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A statistical model for predicting individual house prices and
constructing a house price index is proposed utilizing information re-
garding sale price, time of sale, and location (ZIP code). This model is
composed of a fixed time effect and a random ZIP (postal) code effect
combined with an autoregressive component. The former two compo-
nents are applied to all home sales while the latter is applied only to
homes sold repeatedly. The time effect can be converted into a house
price index. To evaluate the proposed model and the resulting index,
single-family home sales for twenty U.S. metropolitan areas from July
1985 through September 2004 are analyzed. The model is shown to
have better predictive abilities than the benchmark S&P/Case-Shiller
model, which is a repeat sales model, and a conventional mixed ef-
fects model. Finally, Los Angeles, CA is used to illustrate a historical
housing market crisis.

1. Introduction. Modeling house prices presents a unique set of chal-
lenges. Houses are distinctive, each has its own set of hedonic characteris-
tics: number of bedrooms, square footage, location, amenities, and so forth.
Moreover, the price of a house, or the value of the bundle of characteristics,
is observed only when sold. Sales, however, occur infrequently. As a result,
during any period of time, out of the entire population of homes, only a small
percentage are actually sold. From this information, our objective is to de-
velop a practical model to predict prices from which we can construct a price
index. Such an index would summarize the housing market and would be
used to monitor changes over time. Including both objectives allows one to
look at both micro and macro features of a market, from individual houses
to entire markets. In the following discussion, we propose an autoregres-
sive model which is a simple, but effective and interpretable, way to model
house prices and construct an index. We show that our model outperforms,
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in a predictive sense, the benchmark S&P/Case-Shiller Home Price Index
method when applied to housing data for twenty U.S. metropolitan areas.
We use these results to evaluate the proposed autoregressive model as well
as the resulting house price index.

A common approach for modeling house prices, called repeat sales, uti-
lizes homes that sell multiple times to track market trends. Bailey, Muth,
and Nourse (1963) first proposed this method and Case and Shiller (1987,
1989) extended it to incorporate heteroscedastic errors. In both models, the
log price difference between two successive sales of a home is used to con-
struct an index using linear regression. The previous sale price acts as a
surrogate for hedonic information, provided the home does not change sub-
stantially between sales. There is a large body of work focused on improving
the index estimates produced by the Bailey, et al approach. For instance, a
modified form of the repeat sales model is used for the Home Price Index
produced by the Office of Federal Housing Enterprise Oversight (OFHEO).
Gatzlaff and Haurin (1997) suggest a repeat sales model that corrects for
the correlation between economic conditions and the chance of a sale occur-
ring. Alternatively, Shiller (1991) and Goetzmann (2002) propose arithmetic
average versions of the repeat sales estimator as an alternative to the origi-
nal geometric average estimator. The former work is used commercially by
Standard and Poors to produce the S&P/Case-Shiller Home Price Index.
We will be using this index in our analysis as it is the most well-known.

Several criticisms have been made about repeat sales methods. Theoreti-
cally, for a house to be included in a repeat sales analysis, no changes must
have been made to it; however, in practice, that is almost never the case.
Furthermore, Englund, Quigley, and Redfearn (1999) and Goetzmann and
Speigel (1995) have commented on the difficulty of detecting such changes
without the availability of additional information about the home. Goetz-
mann and Speigel, however, do propose an alternate model which corrects
for the effect of changes to homes around the time the house is sold.

Even if homes which have changed are removed from the data set, an index
constructed out of the remaining homes may still not reflect the true index
value. Case and Quigley (1991) argue that houses age which has a depreciat-
ing effect on their price. Therefore, as Case, Pollakowski, and Wachter (1991)
write, repeat sales indices produce estimates of time effects confounded with
age effects. Palmquist (1982) has suggested applying an independently com-
puted depreciation factor to account for the impact of age.

In a sample period, out of the entire population of homes, only a small
fraction are actually sold. A fraction of these sales are repeat sales homes
with no significant changes. Recall that the remaining sales, those of the
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single sales homes, are omitted from the analysis. If repeat sales indices are
used to describe the housing market as a whole, one would like the sample
of repeat sales homes to have similar characteristics to all homes. If not,
Case, Pollakowski, and Wachter remark that the indices would be affected
by sample selection bias. Englund, et al, in a study of Swedish home sales,
and Meese and Wallace (1997), in a study of Oakland and Freemont home
sales, both found that repeat sales homes are indeed different from single
sale homes. Both studies also observed that in addition to being older, repeat
sales homes were smaller and more “modest” (Englund, et al). Therefore,
repeat sales indices seem to provide information only about a very specific
type of home and may not apply to the entire housing market. However,
published indices do not seem to be interpreted in that manner. Case and
Quigley (1991) propose an alternative hybrid model that combines repeat
sales methodology with hedonic information which makes use of all sales.
While the index constructed with this method represents all home sales, it
requires housing characteristics which may be difficult to collect on a broad
scale.

We feel repeat sales concept is valuable although the current models of
that type have the issues described above. The proposed model applies the
repeat sales idea in a new way to address some of the criticisms while still
maintaining the simplicity and reduced data requirements that the original
Bailey, et al method had. While our primary goal is prediction, we believe
the resulting index could be a better general description of housing sales
than traditional repeat sales methodology.

In our method, log prices are modeled as the sum of a time effect (index),
a location effect modeled as a random effect for ZIP (postal) code, and an
underlying first-order autoregressive time series (AR(1)). This structure of-
fers four advantages. First, the price index is estimated with all sales: single
and repeat. Essentially, the index can be thought of as a weighted sum of
price information from single and repeat sales. The latter component re-
ceives a much higher weight because more useful information is available for
those homes. Second, the previous sale price becomes less useful the longer
it has been since the last sale. The AR(1) series includes this feature into
the model more directly than the Case-Shiller method. Third, metropoli-
tan areas are diverse and neighborhoods may have disparate trends. We
include ZIP codes to model these differences in location1. Finally, the pro-
posed model is straightforward to interpret even while including the features
described above. We believe the model captures trends in the overall housing

1ZIP code was readily available in our data; other geographic variables at roughly this
scale might have been even more useful had they been available.
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Table 1
Metropolitan areas in the data

Ann Arbor, MI Kansas City, MO Minneapolis, MN Raleigh, NC
Atlanta, GA Lexington, KY Orlando, FL San Francisco, CA
Chicago, IL Los Angeles, CA Philadelphia, PA Seattle, WA
Columbia, SC Madison, WI Phoenix, AZ Sioux Falls, SD
Columbus, OH Memphis, TN Pittsburgh, PA Stamford, CT

market better than existing repeat sales methods and is a practical alterna-
tive.

