtained by ex-
ploiting the fact that certain kernel evaluations are used repeatedly. This can reduce the
number of kernel evaluations from O(G2) to O(G). The number of additions and multi-
plications required is still O(G2)—which can be further reduced to O(G logG) by using
the fast Fourier transform (FFT) to perform the discrete convolution (Silverman 1982).
Table 1 summarizes the time required by the different approximate algorithms. Further ap-
plications of these ideas, to more complex problems (including density derivative estima-
tion and kernel regression), can be found in the works of Fan and Marron (1994), Turlach
(1994), Wand (1994), Hall and Wand (1996), and Turlach and Wand (1996). Another class
of methods for polynomial kernels has been proposed by Seifert et al. (1994).

The accuracy of the binned estimator has been previously studied by Hall (1982), Jones
and Lotwick (1983), Scott and Sheather (1985), Jones (1989), Härdle and Scott (1992),
Hall and Wand (1996), and González-Manteiga, Sánchez Sellero, and Wand (1996). The
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Table 1. The computational complexity for various methods of evaluating the approximate kernel density esti-
mates at m evaluation points given n sample points from the density.

Number of Number of
Method kernel evaluations operations Approximation error

Direct O(nm) O(nm) Exact

Binning with G � n bins O(Gm) O(Gm) Accuracy increases with G

If evaluation points are equispaced
Binning with G = m bins O(G) O(G2) No mechanism to choose G

Binning with G = m bins and FFT O(G) O(G logG)

Proposed method O(pn + pm) User controlled

NOTE: p is a constant that depends on the desired accuracy.

accuracy depends on the number of grid points G and can be made arbitrarily good by in-
creasing G, at the expense of increase in the number of computations. However, there is no
straightforward way of choosing G in order to achieve a desired approximation error. Also
for a given G there are no good bounds on the approximation error. Hall and Wand (1996)
proposed that using G between 100 and 500 should give a reasonably good approximation.
For visual purposes Fan and Marron (1994) recommended using an equally spaced grid of
400 points. However, it should be clear that G depends heavily on the bandwidth of the
kernel used (small bandwidths require a finer grid) and also on type of density (densities
with sharp peaks require a much finer grid).

In this article we propose a very different computationally efficient approximation al-
gorithm for the univariate kernel density estimation. It can be used to estimate the r th
derivative of the density (note that r = 0 corresponds to the usual KDE). The algorithm
reduces the computational complexity from O(nm) to linear O(n + m). The algorithm is
based on the Taylor series expansion of the Gaussian kernel and retaining only the first
few terms so that the error due to truncation is less than the desired error. The technique is
inspired by the fast multipole methods used in computational physics (Greengard 1994).

Unlike binning, a desirable property of our proposed algorithm is that we are able to
control the approximation error. Because of the well-known optimal properties of the orig-
inal kernel estimators we have chosen to measure the errors between the proposed estima-
tor to the original kernel estimator. The user specifies a desired accuracy ε. The algorithm
guarantees that the actual error between the approximation and the original kernel esti-
mate will always be less than ε (made more precise in Section 2). The constant hidden
in O(n + m) depends on the desired accuracy, ε, which can be arbitrarily small. More
speedup can be obtained at the cost of reduced accuracy. In fact, for machine precision
accuracy (ε < 10−16) there is no difference in the answers provided by the direct and the
fast approximate algorithm. Our experimental results (see Table 2) show that for a wide
range of densities the proposed method is almost twice as fast as the best binning methods
and is around five orders of magnitude more accurate.

The binning methods achieve considerable savings by assuming that the evaluation
points lie on an equally spaced grid. This property helps to reduce the number of ker-
nel evaluations and, more importantly, to use the fast Fourier transform—which needs the
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evaluation points to be on an equally spaced grid. The proposed algorithm works irrespec-
tive of whether the evaluation points are on an equally spaced grid or completely scattered.
An equally spaced grid may be suitable for visualization purposes. For evaluation of kernel
functionals the evaluation points are the data points themselves, which do not necessarily
lie on an equally spaced grid. There have been some attempts to derive FFT-like algorithms
for nonuniform grid (Potts and Steidl 2003).

