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Summary. We construct approximate confidence intervals for a nonparametric regression func- 
tion, using polynomial splines with free-knot locations. The number of knots is determined by 
generalized cross-validation. The estimates of knot locations and coefficients are obtained 
through a non-linear least squares solution that corresponds to the maximum likelihood esti- 
mate. Confidence intervals are then constructed based on the asymptotic distribution of the 
maximum likelihood estimator. Average coverage probabilities and the accuracy of the estimate 
are examined via simulation. This includes comparisons between our method and some existing 
methods such as smoothing spline and variable knots selection as well as a Bayesian version 
of the variable knots method. Simulation results indicate that our method works well for smooth 
underlying functions and also reasonably well for discontinuous functions. It also performs well 
for fairly small sample sizes. 

Keywords: B-splines; Confidence intervals; Free knots; Nonparametric regression; Piecewise 
polynomials 

1. Introduction 

The nonparametric regression model 
IID 

Yi = f(xi) + oEi, i = 1,...,n, E~i N(0, 1), (1) 

with a2 unknown, has been studied extensively. We are interested in constructing practical 
estimates that are accompanied by confidence intervals for the underlying function values 
f(x). 

There are several procedures to estimate f. Kernel-type methods include kernel regression 
(Nadaraya, 1964) and local polynomial fitting (Fan and Gijbels, 1996; Loader, 1999). Confi- 
dence bands based on kernel estimators can be derived with bootstrap methods (Hiirdle and 
Marron, 1991) or bias correction methods (Eubank and Speckman, 1993; Xia, 1998). Wavelets 
are now also widely used and some recent literature has begun to investigate confidence intervals 
based on wavelet estimators (Picard and Tribouley, 2000). 

Spline models provide another popular method for estimating f. Wahba (1983) discussed 
confidence intervals based on smoothing spline estimators. For a detailed description of smooth- 
ing splines, see Wahba (1990). 

Because of their conceptual simplicity, polynomial spline methods have been widely used 
to construct estimators. In these f(x) is estimated by a piecewise mth order ((m - 1)th degree) 
polynomial connecting smoothly at points tl <... < tr, which are referred to as interior knots. It 
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is important to choose appropriately the number of knots r and their locations. In the current 
variable knot selection literature, the possible knots come from a predetermined set such as 
the design points or grid points in the range. A final set of knots is then chosen from these. 
Depending on the approach the choice of knots may involve linear regression model selection 
or a Bayesian model. The estimation of regression coefficients given the knots is via linear least 
squares. Some references which used this approach are Friedman and Silverman (1989), Fried- 
man (1991) and Stone et al. (1997). Some more recent, effective variations are in Smith and 
Kohn (1996), Denison et al. (1998), Lindstrom (1999), DiMatteo et al. (2001) and Zhou and 
Shen (2001). All the work cited above concerns the estimation of f. Zhou et al. (1998) have 
provided confidence intervals forf. 

Following the appearance of a preprint version of the present paper Kooperberg and Stone 
(2002) used a closely related free-knot construction of confidence intervals for nonparametric 
density estimates. 

We use free-knot polynomials, i.e. both the knot locations and the regression coefficients 
are considered to be unknowns to be estimated. This provides flexibility to allow inhomoge- 
neous smoothness of f(x) which can then be fully estimated by the data. Asymptotic confidence 
intervals can be constructed through a simple classical idea. 

We emphasize that model selection is used only to choose the optimal number of knots, 
not to choose knot locations among a large set of possible locations, as is done in the exist- 
ing variable knot schemes that were cited above. Partly because of this minimal use of model 
selection we can expect that the confidence intervals that we construct will have coverage prob- 
abilities that are close to their nominal values. Numerical results and some comparisons with 
smoothing splines and variable knots schemes including a Bayesian version are presented in 
Section 4. 

We now briefly introduce the method. We may view the set of order m splines with r interior 
knots as a given family of piecewise polynomial functions { f(O, x): 0}. The (2r +m)-dimensional 
parameter vector 0 describes the r knot locations along with the r + m necessary polynomial 
coefficients. The functions f(O, x) are piecewise polynomials of (m - 1)th degree. If the knots are 
distinct then they have m - 2 everywhere continuous derivatives. The function f(O, x) may have 
a lower degree of smoothness at locations where a multiplicity of knots occurs. For convenience 
we fix m = 4 throughout. 

The idea is to view model (1) as if it were a parametric non-linear regression model: 

Yi = f(O, xi) + si, i = 1,... ,n. (2) 

The estimation part of the statistical analysis involves first fixing r and estimating 0 = r by 
maximum likelihood within model (2). Then an estimated best value of r, rmin, is chosen through 
a generalized cross-validation (GCV) model selection device. The function f = f(Ormin, x) is our 
estimate off. 