We apply this model to data on single family home sales from July 1985
through September 2004 for twenty U.S. metropolitan areas. These data are
described in Sec. 2. The autoregressive model is outlined and estimation
using maximum likelihood is described in Sec. 3; results are discussed in
Sec. 4. For comparison, two alternative models are fit: a conventional mixed
effects model and the method used in the S&P/Case-Shiller Home Price
Index. As a quantitative way to compare the indices, the predictive capacity
of the three methods are assessed in Sec. 5. In Sec. 6 we examine the case
of Los Angeles, CA where the proposed model does not perform as well. We
end with a general discussion in Sec. 7.

2. House Price Data. The data are comprised of single family home
sales qualifying for conventional mortgages from the twenty U.S. metropoli-
tan areas listed in Table 1. These sales occurred between July 1985 and
September 2004. Not included in these data are homes with prices too high
to be considered for a conventional mortgage or those sold at subprime rates.
Note, however, that subprime loans were not prevalent during the time pe-
riod covered by our data. A similar type of data are used by Fannie Mae,
Freddie Mac, and to construct the OFHEO Home Price Index.

For each sale, the following information is available: address with ZIP
code, month and year of sale, and price. To ensure adequate data per time
period, we divide the sample period into three month intervals for a total
of 77 periods, or quarters. We make an attempt to remove sales which are
not arm’s length by omitting homes sold more than once in a single quar-
ter. Given the lack of hedonic information, we have no way of determining
whether a house has changed substantially between sales. Therefore, we do
not filter our data to remove such houses.

Table 2 displays the number of sales and unique houses sold in the sample
period for a selection of cities. Complete tables for all summaries in this
section are provided in Appendix A. Observe that the total number of sales
is always greater than the number of houses because houses can sell multiple
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Table 2
Summary counts for a selection of cities

Metropolitan Area Sales Houses

Stamford, CT 14,602 11,128
Ann Arbor, MI 68,684 48,522
Pittsburgh, PA 104,544 73,871

Los Angeles, CA 543,071 395,061
Chicago, IL 688,468 483,581

Table 3
Sale frequencies for a selection of cities

Metropolitan Area 1 sale 2 sales 3 sales 4+ sales

Stamford, CT 8,200 2,502 357 62
Ann Arbor, MI 32,458 12,662 2,781 621
Pittsburgh, PA 48,618 20,768 3,749 718

Los Angeles, CA 272,258 100,918 18,965 2,903
Chicago, IL 319,340 130,234 28,369 5,603

times (repeat sales). Perhaps more illuminating is Table 3 which sorts houses
by the number of times each was sold. We can see that as the number of sales
per house increases, the number of houses reduces rapidly. Nevertheless, a
significant number of houses sell more than twice. With a sample period
of nearly twenty years, this is not unusual; however, single sales are the
most common despite the long sample period. The first column of Table 3
shows this clearly. Moreover, this pattern holds for all cities in our data. In
Fig. 1, we plot the median price across time for the subset of cities. This
graph illustrates that both the cost of homes and the trends over time vary
considerably across cities.

For all metropolitan areas in our data, the time of a sale is fuzzy as there
is often a lag between the day when the price is agreed upon and the day
the sale is recorded (around 20-60 days). Theoretically, the true value of
the house would have changed between these two points. Therefore, in the
strictest sense, the sale price of the house does not reflect the price at the
time when the sale is recorded. Dividing the year into quarters reduces the
importance of this lag effect.

3. Model. The log house price series is modeled as the sum of an index
component, an effect for ZIP code (as an indicator for location), and an
AR(1) time series. The sale prices of a particular house are treated as a
series of sales: yi,1,z, yi,2,z, . . . , yi,j,z, . . . where yi,j,z is the log sale price of the
jth sale of the ith house in ZIP code z. Note that yi,1,z is defined as the
first sale price in the sample period ; as a result, both new homes and old
homes sold for the first time in the sample period are indicated with the
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Fig 1. Median Prices for a Selection of Cities

figure1.pdf

same notation.
Let there be 1, . . . , T discrete time periods where house sales occur. Allow

t(i, j, z) to denote the time period when the jth sale of the ith house in zip
code z occurs and let γ(i, j, z) = t(i, j, z) − t(i, j − 1, z), or the gap time
between sales. Finally, there are a total of N =

∑Z
z=1

∑Iz
i=1 Ji observations

in the data where there are Z ZIP codes, Iz houses in each ZIP code, and
Ji sales for a given house.

The log sale price yi,j,z can now be described as follows:

yi,1,z = µ+ βt(i,1,z) + τz + εi,1,z j = 1
yi,j,z = µ+ βt(i,j,z) + τz+

φγ(i,j,z)
(
yi,j−1,z − µ− βt(i,j−1,z) − τz

)
+ εi,j,z j > 1

(1)

where:

1. The parameter βt(i,j,z) is the log price index at time t(i, j, z). Let
β1, . . . , βT denote the log price indices, assumed to be fixed effects.

2. φ is the autoregressive coefficient and |φ| < 1.
3. τz is the random effect for ZIP code z. τz

iid∼ N
(
0, σ2

τ

)
where τ1, . . . , τZ

are the ZIP code random effects which are distributed normally with
mean 0 and variance σ2

τ and iid denotes independent and identically
distributed.

4. We impose the restriction that
∑T
t=1 ntβt = 0 where nt is the number

of sales at time t. This allows us to interpret µ as an overall mean.

5. Finally, let εi,1,z ∼ N
(
0, σ2

ε
1−φ2

)
, εi,j,z ∼ N

(
0,

σ2
ε(1−φ2γ(i,j,z))

1−φ2

)
, and

assume that all εi,j,z are independent.

Note that there is only one process for the series yi,1,z, yi,2,z, . . .. The error
variance for the first sale, σ2

ε/(1 − φ2) is a marginal variance. For subse-
quent sales, because we have information about previous sales, it is appro-
priate to use the conditional variance (conditional on the previous sale),
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σ2
ε

(
1− φ2γ(i,j,z)

)
/(1 − φ2), instead. For more details refer to the supple-

mental article (Nagaraja, Brown, and Zhao (2010)).
The underlying series for each house is given by ui,j,z = yi,j,z − µ −

βt(i,j,z) − τz. We can rewrite this series as: ui,j,z = φγ(i,j,z)ui,j−1,z + εi,j,z
where εi,j,z is as given above. This autoregressive series is stationary, given
a starting observation ui,1,z, because E[ui,j,z] = 0, a constant, where E[·]
is the expectation function, and the covariance between two points de-
pends only on the gap time and not on the actual sale times. Specifically,
Cov(ui,j,z, ui,j′,z) = σ2

εφ
(t(i,j′,z)−t(i,j,z))/(1 − φ2) if j < j′. Therefore, the co-

variance between a pair of sales depends only on the gap time between sales.
Consequently, the time of sale is uninformative for the underlying series, only
the gap time is required. As a result, the autoregressive series ui,j,z where i
and z are fixed and j ≥ 1 is a Markov process.