The proposed method can also be used in conjunction with the binning methods, lead-
ing to further computational savings. It can be used to speed up nonparametric kernel re-
gression methods. The estimation of the density derivative also comes up in various other
applications (Singh 1977) like estimation of modes of densities (Fukunaga and Hostetler
1975) and estimation of the derivatives of the projection index in projection pursuit algo-
rithms (Huber 1985).

The rest of the article is organized as follows. In Section 2 we make precise the notion of
our ε-exact approximation. The proposed fast algorithm is described in detail in Sections 3
and 4 with most of the technical details described in the appendices available online as
supplementary material. In Section 5 we show how the proposed procedure can be used to
speed up bandwidth estimation. In Section 6 we show simulation results on the speedup
achieved and the corresponding approximation error with points sampled from a series
of density functions of Marron and Wand (1992) with varying degree of smoothness and
complexity. Our experimental results show that to achieve a desired error our proposed
algorithm is almost twice as fast as the best binning methods and is around five orders of
magnitude more accurate.

2. GAUSSIAN KERNEL DENSITY DERIVATIVE ESTIMATION

A widely used kernel is the Gaussian kernel with zero mean and unit variance, that
is, K(u) = (1/

√
2π)e−u2/2. We have chosen to use the Gaussian kernel so that all the

r th derivatives can be easily estimated through the r th derivative of the kernel estimate.
A similar algorithm can be derived for other kernels as well. The r th derivative of the
Gaussian kernel K(u) is given by K(r)(u) = (−1)rHr(u)K(u), where Hr(u) is the r th
Hermite polynomial. The Hermite polynomials are a set of orthogonal polynomials. The
first few Hermite polynomials are H0(u) = 1, H1(u) = u, and H2(u) = u2 −1. Hence from
(1.2), the density derivative estimate with the Gaussian kernel can be written as

f̂ (r)(x) = (−1)r√
2πnhr+1

n∑
i=1

Hr

(
x − xi

h

)
e−(x−xi )

2/2h2
. (2.1)

The computational complexity of evaluating the r th derivative of the density estimate from
n data points at m evaluation points is thus O(rnm). Let us say we have to estimate the
density derivative at m evaluation points xe1, . . . , xem. More generally, we need to evaluate
the following sum:

f̂ (r)(xej ) =
n∑

i=1

qiHr

(
xej − xi

h1

)
e−(xej −xi )

2/h2
2, j = 1, . . . ,m, (2.2)
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where we have defined qi = (−1)r/(
√

2πnhr+1), h1 = h, and h2 = √
2h. A similar sum

(with appropriately defined qi , h1, and h2) is also involved in nonparametric kernel regres-
sion and the same algorithm can be used to accelerate it as well.

The computational complexity of evaluating (2.2) is O(rnm). We present an ε-exact
approximation algorithm that reduces the computational complexity to O(prn + qpr2m),
where the constants p and q depend on the desired precision ε and the bandwidth h. For
any given ε > 0 the algorithm computes an approximation f̂

(r)
ε (xej ) such that for any xej∣∣f̂ (r)

ε (xej ) − f̂ (r)(xej )
∣∣ ≤ Qε, (2.3)

where Q = ∑n
i=1 |qi |. We call f̂

(r)
ε (xej ) an ε-exact approximation to f̂ (r)(xej ).1

3. THE PROPOSED FAST ALGORITHM

The proposed fast algorithm is based on separating the xi and xej in the Gaussian kernel
via factorization by Taylor series and retaining only the first few terms so that the error due
to truncation of the infinite series is less than the desired error. For any nonnegative integer
p the Gaussian function can be factorized around any point x∗ ∈ R via the Taylor series as
follows (see Appendix A in the supplementary material available online):

e−(xej −xi )
2/h2

2 =
p−1∑
k=0

2k

k!
[
e−|xi−x∗|2/h2

2

(
xi − x∗

h2

)k]