The description of this estimator also makes feasible the construction of appealing confidence 
intervals for f(x). In addition to their heuristic and asymptotic motivation these intervals per- 
form well in vxarious simulations. To understand the primary methodology note that whenf is 
itself a polynomial spline with r knots we can write asymptotically 

,r N{8, 
-2I 

(8)} as n , 

where I(1) denotes the appropriate information matrix given in equations (15)-(18) in Sec- 
tion 3.3. 
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which depends on x and 0. Here s = 2r + 4 is the number of relevant parameters. The variance 
of f(2, x) given a2 can be approximated by the delta method as a2dT I•1 (0)d, because 

Of 
f(O, x) 

, 
f(O, x) + -(0- 0). ae 

In addition, let -2 be an estimator of a2. Then we can derive an approximate 100(1 - a)% 
confidence interval for f(O, x) as 

f(M,x) 1 Za/2{/J2 dT (x) I -(0) d(x)1I}, (3) 

where P(Z > Za/2) = a/2 for a standard normal variable Z. 
The estimation idea following model (2) seems to be very natural. Indeed, it has been men- 

tioned frequently in the literature. Early references for splines are de Boor and Rice (1968) and 
de Boor (1978). Free-knot splines have not been adopted widely by statisticians, partly because 
of their computational difficulty. Jupp (1978) subsequently addressed this problem which has 
itself become a subject with an extensive history, but this is not the primary topic of this paper. 
Recent developments, both in computing power and methodology, have made the idea feasible. 
Section 3.1 gives a brief review of the history. 

Our method is locally adaptive to variable smoothness in f because the procedure automat- 
ically places more knots in regions where f is not smooth. Furthermore, the family {f(O, x)} 
contains functions that have discontinuous derivatives or are themselves discontinuous. These 
appear naturally as splines having repeated knots at the locations of discontinuities. Because of 
this, the method that we propose can reasonably effectively deal with functionsf having isolated 
discontinuities or discontinuous derivatives. 

This paper is organized as follows. In Section 2 we give some background about B-splines. 
In Section 3 we give details of our method. In Section 4 we apply this method to simulated 
data. Section 5 discusses free-knot methodology and reports empirical results that support 
this as a confidence set methodology. It also describes some alternative types of confidence 
bands. 

2. B-splines 
An mth-order polynomial spline on [a,b] with r ordered interior knots t = (tl,... ,tr) is a 
piecewise polynomial (of degree m - 1). When a < tl <... < tr < b these piecewise polynomi- 
als connect at each knot with continuous (m - 2)th derivatives. The space of all such func- 
tions, Sm,r,t, is a linear space of dimension m + r. In particular, when m = 4, S4,r,t consists 
of all cubic splines. Throughout we shall use only the value m = 4, which produces plots that 
are visually smooth, but our methodology can easily be applied with other values of m. The 
commonly used bases for S4,r,t are the truncated basis and the B-spline basis. The truncated 
basis has a simple form and is easy to understand, but it is less stable computationally (Dier- 
ckx, 1993). Because of analytical and computational advantages the standard B-spline basis is 
used below, though its natural spline version could be used instead (Eubank, 1988; Greville, 
1969). 

The B-splines for m = 4 are completely determined by the interior knots t. They can be con- 
veniently defined by using divided difference notation. For an arbitrary ordered set of points 
T1 

~ ... 7Tk, k > 2, inductively define the operator 
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[rl, 72] g(-) = g'(71), if T1 = 72, 

[rI, '2] g () = 
2) - g( if 

rl7 r 2, 
72 - T1(4) 

(4) 
[71,... rk] g() = g(k-1)(t), if71 = ... = Tk = t, 

(T2,...,TOk)g(0)-(7 
1....,k--)g(') [71,..., Tk] g() = , - k ) otherwise. 

Tk - T1 

Now let t-3 = ... - = < t1 ?j ... ? tr < b = tr+l ... = tr+4. The B-spline Ni(x, t) is 
defined to be 

Ni(x, t) = (ti - ti-4)(ti-4, , ti)( - x)3. (5) 

From equations (4) and (5), we can see that a recursive relationship can be used to describe 
B-splines; it provides a very stable numerical algorithm. 

B-splines are non-zero only on an interval which covers no more than m + 1 = 5 knots. 
Equivalently at any point x there are no more than m = 4 B-splines that are non-zero. 

For a function that is representable by a B-spline basis with a given set of knots, the degree 
of smoothness at a point is related to the number of repeating knots at that point by 

number of stacked knots + degree of smoothness = order. 

For example, if tk = tk+l = tk+2 is used three times in constructing the B-splines, then at 
t = tk the degree of smoothness is 4 - 3 = 1, which means that f(x) is continuous at t = tk but 
f'(x) is discontinuous at t = tk. 

The derivatives of Ni(x, t) with respect to t will be needed in the next section. We take these 
from Schumaker (1981), page 132. 

Lemma 1. When i < j < i + 4, we have 

(ti+4 - 
ti)(ti,...., 

tj,t,..., 
ti+4)(" 

- x)3, i < j < i + 4, 

Ni(x, t) -(ti, ti,..., 

ti+3)(" 

- x)3 
-+, 

j=i, (6) 
atj (ti+l,., 

?ti+3, 

ti+4, 
ti+4)(" 

- x), j = i + 4, 
0, otherwise. 