The autoregressive component adds two important features to the model.
Intuitively, the longer the gap time between sales, the less useful the previous
price should become when predicting the next sale price. For the model
described in [1], as the gap time increases, the autoregressive coefficient
decreases by construction

(
φγ(i,j,z)

)
meaning that sales prices of a home

with long gap times are less correlated with each other. (See Remark 3.1 at
the end of this section for additional discussion on the form of φ.) Moreover,
as the gap time increases, the variance of the error term increases. This
indicates that the information contained in the previous sale price is less
useful as the time between sales grows.

To fit the model, we formulate the autoregressive model in [1] in matrix
form:

y = Xβ + Zτ + ε∗.(2)

where y is the vector of log prices, X and Z are the design matrices for the
fixed effects β = [µ β1 · · ·βT−1]′ and random effects τ respectively. Then,
the log price can be modeled as a mixed effects model with autocorrelated
errors, ε∗, and with covariance matrix V.

We apply a transformation matrix T to the model in [2] to simplify the
computations; essentially, this matrix applies the autoregressive component
of the model to both sides of [2]. It is an N × N matrix and is defined as
follows. Let t(i,j,z),(i′,j′,z′) be the cell corresponding to the (i, j, z)th row and
(i′, j′, z′)th column. Then,

t(i,j,z),(i′,j′,z′) =


1 if i = i′, j = j′, z = z′

−φγ(i,j) if i = i′, j = j′ + 1, z = z′

0 otherwise.
(3)
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As a result, Tε∗ ∼ N
(
0, σ2

ε
1−φ2diag(r)

)
where diag(r) is a diagonal matrix

of dimension N with the diagonal elements r being given by:

ri,j,z =

{
1 when j = 1
1− φ2γ(i,j) when j > 1.

(4)

Using the notation from [1], let ε = Tε∗. Finally, we restrict
∑T
t=1 ntβt = 0

where nt is the number of sales at time t. Therefore, βT = − 1
nT

∑T−1
t=1 ntβt.

The likelihood function for the transformed model is:

L(θ; y) = (2π)−N/2|V|−1/2 ×(5)

exp
{
−1

2
(T(y −Xβ))′V−1(T(y −Xβ))

}
where θ = {β, σ2

ε , σ
2
τ , φ} is the vector of parameters, N is the total number

of observations, V is the covariance matrix, and T is the transformation
matrix. We can split V into a sum of the variance contributions from the
time series and the random effects. Specifically,

V =
σ2
ε

1− φ2
diag(r) + (TZ)D(TZ)′(6)

where D = σ2
τIZ and IZ is an identity matrix with dimension Z × Z.

We use the coordinate ascent algorithm to compute the maximum like-
lihood estimates (MLE) of θ for the model in [1]. This iterative procedure
maximizes the likelihood function with respect to each group of parameters
while holding all other parameters constant. The algorithm terminates when
the parameter estimates have converged according to the specified stopping
rule. Bickel and Doksum (2001) include a proof showing that for models in
the exponential family, the estimates computed using the coordinate ascent
algorithm converge to the MLE. The proposed model, however, is a member
of the differentiable exponential family; therefore as Brown (1986) states,
the proof does not directly apply. Nonetheless, we find empirically that the
likelihood function is well behaved so the MLE appears to be reached for
this case as well. Empirical evidence of convergence can be found in the
supplemental article (Nagaraja, et al).

We outline the algorithm below. The equations for updating the param-
eters and random effects estimates are given in Appendix B.

Autoregressive (AR) Model Fitting Algorithm

1. Set a tolerance level ε (possibly different for each parameter).
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2. Initialize the parameters: θ0 =
{
β0, σ2,0

ε , σ2,0
τ , φ0

}
.

3. For iteration k (k = 0 when the parameters are initialized),

(a) Calculate βk using [19] in Appendix B with σ2,k−1
ε , σ2,k−1

τ , φk−1.

(b) Compute σ2,k
ε by computing the zero of [20] using

{
βk, σ2,k−1

τ , φk−1
}

.

(c) Compute σ2,k
τ by calculating the zero of [21] using

{
βk, σ2,k

ε , φk−1
}

.

(d) Find the zero of [22] to compute φk using
{
βk, σ2,k

ε , σ2,k
τ

}
.

(e) If
∣∣∣θk−1
i − θki

∣∣∣ > ε for any θi ∈ θ, repeat Step 3 after replacing

θk−1 with θk. Otherwise, stop (call this iteration K).

4. Solve for βT by computing: β̂T = − 1
nT

∑T−1
t=1 ntβ̂

K
t .

5. Plug in
{
βK , σ2,K

ε , σ2,K
τ , φK

}
to compute the estimated values for τ

using [23].

To predict a log price, we substitute the estimated parameters and random
effects into [1]:

ŷi,j,z = µ̂+ β̂t(i,j,z) + τ̂z + φ̂γ(i,j,z)
(
yi,j−1,z − µ̂− β̂t(i,j−1,z) − τ̂z

)
.(7)

We then convert ŷi,j,z to the price scale (denoted as Ŷi,j,z) using:

Ŷi,j,z
(
σ2
)

= exp

{
ŷi,j,z +

σ2

2

}
(8)

where σ2 denotes the variance of yi,j,z. The additional term σ2/2 approxi-
mates the difference between E[exp{X}] and exp{E[X]} where E[·] is the
expectation function. We must adjust the latter expression to approximate
the conditional mean of the response, y. We improve the efficiency of our
estimates by using the adjustment stated in Shen, Brown, and Zhi (2006).
In [8], σ2 is estimated from the mean squared residuals (MSR), where
MSR = 1

N

∑N
i=1 (yi,j,z − ŷi,j,z)2 and N is the total number of observations

used to fit the model. Therefore, the log price estimates, ŷi,j,z, are converted
to the price scale by:

Ŷi,j,z = exp
{
ŷi,j,z +

MSR
2

}
.(9)

Goetzmann (1992) proposes a similar transformation for the index values
computed using a traditional repeat sales method. Calhoun (1992) suggests
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applying Goetzmann’s adjustment when using an index value to predict a
particular house price. For the autoregressive model, the standard error of
the index is sufficiently small that the efficiency adjustment has a negligible
impact on the estimated index. Therefore, we simply use exp{β̂t} to convert
the index to the price scale. Finally, we rescale the vector of indices so that
the first quarter has an index value of 1.