×
[
e−|xej −x∗|2/h2

2

(
xej − x∗

h2

)k]
+ errorp, (3.1)

where errorp , the error due to retaining only the first p terms in the expansion, is bounded
as

errorp ≤ 2p

p!
( |xi − x∗|

h2

)p( |xej − x∗|
h2

)p

e−(|xi−x∗|−|xej −x∗|)2/h2
2 . (3.2)

The Hermite function can be factorized via the binomial theorem as follows (see Appen-
dix B in the supplementary material available online):

Hr

(
xej − xi

h1

)
=

�r/2	∑
s=0

r−2s∑
t=0

ast

(
xi − x∗

h1

)t(xej − x∗
h1

)r−2s−t

, (3.3)

where

ast = (−1)s+t r!
2ss!t !(r − 2s − t)! . (3.4)

1For the task of density derivative estimation Q = 1/(
√

2πhr+1). In practice we set ε = √
2πhr+1ε′ , where ε′

is our desired accuracy. This guarantees that the absolute value of the error between the direct implementation
and the approximate computation will be always less than ε′ .
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Combining (3.1) and (3.3), f̂ (r)(xej ) after ignoring the error term (errorp) can be approx-
imated as

f̂ (r)
ε (xej ) =

p−1∑
k=0

�r/2	∑
s=0

r−2s∑
t=0

astBkt e
−|xej −x∗|2/h2

2

(
xej − x∗

h2

)k(xej − x∗
h1

)r−2s−t

, (3.5)

where we have defined

Bkt = 2k

k!
n∑

i=1

qie
−|xi−x∗|2/h2

2

×
(

xi − x∗
h2

)k(
xi − x∗

h1

)t

, k = 0, . . . , p − 1, t = 0, . . . , r. (3.6)

The coefficients Bkt do not depend on xej and hence can be evaluated separately with
O(prn) operations. Once Bkt are evaluated, computing f̂

(r)
ε (xej ) at m points requires

O(pr2m) operations. Hence the number of computations required has reduced from
O(rnm) to O(prn + pr2m).

In order to maintain the desired error bound ε the truncation number p can be chosen
using the bound (3.2) (see Appendix C in the supplementary material available online).
Thus far, we have used the Taylor’s series expansion about a certain point x∗. However, if
we use one common x∗, we typically would require very high truncation number p since
the Taylor’s series gives good approximation only in a small open interval around x∗. So we
uniformly subdivide the space into L intervals of length, say, 2rx . Each of the n data points
x1, . . . , xn is assigned into one of the L clusters (the closest one), Sl for l = 1, . . . ,L with
cl being the center of each cluster. This step is similar to the binning idea. The aggregated
coefficients Bkt are now computed for each cluster and the total contribution from all the
clusters is summed up. Hence

f̂ (r)
ε (xej ) =

L∑
l=1

p−1∑
k=0

�r/2	∑
s=0

r−2s∑
t=0

astB
l
kt e

−|xej −cl |2/h2
2

(
xej − cl

h2

)k(xej − cl

h1

)r−2s−t

, (3.7)

where

Bl
kt = 2k

k!
∑
xi∈Sl

qie
−|xi−cl |2/h2

2

(
xi − cl

h2

)k(
xi − cl

h1

)t

, l = 1, . . . ,L. (3.8)

Since the Gaussian function decays very rapidly a further speedup is achieved if we
ignore all the points belonging to a cluster, if the cluster is greater than a certain distance
from the target point, i.e., for xej we can ignore all points in the cluster cl if |xej − cl | >

rex . The cluster cutoff radius rex depends on the desired error ε. Substituting h1 = h and
h2 = √