3. Methodology 

Given the number of knots r we model the mean function to lie in S4,r,t. Thus we treat the data 
as if they came from the regression model 

r+4 
yi = E• j Nj(xi, t) + asi, i = 

1,... n, (7) 
j=1 

where Ei ,IID N(0, 1), 0 = (_, t), a2 and r are unknown parameters with/3= 
(l1,.... 

,r+4)T 
and t = (til,..., tr)T. We first estimate 0 and a2 conditional on r, which will be chosen later 
through the GCV criteria described in Section 3.4. 

3.1. Estimation of f 
Conditional on r we shall use the maximum likelihood estimator 9r to estimate 0. Because 
of the normal errors in model (7) it is easy to see that 

,r 
solves the non-linear least squares 

problem 
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n r+4 

min E y - E Oi Ni(xj, t) , (8) 
0 j=1 i=1 

which yields 
r+4 , 

fr(X) = A Ni Ni(x,t). (9) 
i=l 

The basic idea for solving problem (8) is the following. Given t, let 

r+4z2 

F(03, t) = yj - /3i Ni (xj, t) . (10) 

The linear least squares solution of / is produced, i.e. G(t) = min({F(3, t)}, and then we 
search for the minimum of G(t). This non-linear optimization problem needs to be treated care- 
fully. Given a starting value t*, a local optimum can be obtained from the Newton-Raphson 
algorithm. If G were strictly concave, the true minimum would be unique and could be easily 
found. 

Jupp (1978) pointed out that this simple method is not foolproof in free-knot spline regres- 
sion. There are too many saddlepoints and minima on the least squares surface. For certain 
examples the chance of finding the global minimum on the basis of a few sets of initial knots 
may be very small with the original parameterization and the Newton-Raphson algorithm has 
an appreciable chance of converging to local minima. 

Several programs are available to calculate min{G(t)} beginning from an initial choice of 
knots. We use the International Mathematical and Statistical Libraries' routine DBSVLS 
(double-precision B-spline variable knots least squares); see de Boor (1998) for a reference. 
We have found this very fast and stable and its computational speed makes feasible the use of 
several repetitions in the search for a minimum, beginning from varied initial knot locations. 
This is an important step to help to eliminate falsely identifying local minima. The statistical 
performance of our procedure is not overly sensitive to the final local minimum; see Sections 3.6 
and 5. 

3.2. Estimating r2 
In the case of a linear model, the usual estimator of 02 is 

.2 
= SSE/(n - k), where SSE is the 

sum of squared residuals and k is the number of regression coefficients. It is natural to extend 
this estimator to our non-linear regression as 

SSE 
a2 = SSE(11) 

n - (2r + 4)' (11) 
since 2r + 4 is the number of free parameters in our model. This estimator is approximately 
unbiased whenf is a spline and works well in our simulations. It agrees with the general sug- 
gestion for non-linear least squares models in references such as Hastie and Tibshirani (1990) 
or Bates and Watts (1988). 

In our simulations we have also investigated other methods of estimating c2 directly from the 
data (Rice, 1984). One possibility is 

S 1 n-2 
1 = 2 (0.809yi - 0.5yi+l - 0.309yi+2)2. (12) n n-2 i=1 
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as proposed in Hall et al. (1990). Our simulations (Mao, 2000) indicate that this does not perform 
as well as E-2 in our setting. For a review on this and other difference-based variance estimators, 
see Dette et al. (1998). 

3.3. Estimation of var(f) 
Standard results for asymptotic efficiency of maximum likelihood estimators are then used to 
assess the variability off(x). The relevant formulae are summarized below. 

To proceed, we write model (7) in matrix form as 

Y = f(t, 3, X) + a2, (13) 

where Y = (yl,..., yn)T, X = (xi,... ,Xn)T, 

(NI (x, t)... Nr+4 (xl, t) P 1 Nj(xt)3 

f(t,43,X) 
= 

Nl(xt) Nr+4(t) 1 / = Nj(lt) (14) 
N(Xn,t) ... Nr+4(xn,t) 0 r+4 Nj(xn, t)/0j 

and e = (ei,..., en)T, where e - N(0, I). 
Let 

Dn x (2r+4) 
= ( af f 

i=1 i=1 

r-4 3i 
Ni(x, 

t) 
.r4 i 

ixn, 
t)r 

Nl 
(xn, 

t) 
... Nr+4(xn, 

t) 

i=1 i=1t 
(15) 

It is straightforward to check that the information matrix for (0, a) is 

/DTD 0 
I(0, a) = 2 (16) 

Let 

dT f (f af 
a0 a01 

' 
a02r+4) 

(r+4 
ONi(x, 

t) r+4 
ONi(x, 

t) 

= 0 

. 
at1 

, Ni(x, t),..., Nr+4(x, t). (17) 

Standard results on asymptotic normality of maximum likelihood estimators (Lehmann 
(1999), theorems 7.5.1 and 5.4.6) yield the following theorem. 