Remark 3.1. The autoregressive coefficient form, φγ(i,j,z), deserves fur-
ther explanation. For each house indexed by (i, z), let t1(i, z) = t(i, 1, z)
denote the time of the initial sale. Conditioning on the (unobserved) values
of the parameters {µ, βt, σ2

ε , σ
2
τ} and on the values of the random ZIP code

effects, {τz}, let {ui,z;t : t = t1(i, z), t1(i, z) + 1, . . .} be an underlying AR
(1) process. To be more precise, ui,z;t is a conventional, stationary AR(1)
process defined by:

ui,z;t =

{
εi,1,z if t = t1(i, z),
φui,z;t−1 + εi,1,z if t > t1(i, z)

(10)

where if t = t(i, j, z) then εi,z;t(i,j,z) = εi,j,z and otherwise εi,z;t
iid∼ N

(
0, σ2

ε
1−φ2

)
.

Then the observed log sale prices are given by {yi,j,z} where ui,z;t(i,j,z) =

yi,j,z −
(
µ+ βt(i,j,z) + τz

)
. The values of ui,z;t are to be interpreted as the

potential sale price adjusted by {µ, βt, σ2
ε , σ

2
τ} of the house indexed by (i, z)

if the house were to be sold at time t.
For housing data like ours, the value of the autoregressive parameter φ

for this latent process will be near the largest possible value, φ = 1. Con-
sequently, if the underlying process were actually an observed process from
which one wanted to estimate φ, then estimation of φ could be a delicate
matter. However, sales generally occur with fairly large gap times and so
the values of φγ(i,j,z) occurring in the data will generally not be close to 1.
For that reason, conventional estimation procedures perform satisfactorily
when estimating φ. We provide empirical evidence for this in Sec. 4 and in
the supplemental article (Nagaraja, et al).

4. Estimation Results. To fit and validate the autoregressive (AR)
model, we divide the observations for each city into training and test sets.
The test set contains all final sales for homes that sell three or more times.
Among homes that sell twice, the second sale is added to the test set with
probability 1/2. As a result, the test set for each city contains roughly 15% of
the sales. The remaining sales (including single sales) comprise the training
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Fig 2. The AR Index for a Selection of Cities

figure2.pdf

set. Table 8, in Appendix A, lists the training and test set sizes for each city.
We fit the model on the training set and examine the estimated parameters.
The test set will be used in Sec. 5 to validate the AR model against two
alternatives.

In Table 4, the estimates for the overall mean µ (on the log scale), the
autoregressive parameter φ, the variance of the error term σ2

ε , and the vari-
ance of the random effects σ2

τ are provided for each metropolitan area. As
expected, the most expensive cities have the highest values of µ: Los Ange-
les, CA, San Francisco, CA and Stamford, CT. In Fig. 2, the indices for a
sample of the twenty cities are provided. There are clearly different trends
across cities.

The estimates for the AR model parameter φ are close to one. This is not
surprising as the adjusted log sale prices, ui,j,z, for sale pairs with short gap
times are expected to be closer in value than those with longer gap times.
It may be tempting to assume that since φ is so close to 1, the prices form
a random walk instead of an AR(1) time series (see Remark 3.1). However,
this is clearly not the case. Recall that φ enters the model not by itself
but as φγ(i,j,z) where γ(i, j, z) is the gap time. These gap times are high
enough that the correlation coefficient φγ(i,j,z) is considerably lower than 1.
The mean gap time across cities is around 22 quarters. As an example, for
Ann Arbor, MI, φ̂22 = 0.99324722 ≈ 0.8615 which is clearly less than 1.
Therefore, the types of sensitivity often produced as a consequence of near
unit roots do not apply to our autoregressive model.

We have modeled the adjusted log prices, ui,j,z = yi,j,z − βt(i,j,z) − τz as
a latent AR(1) time series. Accordingly, for each gap time, γ(i, j, z) = h,
there is an expected correlation between the sale pairs: φh. To check that
the data support the theory, we compare the correlation between pairs of
quarter-adjusted log prices at each gap length to the correlation predicted
by the model.

First, we compute the estimated adjusted log prices ûi,j,z = yi,j,z −
β̂t(i,j,z) − τ̂z for the training data. Next, for each gap time h, we find all



12 C.H. NAGARAJA, ET AL.

Table 4
Parameter estimates for the AR model

Metropolitan Area µ̂ φ̂ σ̂2
ε σ̂2

τ

Ann Arbor, MI 11.6643 0.993247 0.001567 0.110454
Atlanta, GA 11.6882 0.992874 0.001651 0.070104
Chicago, IL 11.8226 0.992000 0.001502 0.110683

Columbia, SC 11.3843 0.997526 0.000883 0.028062
Columbus, OH 11.5159 0.994807 0.001264 0.090329

Kansas City, MO 11.4884 0.993734 0.001462 0.121954
Lexington, KY 11.6224 0.996236 0.000968 0.048227

Los Angeles, CA 12.1367 0.981888 0.002174 0.111708
Madison, WI 11.7001 0.994318 0.001120 0.023295

Memphis, TN 11.6572 0.994594 0.001120 0.101298
Minneapolis, MN 11.8327 0.992008 0.001515 0.050961

Orlando, FL 11.6055 0.993561 0.001676 0.046727
Philadelphia, PA 11.7106 0.991767 0.001679 0.183495

Phoenix, AZ 11.7022 0.992349 0.001543 0.106971
Pittsburgh, PA 11.3408 0.992059 0.002546 0.103488

Raleigh, NC 11.7447 0.993828 0.001413 0.047029
San Francisco, CA 12.4236 0.985644 0.001788 0.056201

Seattle, WA 11.9998 0.989923 0.001658 0.039459
Sioux Falls, SD 11.6025 0.995262 0.001120 0.032719

Stamford, CT 12.5345 0.987938 0.002294 0.093230

the sale pairs (ûi,j−1,z, ûi,j,z) with that particular gap length. The sample
correlation between those sale pairs produces an estimate of φ for gap length
h. If we repeat this procedure for each possible gap length, we should obtain
a steady decrease in the correlation as gap time increases. In particular, the
points should follow the curve φh if the model is specified correctly.

In Fig. 3, we plot the correlation of the adjusted log prices by gap time
for Columbus, OH. Note that the computed correlations for each gap time
were computed with varying numbers of sale pairs. Those computed with
fewer than twenty sale pairs are plotted as blue triangles. We also overlay
the predicted relationship between φ and gap time. The inverse relationship
between gap time and correlation seems to hold well. We obtain similar
results for most cities. One notable exception is Los Angeles, CA which we
discuss in Sec. 6.