2h the final summation can be written as

f̂ (r)
ε (xej ) =

∑
∀l s.t. |xej −cl |≤rex

p−1∑
k=0

�r/2	∑
s=0

r−2s∑
t=0

astB
l
kt e

−|xej −cl |2/2h2

×
(

xej − cl

h

)k+r−2s−t

, (3.9)
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where

Bl
kt = 1

k!
∑
xi∈Sl

qie
−|xi−cl |2/2h2

(
xi − cl

h

)k+t

. (3.10)

Computing the coefficients Bl
kt for all the clusters is O(prn), since each point belongs

to only one cluster. Evaluation of f̂
(r)
ε (xej ) at m points is O(qpr2m), where we define

q (≤ L) to be the maximum number of neighbor clusters which influence xej . Hence the
total computational complexity is O(prn + qpr2m). For each cluster we need to store all
the pr coefficients. Hence the memory needed is of the order of O(prL + n + m).

Finally, given any ε > 0, we want to choose the following free parameters: rx (the
interval radius), rex (the cutoff radius for each cluster), and p (the truncation number) such
that for any point xej , |f̂ (r)

ε (xej ) − f̂ (r)(xej )| ≤ Qε, where Q = ∑n
i=1 |qi |. Appendix C

in the supplementary material available online describes in detail how to choose these
parameters. The final algorithm is summarized in the next section.

4. ALGORITHM: FAST KERNEL DENSITY
DERIVATIVE ESTIMATION

Given the following inputs:

(1) x1, . . . , xn, n points drawn from an unknown density f ,

(2) xe1, . . . , xem, m points where we want to evaluate the density derivative,

(3) r ≥ 0, the order of density derivative (r = 0 corresponds to the density estimate),

(4) h > 0, the bandwidth of the Gaussian kernel, and

(5) ε > 0, the desired approximation error,

the following algorithm computes an ε-exact approximation f̂
(r)
ε (xej ) to the Gaussian

kernel-based density derivative estimate

f̂ (r)(xej ) = (−1)r√
2πnhr+1

n∑
i=1

Hr

(
xej − xi

h

)
e−(xej −xi )

2/2h2
, (4.1)

such that for any xej , the error |f̂ (r)
ε (xej ) − f̂ (r)(xej )| ≤ ε.

1. Scale all the n + m points x1, . . . , xn, xe1, . . . , xem to lie in the unit interval [0,1].
Scale the bandwidth h appropriately.

2. Define q = (−1)r/
√

2πnhr+1 and set ε′ = ε/n|q|.
3. Choose the interval radius rx = h/2. Subdivide the unit interval into L intervals (Sl

for l = 1, . . . ,L) of length 2rx . Let cl be the center of each interval. Assign each xi

to the closest interval based on its distance to the interval center cl .

4. Choose the cutoff radius rex = rx + 2h

√
ln (

√
r!/ε′).
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5. Choose the truncation number p numerically such that
√

r!
p!

(
rxb

h2

)p

e−(rx−b)2/4h2 ≤ ε′, where

b = min

(
rex,

rx + √
r2
x + 8ph2

2

)
. (4.2)

6. For each Sl compute the aggregated coefficients Bl
kt for k = 0, . . . , p − 1 and t =

0, . . . , r :

Bl
kt = 1

k!
∑
xi∈Sl

qe−|xi−cl |2/2h2
(

xi − cl

h

)k+t

. (4.3)

7. Compute the coefficients ast for s = 0, . . . , �r/2	 and t = 0, . . . , r :

ast = (−1)s+t r!
2ss!t !(r − 2s − t)! . (4.4)

8. The approximate kernel density derivative at point xej is computed as

f̂ (r)
ε (xej ) =

∑
∀l s.t. |xej −cl |≤rex

p−1∑
k=0

�r/2	∑
s=0

r−2s∑
t=0

astB
l
kt e

−|xej −cl |2/2h2

×
(

xej − cl

h

)k+r−2s−t

. (4.5)