Theorem 1. Iff is a spline with r knots, as in equation (13), define var{fr(x)} by 

var{ fr(x)} = t2 d(x)T I~ (0) d(x), (18) 
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where I(- = (DTD)-1. Assume that n var{ fr(x)} = 0(1), as n -+ o. Then 

fr(x) 
- 

f(x) 
fr 

-f(x)} N(O, 1) in distribution, as n - 
oo. (19) 

Vvar{ f(x)} 

Here fr is given in equation (9). 

The variance off•r(x) is then estimated as 

va 
ir(X)} 

= a2 d(x)T(DTD)-I d(x)1I, 
(20) 

where Or is obtained in problem (8) and &2 is described in equation (11). 
An asymptotic pointwise 100(1 - a)% confidence interval for f(x) is 

fr(x) 
- 
Za/2 

V•/•i{r(x)}. 
(21) 

If the number of degrees of freedom d = n - (2r + 4) is not large, then it may be desirable to 
use the corresponding t,/2, the upper a/2-quantile from a t-distribution, in place of Za/2. 

Theorem 1 concerns the situation where f is a spline with a known number of knots. If f 
is not such a spline then more general theory can be applied to yield precise local asymptotic 
results. What is most relevant from our current perspective is that &2 calculated from equation 
(11) tends to overestimate the true value of 

ra2. 
At the same time, the estimate fr of equation (9) 

would be a somewhat biased estimate off. When confidence intervals are formed as in expression 
(21) these two effects partially compensate for each other. Mao and Zhao (2003) better explains 
the asymptotic effect of this behaviour when combined with a simple model selection device 
such as that in Section 3.4 below. Our present study concentrates on fixed sample properties 
where, as we shall demonstrate, confidence intervals built from a foundation of equations (9) 
and (20) appear to perform well in a variety of situations, even when functions are not splines. 

If the knot locations are fixed, then equations (15) and (17) reduce to 

dT = (NI (x, t),..., Nr+4(x, t)), 

N (x, t) ... Nr+4(xl,t) (22) 

NI(Xn, t) ... Nr+4n(xn,t) 
and equation (18) reduces to 

a2dT(DTD,)-ld*. 
It follows that 

dT(DTD)-ld > dT(DTD,)-ld,, (23) 

since the model underlying equations (22) is more restrictive than that underlying our method. 
In most situations involving knot selection or variable knot locations, statements based on 
equations (22) should tend to undercover the true values noticeably, unless they somehow com- 
pensate by overestimating a2, or perhaps by including more knots than rmin. 

3.4. Optimal number of knots 
The number of knots, r, is usually unknown and must be estimated. A modified criterion is 
used, defined as 

S{yi - f(x?i) }2 
GCV(r) =(24) 

{n - (2r + 4)}2/n' (24) 
where 2r + 4 is the number of relevant parameters in the model. 
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We then use rmin, which minimizes GCV(r) over a range of values of r. Because of the com- 
putational overheads for each fit, we calculate GCV(r) only for r < rmax = min(n/3, 20). 

In preliminary studies we investigated some other popular model selection estimates for r, 
such as the Akaike information criterion, the corrected Akaike information criterion and the 
Bayes information criterion. We found that the GCV criterion generally produced somewhat 
better results. Results by using the corrected Akaike information criterion (Hurvich and Tsai, 
1989) were overall comparable with those by using GCV. 

3.5. Algorithm 
In summary, our automatic procedure can be described as follows. 

(a) For 1 < r < rmax, solve the non-linear least squares problem (8). This yields estimates /, 
t, &2 and fr (x) as functions of r and the given data. An efficient solution of this problem 
requires the use of fast robust routines such as routine DBSVLS. Care must be taken 
to start from several initial sets of knots to increase the chance of finding the global 
minimum. See Section 3.6. 

(b) Calculate GCV(r), defined in equation (24). Find rmin to minimize this over 1 < r < rmax. 
Use the values of fr corresponding to rmin, ~ and t as the estimated function. 

(c) Use the corresponding sum of squared errors to construct the estimate 02 that is defined 
in equation (11). 

(d) Calculate D and d defined in equations (15) and (17) and consequently v(r fr(x) } in equa- 
tion (20) for rmin, / and t. Then calculate confidence intervals for f as in expression (21). 

3.6. Multiple local minima 
The least squares likelihood surface for fixed r may have several distinct local minima. Conse- 
quently, different initial choices of knot locations may lead to different local minima as apparent 
solutions when using an algorithm such as DBSVLS. 

For our purposes the problem of multiple minima is not as serious as might at first be feared. 
The knot locations corresponding to different apparent local least squares minima can be dif- 
ferent. But from our experience the corresponding estimates and confidence intervals appeared 
qualitatively very similar apart from occasional local perturbations. This was also confirmed 
by simulation of coverage probabilities and the squared estimation error. 