5. Model Validation. To show that the proposed AR model produces
good predictions, we fit the model separately to each of the twenty cities and
apply the fitted models to each test set. For comparison purposes, a mixed
effects model along with the benchmark S&P/Case-Shiller model is applied
to the data. The former model is a simple, but reasonable, alternative to the
AR model. Both models are described below. In addition to the predictions,
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Fig 3. Checking the AR(1) Assumption (Columbus, OH)

figure3.pdf

we compare the price indices and training set residuals as well.
The root mean squared error (RMSE) 2 is used to evaluate predictive

performance for each city in Sec. 5.3. We will see that the AR model provides
the best predictions. We show the results from Columbus, OH again as a
typical example in this section.

5.1. Mixed Effects Model. A mixed effects model provides a very simple,
but plausible, approach for modeling these data. This model treats the time
effect (βt) as a fixed effect, and the effects of house (αi) and ZIP code (τz)
are modeled as random effects. There is no time series component to this
model. We describe the model as follows:

yi,j,z = µ+ αi + τz + βt(i,j,z) + εi,j,z(11)

where αi
iid∼ N (0, σ2

α), τz
iid∼ N

(
0, σ2

τ

)
, and εi,j,z

iid∼ N (0, σ2
ε) for houses i from

1, . . . , Iz, sales j from 1, . . . , Ji, and ZIP codes z from 1, . . . , Z. As before, µ
is a fixed parameter and βi,j,z is the fixed effect for time. The estimates for
the parameters θ = {µ,β, σ2

ε , σ
2
τ} are computed using maximum likelihood

estimation.
Finally, estimates for the random effects α and τ are calculated by iter-

atively calculating the following:

α̂ =

(
σ2
ε

σ2
α

II + W′W

)−1

W′
(
y −Xβ̂ − Zτ̂

)
,(12)

τ̂ =

(
σ2
ε

σ2
τ

IZ + Z′Z

)−1

Z′
(
y −Xβ̂ −Wα̂

)
.(13)

where X and W are the design matrices for the fixed and random effects
respectively and y is the response vector. These expressions are derived using
the method of computing BLUP estimators outlined by Henderson (1975).

2RMSE=

√
1
n

∑n

k=1

(
Yk − Ŷk

)2
, where Y is the sale price and n is the size of the test

set.
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To predict the log price, ŷi,j,z, we substitute in the estimated values:

ŷi,j,z = µ̂+ β̂t(i,j,z) + α̂i + τ̂z(14)

We use transformation [8] to convert these predictions back to the price
scale. Finally, we construct a price index similar to the autoregressive case.
Therefore, as in Fig. 2, the values of exp{β̂t} are rescaled so that the price
index in the first quarter is 1.

5.2. S&P/Case-Shiller Model. The original Case and Shiller (1987, 1989)
model is a repeat-sales model which expands upon the Bailey, et al setting
by accounting for heteroscedasticity in the data due to the gap time between
sales. Borrowing some of their notation, the framework for their model is:

yi,t = βt +Hi,t + ui,t(15)

where yi,t is the log price of the sale of the ith house at time t, βt is the log

index at time t, and ui,t
iid∼ N

(
0, σ2

u

)
. The middle term, Hi,t, is a Gaussian

random walk which incorporates the previous log sale price of the house.
Location information, such as ZIP codes, are not included in this model.
Like the Bailey, et al setup, the Case and Shiller setting is a model for
differences in prices. Thus, the following model is fit:

yi,t′ − yi,t = βt′ − βt +
t′∑

k=t+1

vi,k + ui,t′ − ui,t(16)

where t′ > t. The random walk steps are normally distributed where vi,k
iid∼

N
(
0, σ2

v

)
. Weighted least squares is used to fit the model to account for both

sources of variation.
The S&P/Case-Shiller procedure follows in a similar vein but is fit on

the price scale instead of the log price scale. The procedure is similar to
the arithmetic index proposed by Shiller (1991) which we will describe next;
however, full details are available in the S&P/Case-ShillerR© Home Price
Indices-Index Methodology (2009) report. Let there be S sale pairs, con-
sisting of two consecutive sales of the same house, and T time periods. An
S× (T −1) design matrix X, an S× (T −1) instrumental variables (IV) ma-
trix Z, and an S × 1 response vector w are defined next. Let the subscripts
s and t denote the row and column index respectively. Finally, let Ys,t be
the sale price (not log price) of the house in sale pair s at time t. Therefore,
in each sale pair, there will be two prices Ys,t and Ys,t′ where t 6= t′.
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Xs,t =


−Ys,t if first sale of pair s is at time t, t > 1,
Ys,t if second sale of pair s is at time t,

0 otherwise.

Zs,t =


−1 if first sale of pair s is at time t, t > 1,

1 if second sale of pair s is at time t,
0 otherwise.

ws =

{
Ys,t first sale of pair s at time 1,
0 else

.

The goal is to fit the model w = Xb + ε where b = (b1, . . . , bT ) is the
vector of the reciprocal price indices. That is, Bt = 1/bt is the price index
at time t. A three-step process is implemented to fit this model. First, b is
estimated using regression with instrumental variables. Second, the residu-
als from this regression are used to compute weights for each observation.
Finally, b is estimated once more while applying the weights. This pro-
cess, outlined in full in the S&P/Case-ShillerR© Home Price Indices-Index
Methodology report, is described below:

1. Estimate b by running a regression using instrumental variables: b̂ =
(Z′X)−1Z′w.

2. Calculate the weights for each observation using the squared residu-
als from the first step. These weights are dependent on the gap time
between sales. We denote these as ε̂i. This residual is an estimate of
ui,t′−ui,t+

∑t′−t
k=1 vi,k. The expectation of εi is E[ui,t′−ui,t+

∑t′−t
k=1 vi,k] =

0 and the variance is V ar[ui,t′ − ui,t +
∑t′−t
k=1 vi,k] = 2σ2

u + (t′ − t)σ2
v as

the errors are independent of each other. To compute the weights for
each observation, the squared residuals from the first step are regressed
against the gap time. That is,

ε̂2i = α0︸︷︷︸
2σ2
u

+ α1︸︷︷︸
σ2
v

(t′ − t) + ηi(17)

where E[ηi] = 0. The reciprocal of the square root of the fitted val-
ues from the above regression are the weights. We denote this weight
matrix by Ω−1.

3. The final step is to estimate b again while incorporating the weights,
Ω: b̂ = (Z′Ω−1X)−1Z′Ω−1w. The indices are then the reciprocals of
each element in b for t > 1 and, by construction, B1 = 1.
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Finally, to estimate the prices in the test set, we simply calculate:

Ŷi,j =
B̂t(i,j−1)

B̂t(i,j)
Yi,j−1(18)

where Yi,j is the price of the jth sale of the ith house and Bt is the price
index at time t. We do not apply the correction proposed by Goetzmann
when estimating prices because it is appropriate only for predictions on the
log price scale. The S&P/Case-Shiller method is fit on the price scale so no
transformation is required.