9. Rescale back the estimate.

5. FAST BANDWIDTH SELECTION

A plethora of techniques have been proposed for automatic data-driven bandwidth se-
lection (see Jones, Marron, and Sheather 1996 for a review). The most successful state-
of-the-art methods rely on the estimation of general integrated squared density derivative
functionals. This is the most computationally intensive task, the computational cost being
O(n2), where n is the number of sample points. One of the most successful among all
the current methods is the solve-the-equation plug-in method (Sheather and Jones 1991).
This involves the numerical solution of a nonlinear equation. Iterative methods to solve this
equation repeatedly use the density derivative functional estimator for different bandwidths
which further increases the computational burden. The general integrated squared density
derivative functional is defined as R(f (s)) = ∫

R
[f (s)(x)]2 dx. Using integration by parts,

this can be written in the following form (Wand and Jones 1995):

R
(
f (s)

) = (−1)s
∫

R

f (2s)(x)f (x) dx. (5.1)

More specifically, for even r = 2s we are interested in estimating density functionals of the
form

�r =
∫

R

f (r)(x)f (x) dx = E
[
f (r)(X)

]
. (5.2)



FAST COMPUTATION OF KERNEL ESTIMATORS 213

An estimator for �r is

�̂r = 1

n

n∑
i=1

f̂ (r)(xi), (5.3)

where f̂ (r)(xi) is the estimate of the r th derivative of the density f (x) at x = xi . Using a
kernel density derivative estimate for f̂ (r)(xi), we have

�̂r = 1

n2hr+1

n∑
i=1

n∑
j=1

K(r)

(
xi − xj

h

)
. (5.4)

Computing �̂r requires O(rn2) computations and hence can be very expensive if a direct
algorithm is used. The proposed algorithm can be used directly to reduce this to O((pr +
qpr2)n).

6. EXPERIMENTAL RESULTS

We demonstrate the speedup achieved of the proposed algorithm on the mixture of nor-
mal densities used by Marron and Wand (1992). The family of normal mixture densities
is extremely rich and any density can be approximated arbitrarily well by a member of
this family. Fifteen such densities were proposed by Marron and Wand (1992) as a typical
representative of the densities likely to be encountered in real data situations.

We sample n points from each density. In order to compare against the binning meth-
ods the kernel density estimates are evaluated at an equally spaced grid of m points. We
compare the proposed fast algorithm against the binned approximation and the naive direct
exact implementation in terms of the computation time and the approximation error. The
proposed fast algorithm was programmed in C++ with MATLAB bindings and was run on
a 2.4 GHz processor with 2 GB of RAM. The code is provided as a supplemental material.
For binning we use functions from the general purpose statistical smoothing library written
in MATLAB by J. S. Marron.2 We have modified the code so that the discrete convolution
in binning can be done using the fast Fourier transform (FFT), which for large number of
bins is much faster than the function provided by Marron. The speedup and the actual error
depend on the number of data points n, the number of evaluation points m, the bandwidth
of the kernel h, the order of the density derivative r , the density type, and for the proposed
algorithm the desired error ε.

6.1 SPEEDUP AS A FUNCTION OF n—THE NUMBER OF SAMPLE POINTS

For the first set of experiments we fix the evaluation grid and plot the computation time
and the approximation error as a function of the number of sample points. Figure 1(a) plots
the time (in seconds) required to compute the KDE as a function of n—the number of
sample points—for the direct, binned, binned with FFT, and the proposed fast method. The

2Can be downloaded from http://www.unc.edu/~marron/marron_software.html.

http://www.unc.edu/~marron/marron_software.html
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(a) (b)

Figure 1. (a) The time (in seconds) required to compute the KDE as a function of n—the number of sample
points—for the direct, binned approximation, binned approximation with FFT, and the proposed fast method. The
KDE was estimated at an equally spaced grid of m = 1000 points. The points were sampled from the strongly
skewed density of Marron and Wand (1992). (b) The maximum absolute error between the direct implementation
(exact) and the fast approximate algorithms. For the proposed algorithm the desired accuracy was set at 10−3.
The binned FFT has the same error as the binned method.