Nevertheless for occasional examples we have noticed that an unfortunate choice of initial 
knots may lead to drastically inappropriate local minima that would give misleading estimates 
and confidence sets. For this reason we recommend that a careful use of our algorithm involves 
repeated attempts to identify the global minimum by beginning from varied initial knot loca- 
tions. One possibility is to begin with initial knot locations involving independent uniform 
choices for the knots. Another that we found to be more efficient and entirely satisfactory in our 
simulations was as follows: begin by dividing [a, b] into q equal adjacent subintervals I1,..., Iq. 
Throughout the paper, all simulations were carried out by using q = 2, which usually sufficed. 
Place mi equidistant initial knots at the interior of Ii, i = 1,..., q, such that 

Zmi =r, O mi r, i=1,...,q. 
i=l 

Repeat the calculation for all possible choices of mi,..., mq; there are in all 

(r+q- 
1) 

such choices. 
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Pittman (2002) described recent research into alternative numerical methods that may allevi- 
ate the problems of local minima. As noted we have used DBSVLS only because we found it to 
be convenient, fast and computationally stable. 

4. Simulation studies 

4. 1. Coverage probability 
We begin with a simulation investigation of coverage probabilities. We present results for three 
regression functions representing a varied selection among those that we have studied. We shall 
return later to present other results for some of these functions. 

The first function 
g9 

is very well behaved from the perspective of our methodology. It is a two- 
knot spline on [0, 1] with interior knots at 0.25 and 0.8 and B-basis coefficients {5, 1, 3, 0, -2, -8}. 
The top of Fig. 1(a) shows a plot of this function along with a typical scatterplot for a sample 
of size n = 200 and a = 0.76. This value of a corresponds to a signal-to-noise ratio of 3 and 
thus represents moderately noisy data; the signal-to-noise level is ag/a where 

ag = g[J (x)_ )}2 &]. 

Fig. 1 also reports results with n = 200 and a = 0.45, corresponding to a signal-to-noise ratio 
of 5. 

We first take n = 200 design points to be equidistant on [0, 1]. 200 design points generated 
from a normal distribution with mean 0.5 and standard deviation 0.25 are also investigated. The 
simulation reports the results from 1000 replications. The top of Figs l(b)-l (e) shows empirical 
conditional coverage probabilities ECCP for 95% and 90% confidence intervals from our pro- 
cedure on x. The empirical coverage is close to the nominal levels. If C(xk) are the confidence 
intervals then the true conditional coverage probability at xk is defined as 

CCP(xk) = P{f(xk) E C(xk)}, (25) 

and we define the average coverage probability as 

ACP = - > CCP(xk). (26) 
n k=1 

These probabilities of course depend on n, f and o. The empirical estimates of these quantities 
are denoted by ECCP and EACP. 

The second function is typical of several that we looked at involving data that were moderately 
awkward to model. It is taken from Wand (2000) where it was used to investigate the accuracy 
of function estimates. The function is 

(x - 0.35 (x - 0.8 
g2(x) = 1.5 oK 

01 
- , 0.04 

0'x 
, 

where p denotes the standard normal density. 
The middle row in Fig. 1 shows this function along with typical samples having n = 200 and 

signal-to-noise ratios 5 and 3 (a = 0.054 and a = 0.09) (Fig. 1(a)), and ECCP plots for 95% 
and 90% intervals for both types of design points (Figs 1l(b)-l(e)) based on 1000 simulations. 
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Table 1. EACPs for gl, g2 and g3 at nominal level 95%t 

EACPs for the following functions: 

91 92 93 

50 0.8881 (0.8770, 0.9030) 0.8809 (0.8490, 0.9170) 0.8002 (0.7700, 0.8900) 
0.9175 (0.9110, 0.9230) 0.9161 (0.9130, 0.9320) 0.8142 (0.7600, 0.8900) 

100 0.9186 (0.9140, 0.9240) 0.9148 (0.9115, 0.9280) 0.8109 (0.7850, 0.8900) 
0.9305 (0.9255, 0.9370) 0.9327 (0.9215, 0.9440) 0.9038 (0.8900, 0.9350) 

200 0.9300 (0.9260, 0.9360) 0.9276 (0.9200, 0.9380) 0.8797 (0.8690, 0.9140) 
0.9348 (0.9300, 0.9410) 0.9306 (0.9175, 0.9440) 0.9139 (0.9060, 0.9370) 

tSignal-to-noise ratios 3 (top figure in each cell) and 5 (bottom figure); n = 50, 100, 
200. The numbers in parentheses are 25% and 75% quantiles of ECCP based on 1000 
simulations. 

The third function is an order 3 spline with seven knots and a point of discontinuity at x = 0.8 
and another discontinuity in its derivative at x = 0.408; it is 

(3 {3(x - 0.2)2 + 0.5}, 0 < x < 0.4079, 
93(x) = 3{-1.2(x - 0.65)2 + 0.7}, 0.4079 x < 0.8, 

3{-1.2(x - 0.65)2 + 0.7 - 0.07}, 0.8 < x , 1. 