5.3. Comparing Predictions. We fit all three models on the training sets
for each city and predicted prices for those homes in the corresponding test
set. The RMSE for the test set observations is calculated in dollars for each
model in order to compare performance across models. Note that while the
S&P/Case-Shiller method produces predictions directly on the price scale,
the autoregressive and mixed effects models must be converted back to the
price scale using [9]. These results are listed in Table 5. The model with the
lowest RMSE value for each city is shown in italicized font. It is clear that
the AR model performs better than the S&P/Case-Shiller model for all of
the cities, reducing the RMSE by up to 21% in some cases; the AR model
produces lower RMSE values when compared to the mixed effects model
as well for nearly all cities, San Francisco, CA being the only exception.
Moreover, the AR model performs better under alternate loss functions as
well which we show in the supplemental article (Nagaraja, et al).

Note that the RMSE value is missing for Kansas City, MO for the S&P/Case-
Shiller model. Some of the observation weights calculated in the second step
of the procedure were negative halting the estimation process. This is an-
other drawback to some of the existing repeat sales procedures. Calhoun
(1996) suggests replacing the sale specific error ui,t (as given in [16]) with
a house specific error ui; however, this fundamentally changes the structure
of the error term and, as a result, the fitting process. Furthermore, it is not
implemented in the S&P/Case-Shiller methodology. Therefore, we do not
apply it to our data.

Three values are also missing in Table 5 for the mixed effect model results.
For these three cities, the iterative fitting procedure failed to converge. We
can attribute this to the size of these data and, more importantly, that the
data do not conform well to the mixed effects model structure.

Next, we will examine several diagnostic plots to assess whether the model
assumptions are satisfied for each method. We begin by investigating the
variance of the residuals. As the gap time increases, we expect a higher
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Table 5
Test set RMSE for three models (in dollars)

Metropolitan Area AR (Local) Mixed Effects (Local) S&P/C-S

Ann Arbor, MI 41,401 46,519 52,718
Atlanta, GA 30,914 34,912 35,482
Chicago, IL 36,004 — 42,865

Columbia, SC 35,881 38,375 42,301
Columbus, OH 27,353 30,163 30,208

Kansas City, MO 24,179 25,851 —
Lexington, KY 21,132 21,555 21,731

Los Angeles, CA 37,438 — 41,951
Madison, WI 28,035 30,297 30,640

Memphis, TN 24,588 25,502 25,267
Minneapolis, MN 31,900 34,065 34,787

Orlando, FL 28,449 30,438 30,158
Philadelphia, PA 33,246 — 35,350

Phoenix, AZ 28,247 29,286 29,350
Pittsburgh, PA 26,406 28,630 30,135

Raleigh, NC 25,839 27,493 26,775
San Francisco, CA 49,927 48,217 50,249

Seattle, WA 38,469 41,950 43,486
Sioux Falls, SD 20,160 21,171 21,577

Stamford, CT 57,722 58,616 68,132

error variance indicating that the previous price becomes less useful over
time. The proposed autoregressive model and the S&P/Case-Shiller model
each incorporate this feature differently, using an underlying AR(1) time
series and a random walk respectively. The mixed effects model, however,
assumes a constant variance regardless of gap time. In Fig. 4, for each model,
we plot the variance of the predictions by gap time for the training set
residuals3. The expected variance by gap time values using the estimated
parameters is then overlaid. Note the differences in scales of the residuals.
The autoregressive and mixed effects models are fit on the log price scale
whereas the S&P/Case-Shiller model is fit on the price scale.

There are two features to note here. The first is that heteroscedasticity
is clearly present: the variance of the residuals does in fact increase with
gap time. The second feature is that while none of the methods perfectly
model the heteroscedastic error, the mixed effects model is undoubtedly
the worst. This pattern holds across all of the cities in the data set. Both

3Note that for these three plots, the term “residual” indicates the usual statistical
residual values produced by applying the model and comparing the predictions with the
response vector. For the AR and mixed effects models, these residuals are identical to the
predictions on the lof price scale discussed in previous sections; however, for the S&P/C-S
model, this is not the case.
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Fig 4. Comparing Variance Estimates: Columbus, OH

figure4.pdf

Fig 5. Normality of Zip Code Effects: Columbus, OH

figure5.pdf

the autoregressive and S&P/Case-Shiller models seem to have lower than
expected variances.

For both the AR and mixed effects models, the random effects for ZIP
codes are assumed to be normally distributed. As a diagnostic procedure, we
constructed the normal quantile plots of the ZIP code effects. The results are
shown in Figure 5. Columbus, OH has a total of 103 ZIP codes, or random
effects. We find the normality assumption appears to be reasonably satisfied
for the mixed effects model but less so for the autoregressive model. Note,
however, that each random effect on the plot is estimated using very different
sample sizes. This interferes with the routine interpretation of these plots.
In particular, the outliers in both plots correspond to ZIP codes containing
ten or fewer sales. Across all metropolitan areas, the normality assumption
seems to be well satisfied in some cases and not so well in others, but with
no clear pattern we could discern as to the type of analysis, size of the
data, or geographic region. The supplemental article contains results of the
Shapiro-Wilk test for normality (Nagaraja 2010).

In Fig. 6, we plot four indices constructed from the AR model, the mixed
effects model, the S&P/Case-Shiller model, and the mean price index for
Columbus, OH. The mean index is simply the average price at each quarter
rescaled so that the first index value is 1. From the plot, we see that the
autoregressive index is generally between the S&P/Case-Shiller index and
the mean index at each point in time. The mean index treats all sales as



AN AUTOREGRESSIVE APPROACH TO HOUSE PRICE MODELING 19

Fig 6. House Price Indices for Columbus, OH

figure6.pdf

Fig 7. Problems with Assumptions

figure7.pdf

single sales. That is, information about repeat sales is not included; in fact,
no information about house prices is shared across quarters. The S&P/Case-
Shiller index, on the other hand, only includes repeat sales houses. The
autoregressive model, because it includes both single sales and repeat sales,
is a mixture of the two perspectives. Essentially, the index constructed from
the proposed model is a measure of the average house price placing more
weight to those homes which have sold more than once.