KDE was estimated at an equally spaced grid of m = 1000 points. The points were sampled

from the strongly skewed density of Marron and Wand (1992). The same bandwidth chosen

using the solve-the-equation plug-in method of Jones, Marron, and Sheather (1996) was

used for all the methods. For this experiment we do not report the time taken to compute

the optimal bandwidth. For each n, we use the optimal bandwidth selected by our method.

Choosing the optimal bandwidth is also a computationally intensive task and we separately

report the results for bandwidth estimation in Section 6.6.

The approximate methods (binned and proposed) are both significantly faster than the

naive direct computation. For smaller number of points (n < 10,000) all the approximate

methods take almost the same time. However, asymptotically as n increases, the proposed

method is faster than the binned approximation. For example, at n = 106 sample points

the direct computation takes 379.27 sec, while the binned approximation takes 2.32 sec

(a speedup of 164), and the proposed method takes only 0.92 sec (a speedup of 412). Note

that FFT does not help in speeding up the binned method since the evaluation grid is small.

The benefits of FFT can be seen only for large m (see Section 6.3).

Figure 1(b) plots the maximum absolute error between the direct exact implementa-

tion and the fast approximate algorithms. For the proposed algorithm we set the desired

accuracy to 10−3. More precisely we set ε = √
2πhr+110−3 (see (2.3)). This guarantees

that the absolute value of the error between the direct implementation and the approximate

computation will be always less than 10−3, as validated from the plot. In fact, the error

bound is very conservative (the error is of the order of 10−8 almost toward machine level

precision) and in fact we can safely set a much lower accuracy. The binned method gives

no guarantees on the error. For the binning methods we observe that as n increases the

error increases and binning does not provide an automatic mechanism to control this error.
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Table 2. The time (in seconds) required to compute the kernel density estimate for the direct, binned FFT, and
the proposed fast method for all the 15 densities of Marron and Wand (1992). The speedup achieved
and the maximum absolute error between the direct implementation (exact) and the fast approximate
algorithms are also shown. The KDE was evaluated at an equally spaced grid of m = 1000 points using
n = 100,000 points sampled from each density. For the proposed algorithm we set the desired accuracy
to 10−3.

Direct Binned FFT Proposed

Speedup over
Density Time (sec) Time (sec) Speedup Error Time (sec) Speedup Error binned FFT

1 21.41 0.31 68.39 6.2e–006 0.13 171.26 4.4e–010 2.50
2 29.66 0.33 90.41 2.5e–005 0.14 211.83 2.9e–010 2.34
3 35.89 0.20 176.80 1.9e–003 0.16 228.60 2.4e–011 1.29
4 23.89 0.16 152.17 1.6e–003 0.11 217.18 3.5e–011 1.43
5 28.70 0.20 141.39 4.9e–003 0.16 183.99 3.5e–011 1.30
6 28.78 0.16 183.32 1.2e–005 0.09 309.47 2.0e–010 1.69
7 22.05 0.16 140.43 1.2e–005 0.08 282.65 1.5e–010 2.01
8 26.91 0.09 286.24 2.7e–005 0.06 427.10 1.6e–010 1.49
9 29.75 0.20 146.55 2.2e–005 0.13 238.00 1.5e–010 1.62

10 31.66 0.11 290.42 7.6e–004 0.08 400.71 1.9e–011 1.38
11 25.33 0.31 80.92 2.8e–005 0.19 134.73 2.0e–010 1.66
12 36.98 0.31 118.16 1.2e–003 0.20 182.19 3.2e–011 1.54
13 37.30 0.17 216.84 2.3e–004 0.08 478.17 4.7e–011 2.21
14 29.11 0.11 264.63 2.6e–003 0.08 373.19 1.5e–011 1.41
15 27.52 0.22 126.22 1.2e–003 0.14 195.14 1.6e–011 1.55

6.2 SPEEDUP FOR DIFFERENT DENSITIES

Table 2 shows the same results for all the 15 densities of Marron and Wand (1992).
The KDE was evaluated at an equally spaced grid of m = 1000 points using n = 100,000
points sampled from each density. For a wide range of densities the proposed method is
almost twice as fast as the best binning method and is around five orders of magnitude
more accurate.