The third row of Fig. I shows results for this function. The choice of this function emphasizes 
that free-knot spline methodology can be appropriate for functions that have discontinuities. 
Nevertheless such functions can be very difficult to fit on the basis of noisy data. This is reflected 
in fairly narrow downward spikes in coverage probability in the neighbourhood of the disconti- 
nuities. We know of no other standard general procedure that is designed to produce confidence 
bands for such a situation having possibly discontinuous noisy data. Hence we have no suitable 
comparison to know whether our procedure has done reasonably well or poorly for this case. 

Table 1 summarizes our results by giving values of EACP for gl, g2 and g3, for sample sizes 50, 
100, 200 and signal-to-noise ratios 5 and 3. It turns out that the values of ECCP(xk), k = 1,..., n, 
are heavily skewed to the left for g3. To give a better idea of the empirical distribution of CCP(xk), 
Table 1 gives the lower and upper quantiles of {ECCP(xk) : k = 1,... ,n}. 

We have also investigated the performance of one-sided intervals constructed by the same 
logic, and we have found generally good behaviour similar to that reported above for two-sided 
intervals. As might be expected there is a mild tendency for left and right errors in one-sided cov- 
erage at given x-values to cancel, so two-sided intervals have somewhat more stable behaviour 
across values of x than do one-sided intervals. 

4.2. Comparison with smoothing spline confidence intervals 
Smoothing splines provide important standard methodology for nonparametric regression con- 
fidence intervals. Wahba (1983) and Nychka (1988) showed that smoothing splines are Bayes 
estimators corresponding to a particular Gaussian prior and 

f= A-Y, 

var(fIY) = =2A, 
where AAY is the smoothing spline estimator evaluated at (x1,..., Xn)T and ^A is the smooth- 
ing parameter chosen by minimizing the GCV estimator. Correspondingly, they proposed an 
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approximate 100(1 - a)% confidence interval of the form 

f(xi) + Za/2UJAii, 

where a2 is estimated by 92 = SSE/{n - 
tr(A,)}. We use Wahba's setting by taking her three smooth functions with one, two and three humps. 

They are 

1 1 1 
fi (t) = - 310,5(t) + 1- 37,7(t) + - 35,10(t), 3 3 3 

6 4 
f2() = 30,17(t) + 3,11(t), 10 10 

1 1 1 
f3(t) = - W 20,5(t) + -12,12(t) + - 7,30(t), 3 3 3 

where 

1-=(p + q) 
tp_1I(I 

-- t)q-1 0 

<. 

t 

<. 

I 
F(p) r(q) 

is the 3 density function. 
The five noise levels a are 0.0125, 0.025, 0.05, 0.1 and 0.2 as in Wahba (1990). The three sam- 

ple sizes n are 32, 64 and 128. The signal-to-noise values corresponding to a = 0.1 for the three 
functions are 6.88, 9.6 and 5.4. Values of a ( 0.5 correspond to a larger signal-to-noise ratio. 
We feel that such values are of less interest for statistical applications, especially when n = 64 
and n = 128, but we have nevertheless reported results for them because they are included in 
Wahba's study. Some simulation results are reported in Fig. 2. 

Table 2 reports values of EACP for our method and for Wahba's method; it is based on 100 
replications at each level. Wahba ran simulations involving only 10 replicates. To obtain suit- 
able accuracy we ran simulations for her examples again to produce Bayesian smoothing spline 
confidence intervals. For this we used the software FUNFITS provided by Nychka et al. (1996). 
Our method appears to produce values of EACP that are acceptably close to the nominal level 
of 95%. All except five of the 45 values for our method exceed 90%. The two lowest values for 
our method (86.8% and 86.39%) differ somewhat from the overall pattern and could possibly 
be underestimates of the true value attributable to random variation. By contrast 20 of the 45 
results for FUNFITS fall below 90%. For the largest sample size here, n = 128, both methods 
appear to have acceptable average coverage probabilities at the noise levels that are reported 
here, as chosen by Wahba. 

4.3. Comparison of mean-squared errors with other polynomial spline procedures 
Along with its confidence bands our procedure of course also produces estimates of the regres- 
sion function. A wide range of existing methods produces such estimates. In this section we 
compare the estimates from our procedure with those from two other popular related methods: 
the adaptive knot selection procedure POLYMARS that was developed by Stone et al. (1997) 
and the variable knots Bayesian spline procedure br that was developed by Smith and Kohn 
(1996). It should be noted that POLYMARS is piecewise linear and it was developed to apply 
also in higher dimensional problems. Thus it might not be expected to be competitive as an 
estimator in our situation. 

The average root-mean-square error RMSE will be used to judge accuracy. It is defined as 

RMSE = - I { f(xi) - f(xi)}2] 
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Fig. 2. (a) Typical sample under f1 when n = 128 and a = 0.1 ( ....... ,95% confidence band; ------- 
estimate; -, true function); (b) empirical coverage probability as a function of x, under fl, when n = 128 
and a = 0. 1; (c) similar to (a) but with testing function f3 when n = 32 and a = 0. 1; (d) similar to (b) but with 
testing function f3 when n = 32 and a = 0.1 

We give results for the three functions defined in Section 4.1 with the same simulation set-up. 
The box plots in Fig. 3 summarize our results. These are box plots of the values of loglo(RMSE) 
for 1000 Monte Carlo replications. It appears that br and our method are generally competitive 
as estimation procedures, and both improve on POLYMARS. The only major difference in per- 
formance appears in Fig. 3(a) for the function that is most difficult to fit, 93, at a signal-to-noise 
ratio of 5, where the free-knot method is better. 