6. The Case of Los Angeles, CA. Even though the autoregressive
model has a lower RMSE than the S&P/Case-Shiller model for Los Angeles,
CA, it does not seem to fit the data well. If we examine Fig. 7, a plot of
the correlation against gap time, we immediately see two significant issues
when what is expected (line) is compared with what the data indicate (dots).
First, the value of φ is not as close to 1 as expected. Second, the pattern of
decay, φγ(i,j,z), also does not follow the expected pattern. For the remainder
of this section, we focus on Los Angeles, CA home sales and discuss these
two issues.

We expect φ to be close to 1; however, for Los Angeles, CA, this does not
seem to be the case. In fact, according to the data, for short gap times, the
correlation between sale pairs seems to be far lower than one. To investigate
this feature, we examine sale pairs with gap times between 1 and 5 quarters
more closely. In Fig. 8, we construct a histogram of the quarters where the
second sale occurred for this subset of sale pairs. We pair this histogram
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Fig 8. Examining the Housing Downturn

figure8.pdf

with a plot of the price index for Los Angeles, CA. Most of these sales
occurred during the late 1980s and early 1990s. This corresponds to the
same period when Sing and Furlong (1989) found that lenders were offering
people mortgages where the monthly payment was greater than 33% of their
monthly income. The threshold of 33% is set to help ensure that people will
be able to afford their mortgage. Those persons with mortgages that exceed
this percentage tend to have a higher probability of defaulting on their
payments.

Bates (1989) found that a number of banks including the Bank of Califor-
nia and Wells Fargo were highly exposed to these risky investments especially
in the wake of the housing downturn during the early 1990s. If a short gap
time is an indication that a foreclosure took place, this would explain why
these sale pair prices are not highly correlated. We did observe, however,
that other cities also experienced periods of decline such as Stamford, CT
(see Fig. 2), but did not have anomalous autoregressive patterns like those
in Fig. 7 for Los Angeles, CA.

Even if this were not the case, the autoregressive model may not perform
well simply because there was a downturn in the housing market. Most of
the cities in our data cover periods where the indices are increasing–the
model may be performing well only because of this feature. In the case
of Los Angeles, CA if we examine the period between January 1990 and
December 1996 on Fig. 8, the housing index was decreasing. However, if
we calculate the RMSE of test set sales for this period only, we find that
the autoregressive model still performs better than the S&P/Case-Shiller
method. The RMSE values are $32,039 and $41,841 respectively. Therefore,
the autoregressive model seems to perform better in a period of decline as
well as in times of increase.

The second issue irregularity evident in Fig. 7 is that the AR(1) process
does not decay at the same rate as the model predicts. In 1978 California
voters, as a protest against rising property taxes, passed Proposition 13
which limited how fast property tax assessments could increase per year.
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Galles and Sexton (1998) argue that Proposition 13 encouraged people to
retain homes especially if they have owned their home for a long time. It is
possible that this feature of Fig. 7 is a long term effect of Proposition 13. On
the other hand, it could be that California home owners tend to renovate
their homes more frequently than others reducing the decay in prices over
time. However, we have no way of verifying either of these explanations given
our data.

7. Discussion. Two key tasks when analyzing house prices are predict-
ing sale prices of individual homes and constructing price indices which mea-
sure general housing trends. Using extensive data from twenty metropolitan
areas we have compared our predictive method to two other methods, in-
cluding the S&P/Case-Shiller Home Price Index. We find that on average
the predictions using our method are more accurate in all but one of the
twenty metropolitan areas examined.

Data such as ours often do not contain reliable hedonic information on
individual homes, if at all. Therefore harnessing the information contained
in a previous sale is critical. Repeat sales indices attempt to do exactly that.
Some methods have also incorporated ad hoc adjustments to take account
of the gap time between the repeat sales of a home. In contrast, our model
involves an underlying AR(1) time series that automatically adjusts for the
time gap between sales. It also uses the home’s ZIP code as an additional
indicator of its hedonic value. This indicator has some predictive value,
although its value is quite weak by comparison with the price in a previous
sale, if one has been recorded.

The index constructed from our statistical model can be viewed as a
weighted average of estimates from single and repeat sales homes, with the
repeat sales prices having a substantially higher weight. As noted, the time
series feature of the model guarantees that this weight for repeat sales prices
slowly decreases in a natural fashion as the gap time between sales increases.

Our results do not provide definitive evidence as to the value of our index
when comparing with other currently available indices as a general economic
indicator. Indeed, such a determination should involve a study of the eco-
nomic uses of such indicators as well as an examination of their formulaic
construction and their use for prediction of individual sale prices. We have
not undertaken such a study, and so can offer only a few comments about
the possible comparative values of our index.

As we have discussed, we feel it may be an advantage that our index in-
volves all home sales in the data (subject to the naturally occurring weight-
ing described above), rather than only repeat sales. Repeat sales homes are
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Table 6
Summary counts

No. Houses Per Sale Count
City No. Sales No. Houses 1 2 3 4+

Ann Arbor, MI 68,684 48,522 32,458 12,662 2,781 621
Atlanta, GA 376,082 260,703 166,646 76,046 15,163 2836
Chicago, IL 688,468 483,581 319,340 130,234 28,369 5,603

Columbia, SC 7,034 4,321 2,303 1,470 431 117
Columbus, OH 162,716 109,388 67,926 31,739 7,892 1,831

Kansas City, MO 123,441 90,504 62,489 23,706 3,773 534
Lexington, KY 38,534 26,630 16,891 7,901 1,555 282

Los Angeles, CA 543,071 395,061 272,258 100,918 18,965 2,903
Madison, WI 50,589 35,635 23,685 9,439 2,086 425

Memphis, TN 55,370 37,352 23,033 11,319 2,412 587
Minneapolis, MN 330,162 240,270 166,811 59,468 11,856 2,127

Orlando, FL 104,853 72,976 45,966 22,759 3,706 543
Philadelphia, PA 402,935 280,272 179,107 82,681 15,878 2,606

Phoenix, AZ 180,745 129,993 87,249 35,910 5,855 968
Pittsburgh, PA 104,544 73,871 48,618 20,768 3,749 718

Raleigh, NC 100,180 68,306 42,545 20,632 4,306 818
San Francisco, CA 73,598 59,416 46,959 10,895 1,413 149

Seattle, WA 253,227 182,770 124,672 47,406 9,198 1,494
Sioux Falls, SD 12,439 8,974 6,117 2,353 419 85

Stamford, CT 14,602 11,128 8,200 2,502 357 62

only a small, selected fraction of all home sales. Studies have shown that re-
peat sales homes may have different characteristics than single sale homes.
In particular, they are evidently older on average, and this could be expected
to have an effect on their sale price. Since our measure brings all home sales
into consideration, albeit in a gently weighted manner, and since it provides
improved prediction on average, it may produce a preferable index.