6.3 SPEEDUP AS A FUNCTION OF m—THE NUMBER OF EVALUATION POINTS

For the second set of experiments we fix n = 10,000 and plot the time and error as a
function of m—the number of points on the evaluation grid. Figure 2(a) shows the running
time (in seconds) for both the direct and the fast methods as a function of m. As can be seen
from the plot, the time required for the binned method grows as O(m2) and can exceed the
direct computation if a very fine evaluation grid is needed (large m). In such situations
FFT helps to speed up computations reducing the time to O(m logm), almost linear in m.
The proposed method takes linear O(m) time. While the binned FFT appears to be the
fastest method asymptotically, it can achieve an error comparable to the proposed method
only for very large m (see Figure 2(b)). Also note that the FFT can be used only for an
equally spaced evaluation grid while the proposed method does not require the evaluation
points to be equispaced. The error bound for the proposed method is very conservative and
we can obtain an improvement in the speedup by decreasing the required accuracy (see
Section 6.4).
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(a) (b)

Figure 2. (a) The time (in seconds) required to compute the KDE as a function of m—the number of grid
points—for the direct, binned, binned FFT, and the proposed fast method. The KDE was estimated using
n = 10,000 points sampled from the strongly skewed density of Marron and Wand (1992). (b) The maximum
absolute error between the direct implementation (exact) and the fast approximate algorithms. For the proposed
algorithm the desired accuracy was set at 10−3 (shown as a dotted line). The binned FFT has the same error as
the binned method.

6.4 SPEEDUP AS A FUNCTION OF ε—THE DESIRED ERROR

Figure 3(a) shows the running time (in seconds) for both the direct and the proposed

method as a function of ε—the desired accuracy—for the KDE evaluated at m = 10,000

points from n = 10,000 sample points. The time taken by the proposed method decreases

as the desired error ε increases. An increase in speedup is obtained at the cost of reduced

accuracy.

(a) (b)

Figure 3. (a) The time (in seconds) required to compute the KDE for the direct, binned, binned FFT, and the
proposed fast method as a function of ε—the target accuracy for the proposed method. The KDE was evaluated
at m = 10,000 points using n = 10,000 points sampled from the strongly skewed density of Marron and Wand
(1992). (b) The maximum absolute error between the direct implementation (exact) and the fast approximate
algorithms. The binned FFT has the same error as the binned method.
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(a) (b)

Figure 4. (a) The time (in seconds) required to compute the kernel density derivative for the direct and the pro-
posed fast method as a function of r—order of the derivative. The density derivative was evaluated at m = 10,000
points using n = 10,000 points sampled from the strongly skewed density of Marron and Wand (1992). (b) The
maximum absolute error between the direct implementation (exact) and the fast approximate algorithms. For the
proposed algorithm the desired accuracy was set at 10−3 (shown as a dotted line).

6.5 SPEEDUP FOR DENSITY DERIVATIVE ESTIMATION

The proposed method can be used to estimate the kernel density derivative estimate.
Figure 4(a) plots the running time (in seconds) for both the direct and the proposed method
as a function of r—the order of the density derivative. Note that r = 0 corresponds to the
kernel density estimate. We could not compare with the binning methods as there was no
code readily available. However, in terms of the speedup we expect performance similar to
that of the density estimate. There could be a difference in the approximation error.

6.6 SPEEDUP FOR BANDWIDTH ESTIMATION

The solve-the-equation plug-in method of Jones, Marron, and Sheather (1996) was im-
plemented in MATLAB with the core computational task of computing the density deriv-
ative written in C++. We sampled n = 50,000 points from each density. The optimal
bandwidth was estimated using both the direct methods and the proposed fast method. For
the fast method we used ε = 10−2. Table 3 shows the speedup achieved and the absolute
relative error. Since the proposed method uses an approximation to compute the density
derivative functional, we show the absolute relative error for the estimated bandwidth—
defined as |(hdirect −hfast)/hdirect|, where hdirect is the bandwidth estimated using the direct
method and hfast is the bandwidth estimated using the proposed fast method. We obtained
speedups in the range 85 to 150 with absolute relative error of 10−3 to 10−5.