5. Discussion 

This section investigates two aspects of the free-knot methodology as we have applied it to a 
statistical setting. First we examine the practical effect of the two steps of our method that 
are only justified by asymptotic criteria. Second we discuss the use of our procedure for other 
objectives. 

5. 1. Non-linearity and model selection 
Part of the justification for our methodology is its ability to provide suitable estimates and 
confidence intervals when the true regression function is a polynomial spline. In this section we 
examine in detail the performance of our procedure when the true regression is the two-knot 
spline gl of Section 4.1. 

If the knot locations of gi were known then the problem would involve an ordinary Gaussian 
linear model. The accuracy of estimation would be optimal in several accepted senses and the 
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Table 2. EACPs of our method (OURS) and the smoothing spline confidence intervals 
(FUNFITS) for testing functions fl-f3t 

r Case EACPs from the following methods and values of n: 

n = 32 n = 64 n = 128 

OURS FUNFITS OURS FUNFITS OURS FUNFITS 

0.0125 1 90.84 85.94 94.98 90.69 93.16 92.94 
2 86.87 82.59 93.96 90.31 91.96 92.16 
3 94.21 53.06 94.56 88.52 94.20 93.05 

0.025 1 91.50 88.31 88.92 91.14 93.79 92.61 
2 90.56 79.41 86.39 88.70 94.18 92.65 
3 95.34 57.25 91.59 88.80 94.05 92.29 

0.05 1 95.93 86.59 93.04 91.08 92.82 93.02 
2 91.46 82.19 93.68 90.56 94.72 92.72 
3 95.40 68.91 91.42 89.98 92.01 92.88 

0.1 1 95.28 85.31 94.34 91.08 94.96 92.09 
2 94.12 86.16 94.51 90.59 91.02 91.15 
3 95.25 78.63 95.32 91.31 89.96 92.30 

0.2 1 92.62 84.25 89.67 88.02 94.30 92.02 
2 95.21 84.81 90.67 90.72 92.71 92.73 
3 92.59 84.09 93.51 90.53 94.18 91.95 

tThe nominal level is 95%. 

confidence coverage would be exact. The expected root-mean-square error would agree exactly 
with the theoretical value 

f2 ndT()(DTD d()l RMSE1 = 
i=l d(x(D )-d(x) (27) 

n i=1 

that is obtained from the right-hand side of inequality (23). 
If the function were assumed to be a two-knot spline then it could be fitted by the non-linear 

least squares procedure in problem (8) with r fixed at r = 2. The asymptotic average root-mean- 
square error is then given by the left-hand side of inequality (23) as 

(2 
/ 

RMSE2 = 
0 

dT(xi)(DTD)- d(xi) . (28) 
n i=1 

This value need not be attained in practice since the theory leading to equation (28) is only 
asymptotic. For the same reason, the expected average coverage of confidence intervals con- 
structed in this way need not achieve the nominal value 95%. 

Finally, we are mainly interested in the practical situation where r is unknown, and the 
modelled value of r is chosen via GCV. In this case the estimation and confidence interval per- 
formance can be adversely affected by an incorrect choice of r as well as by the various stochastic 
errors that are discussed above. 

Table 3 gives values of equations (27) and (28) and various empirical simulation results includ- 
ing average coverage probabilities as well as average confidence interval widths based on 500 
simulations at each level. Table 3 includes results for n = 50 and n = 200 and for signal-to-noise 
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Table 3. Comparison of performance under three scenarios for g1t 

Parameter Results for the following values of n and signal-to-noise ratios: 

n = 50 n = 200 

1 3 5 1 3 5 

RMSE1 0.6789 0.0754 0.0272 0.3926 0.1309 0.0785 
ERMSE1 0.6829 0.0759 0.0273 0.3815 0.1272 0.0763 
RMSE2 0.8717 0.1000 0.0362 0.4523 0.1511 0.0907 
ERMSE2 0.8906 0.1107 0.0398 0.4535 0.1519 0.0889 
ERMSE3 1.0222 0.1379 0.0466 0.5320 0.1651 0.0971 
EACPI 0.9421 0.9421 0.9421 0.9462 0.9462 0.9462 
EACP2 0.9377 0.9201 0.9284 0.9299 0.9341 0.9434 
EACP3 0.9050 0.8870 0.9133 0.8811 0.9257 0.9316 
EAWidthl 1.5193 0.5064 0.3039 0.7294 0.2431 0.1459 
EAWidth2 1.7404 0.5812 0.3507 0.8411 0.2819 0.1692 
EAWidth3 1.5614 0.5799 0.3565 0.7961 0.2903 0.1745 

tScenario 1, the two knot locations are given; scenario 2, only the number of 
knots is given; scenario 3, there is no assumption on the number of knots. See 
the text for complete descriptions. 

levels 1, 3 and 5. Entries with subscript 1 refer to fitting with the correct knot locations, those 
with subscript 2 refer to fitting with two knots at free locations and those with subscript 3 
refer to our scheme with GCV for the choice of knots. Entries beginning with 'E' are empirical 
simulation results; the others are theoretical, as described above. 