Another advantage of our model is that it remains easy to interpret at
both the micro and macro levels, in spite of including several features in-
herent in the data. Future work seems desirable to understand anomalous
features such as those we have discussed in the Los Angeles, CA area. Such
research may allow us to construct a more flexible model to accommodate
such cases. For example, it could involve the inclusion of economic indica-
tors which may affect house prices such as interest rates and tax rates and
measures of general economic status such as the unemployment rate.

APPENDIX A: DATA SUMMARY

APPENDIX B: UPDATING EQUATIONS

In this section, we provide the updating equations for estimating the
parameters θ = {β, σ2

ε , σ
2
τ , φ} in the autoregressive model (see Sec. 3).
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Table 7
Number of ZIP codes by city

City No. ZIP Codes

Ann Arbor, MI 57
Atlanta, GA 184
Chicago, IL 317

Columbia, SC 12
Columbus, OH 103

Kansas City, MO 179
Lexington, KY 31

Los Angeles, CA 280
Madison, WI 40

Memphis, TN 64
Minneapolis, MN 214

Orlando, FL 96
Philadelphia, PA 330

Phoenix, AZ 130
Pittsburgh, PA 257

Raleigh, NC 82
San Francisco, CA 70

Seattle, WA 110
Sioux Falls, SD 30

Stamford, CT 23

Table 8
Training and test set sizes

Autoregressive model S&P/Case-Shiller Model
City Training Test No. Houses Training Pairs No. Houses

Ann Arbor, MI 58,953 9,731 48,522 10,431 9,735
Atlanta, GA 319,925 56,127 260,703 59,222 55,911
Chicago, IL 589,289 99,179 483,581 105,708 99,069

Columbia, SC 5,747 1,287 4,321 1,426 1,279
Columbus, OH 136,989 25,727 109,388 27,601 25,458

Kansas City, MO 107,209 16,232 90,504 16,705 16,092
Lexington, KY 32,705 5,829 26,630 6,075 5,748

Los Angeles, CA 470,721 72,350 395,061 75,660 72,338
Madison, WI 43,349 7,240 35,635 7,714 7,221

Memphis, TN 46,724 8,646 37,352 9,372 8,673
Minneapolis, MN 286,476 43,686 240,270 46,206 43,764

Orlando, FL 89,123 15,730 72,976 16,147 15,531
Philadelphia, PA 343,354 59,581 280,272 63,082 60,068

Phoenix, AZ 155,823 24,922 129,993 25,830 24,656
Pittsburgh, PA 89,762 14,782 73,871 15,891 14,956

Raleigh, NC 84,678 15,502 68,306 16,372 15,388
San Francisco, CA 66,527 7,071 59,416 7,111 6,948

Seattle, WA 218,741 34,486 182,770 35,971 34,304
Sioux Falls, SD 10,755 1,684 8,974 1,781 1,677

Stamford, CT 12,902 1,700 11,128 1,774 1,654
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Observe that the covariance matrix V is an N × N matrix where N is
the sample size. Given the size of our data, it is simpler computationally
to exploit the block diagonal structure of V. Each block, denoted by Vz,z,
corresponds to observations in ZIP code z. Computations are carried out
on the ZIP code level and the updating equations provided below reflect
this. For instance, yz and Tz are the elements of the log price vector and
transformation matrix respectively for observations in ZIP code z.

To start, an explicit expression for β can be formulated:

β̂ =

(
Z∑
z=1

(TzXz)
′V−1

z,zTzXz

)−1 Z∑
z=1

(TzXz)
′V−1

z,zTzyz.(19)

Estimates must be computed numerically for the remaining parameters. As
all of these are one-dimensional parameters, methods such as the Newton-
Raphson algorithm are highly suitable. We first define wz = yz −Xzβ for
clarity. To update σ2

ε , compute the zero of:

0 = −
Z∑
z=1

tr
(
V−1
z,zdiag(rz)

)
+

Z∑
z=1

(Tzwz)′V−1
z,zdiag(rz)V−1

z,z(Tzwz)(20)

where tr(·) is the trace of a matrix and diag(r) is as defined in [4]. Similarly,
to update σ2

τ , find the zero of:

0 =
Z∑
z=1

tr
(
V−1
z,z(Tz1nz)(Tz1nz)

′
)

+
Z∑
z=1

(Tzwz)′V−1
z,z(Tz1nz)(Tz1nz)

′V−1
z,z(Tzwz)(21)

where nz denotes the number of observations in ZIP code z and 1k is a
(k × 1) vector of ones.

Finally, to update the autoregressive parameter φ, we must calculate the
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zero of the function below:

0 = −
Z∑
z=1

tr

{
V−1
z,z

(
σ2
τ

(
∂(Tz1nz)

∂φ

)
(Tz1nz)

′ + σ2
τ (Tz1nz)

(
∂(Tz1nz)

∂φ

)′

+
2φσ2

ε

(1− φ2)2
diag(rz) +

σ2
ε

1− φ2

∂diag(rz)
∂φ

)}

−
Z∑
z=1

(
∂Tz

∂φ
wz

)′
V−1
z,z(Tzwz)−

Z∑
z=1

(Tzwz)′V−1
z,z

(
∂Tz

∂φ
wz

)

+
Z∑
z=1

[
(Tzwz)′V−1

z,z

[
σ2
τ

(
∂(Tz1nz)

∂φ

)
(Tz1nz)

′ + σ2
τ (Tz1nz)

(
∂(Tz1nz)

∂φ

)′

+
2φσ2

ε

(1− φ2)2
diag(rz) +

σ2
ε

1− φ2

∂diag(rz)
∂φ

]
V−1
z,z(Tzwz)

]
.(22)

After the estimates converge, we must estimate the random effects. We
use Henderson’s procedure to derive the Best Linear Unbiased Predictors
(BLUP) for each ZIP code. His method assumes that the parameters in the
covariance matrix, V are known; however, we use the estimated values. The
formula is:

τ̂z =

[
2σ̂2

ε

σ̂2
τ

+
(
1− φ̂2

) (
T̂z1z

)′
diag−1 (rz)

(
T̂z1z

)]−1

×((
1− φ̂2

) (
T̂z1z

)′
diag−1 (rz)

(
T̂zŵz

))
.(23)

where diag−1 (r̂) is the inverse of the estimated diagonal matrix diag(r).
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “An autoregressive approach to
house price modeling”
(http://lib.stat.cmu.edu/aoas/???/???; .pdf). This article contains extra anal-
ysis on a variety of topics related to the paper from examining the covergence
of the coordinate ascent algorithm, or applying alternate loss functions, to
studying the impact of each feature included in the autoregressive (AR)
model.

http://lib.stat.cmu.edu/aoas/???/???
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