7. CONCLUSION

In this article we proposed a fast approximate algorithm for kernel density (and deriv-
ative) estimation which reduced the computational complexity from O(nm) to linear
O(n + m). Unlike binning, a desirable property of our proposed algorithm is that we are
able to control the approximation error. The user specifies a desired accuracy ε. The algo-
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Table 3. The bandwidth estimated using the solve-the-equation plug-in method for the 15 normal mixture den-
sities of Marron and Wand. hdirect and hfast are the bandwidths estimated using the direct and the
proposed fast method, respectively. The running time in seconds for the direct and the fast methods
is shown. The absolute relative error is defined as |(hdirect − hfast)/hdirect|. In the study n = 50,000

points were sampled from the corresponding densities. For the fast method we used ε = 10−2.

Direct Proposed

Density hdirect Time (sec) hfast Time (sec) Speedup Error

1 0.122159 5049.30 0.122343 39.27 128.59 1.5e–003
2 0.081035 6124.13 0.081150 56.39 108.60 1.4e–003
3 0.019657 9840.98 0.019659 87.69 112.23 1.4e–004
4 0.020450 8700.64 0.020454 79.31 109.70 1.7e–004
5 0.012897 7515.09 0.012905 58.39 128.70 6.1e–004
6 0.097448 7287.58 0.097592 67.91 107.32 1.5e–003
7 0.091950 7258.11 0.092009 65.19 111.34 6.4e–004
8 0.074210 6974.06 0.074306 50.83 137.21 1.3e–003
9 0.081219 6712.83 0.081307 79.72 84.21 1.1e–003

10 0.024390 8198.69 0.024394 66.14 123.96 1.6e–004
11 0.090918 7042.25 0.091066 71.27 98.82 1.6e–003
12 0.032118 11,111.61 0.032128 99.05 112.19 3.3e–004
13 0.044978 9645.44 0.044995 75.55 127.67 3.7e–004
14 0.028111 12,040.91 0.028115 91.11 132.16 1.1e–004
15 0.022927 12,377.81 0.022928 86.75 142.68 7.0e–005

rithm guarantees that the actual error between the approximation and the original kernel
estimate will always be less than ε. The proposed algorithm works irrespective of whether
the evaluation points are on an equally spaced grid or completely scattered. Our experimen-
tal results show that the proposed method is faster and more accurate than the widely used
binning methods. We also apply our proposed fast algorithm to speed up the best automatic
bandwidth selection procedure. The proposed method can also be used in conjunction with
the binning methods, leading to further computational savings. Also the same algorithm
can be used to speed up nonparametric kernel regression methods.

SUPPLEMENTAL MATERIALS

Online appendix: The appendix contains the detailed derivations of the factorization of
the Gaussian function (Appendix A) and the Hermite polynomial (Appendix B). Ap-
pendix C describes how to choose the various parameters to achieve the desired error
bound. (FastKernelEstimator_Appendix.pdf)

MATLAB package: The package contains the MATLAB code for the proposed algorithm
for the fast kernel density derivative estimation and also for the bandwidth selection
method of Sheather and Jones (1991). The core computation is written in C++ with
a MATLAB wrapper. The package includes the compiled dll files for windows plat-
form. The C++ source code files are also available online at http://www.umiacs.umd.
edu/~vikas/Software/optimal_bw/optimal_bw_code.htm under the GNU Lesser Gen-
eral Public License. (FastKernelEstimator_MatlabPackage.zip)

[Received March 2009. Revised December 2009.]

http://www.umiacs.umd.edu/~vikas/Software/optimal_bw/optimal_bw_code.htm
http://www.umiacs.umd.edu/~vikas/Software/optimal_bw/optimal_bw_code.htm
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