Fig. 4 shows the histogram of the number of knots chosen by our GCV criterion in these simu- 
lations. At higher signal-to-noise values and larger sample sizes the GCV method virtually never 
underfits by choosing too small a number of knots. It sometimes mildly overfits, but such mild 
overfitting does not have serious negative consequences for the various performance criteria. 

400 400 400 

200 200 I 200 

0 12345 0 12345 0 12345 

(a) (b) (c) 

400 400, 400 

200 
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200 200 

0 12345 0 
12345 

0 12345 
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Fig. 4. Histogram of the number of knots chosen by GCV for gl which has two knots: (a) n = 50, signal- 
to-noise ratio 1; (b) n = 50, signal-to-noise ratio 3; (c) n = 50, signal-to-noise ratio 5; (d) n = 200, signal- 
to-noise ratio 1; (e) n = 200, signal-to-noise ratio 3; (f) n = 200, signal-to-noise ratio 5 
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The values of ERMSE2 are close to their theoretical values, RMSE2. Hence the asymptotic 
values are fairly close to the actual values. Next, ERMSE is somewhat larger than RMSE2. This 
describes the estimation penalty for not knowing how many knots gl has. 

The three values of EACP decrease somewhat, but not too drastically, as we progress from 
the precise, correct model to our free-knot model with r to be chosen by GCV. The values of 
EACPI are constant at the three noise levels because the same set of simulated values of Ei were 
used for the given n at all three noise levels. The theoretical value of EACPI is 0.95, and the 
observed deviation is attributable to the random simulation effect. 

Finally, EAWidthl is generally smaller than EAWidth2 as we should expect. However, the 
values of EAWidth2 and of EAWidth are comparable in spite of the fact that the free-knot 
model is less precise than the two-knot model of EAWidth2. This juxtaposition suggests that 
the free-knot confidence intervals may be somewhat too narrow and that better fidelity to nom- 
inal coverage values would be obtained by increasing their width somewhat. Such an increase 
could be motivated by taking into account that the free-knot method involves 'estimation' of 
the true value of r as well as of the 2r + 4 co-ordinates of 0. But our methodology does not 
make an upward adjustment in the length of interval because of estimation of r. Although we 
could do so in an ad hoc fashion we do not know of a statistical principle that would prescribe 
the magnitude of such an adjustment. 

5.2. Other objectives 
As noted, our primary objective is to produce regression estimates accompanied by two-sided 
confidence intervals for f(x). These confidence intervals CI(x) have as a goal the nominal prop- 
erty 

P{f(x) E CI(x)x})> 1I - a, (29) 

and consequently 

E - ICI(x){f(xi)} 1 - a. (30) 
ni=1 

Of course, our algorithm is not exact, and so the degree to which inequalities (29) and (30) 
hold in particular examples needs to be investigated numerically. Section 4 reports some typical 
investigations. Generally in our examples involving signal-to-noise ratios between 3 and 5 and 
sample sizes 50-200 we found (as expected) noticeable variability in inequality (29) as a function 
of x, especially for inhomogeneous f and higher noise levels, but there was only a mild tendency 
for undercoverage on average with values of inequality (30) for nominal 1 - a = 0.95 ranging 
from the mid-80% range to nearly 0.95, depending on the example. For signal-to-noise ratios of 
1 or less we found noticeable degradation in the coverage performance of our intervals, as well 
as of the few existing alternative methods that we have tried. 

We have concentrated only on confidence interval criterion (25) because we feel that this is 
the one that is most often useful in practice. However, our algorithm can easily be adapted to 
other confidence objectives. We can, for example, produce bands with nominal simultaneous 
coverage of 1 - a, i.e. with the goal 

P{f(x) E CI(x)} > 1 - a, for every x. (31) 

For this purpose we could replace the value z1-0,/2 in expression (21) by {(2r + 4)FI-,}1/2 where FI_, denotes the upper a cut-off point of an F-distribution with 2r + 4 and n - (2r + 4) 
degrees of freedom. This simultaneous confidence band would nominally be asymptotically 
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conservative. We might hope to reduce this conservativeness by using, for example, methods of 
Johansen and Johnstone (1990), but we have so far been unable to implement these methods in 
the current non-linear setting. 

We could alternatively desire prediction intervals of the usual sort instead of confidence inter- 
vals for f(x). For this we one would replace v/i•{ffJ(x) } in expression (21) by J/[&~2 + virf(x)}]. 

There is heuristic reason to believe that the performance of our methods for these objectives 
would be even better than that for our primary confidence interval objectives (1) and (2). This 
will be reported elsewhere. 
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