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Improved Estimators in Nonparametric 
Regression Problems 

Linda H. ZHAO 

Linear estimators of multivariate means are considered. Generalizations of some well-known theorems about admissibility of linear 
estimators are given. The results then are applied to show that commonly used kernel-type estimators in nonparametric regression 
problems can be constructively improved in a simple way. An asymptotic result is described that gives a quantitative measure of the 
maximum improvement to be gained in certain situations. A theoretical bound shows that gains are achievable in the relative risk 
of up to 58.6% (rectangular kernel) or 29.2% (Epanechnikov kernel). Some examples of smaller sample size are also investigated, 
and these show relative risk gains ranging up to 18% in realistic settings. 

KEY WORDS: Admissibility; Kernel estimators; Nonparametric regression. 

1. INTRODUCTION 

Consider the ordinary multivariate means problems. Ob- 
serve Yl, . . Yn, and assume that Y has mean 0 and vari- 
ance o72 , where Y = (Yl, . Yn.)' 0 = (01,. . , 077 ), E is 
known, and o.2 is unknown. Linear estimators 0 MY of 
0 are investigated under the quadratic loss 

L(0,0) = (0- 0)'D(0 - 0), 

where D is a given symmetric positive definite matrix. Co- 
hen (1966) showed that a linear estimator 0 = MY is ad- 
missible among all linear estimators if and only if ME 
is symmetric and all the eigenvalues of M are in [0, 1] 
(see also Rao 1976). Given an inadmissible linear estimator 
we will constructively find a class of better linear estima- 
tors. Cohen (1966) gave a particular better estimator when 
D = E-1. 

Regression analysis is a general statistical tool that has 
been widely used in virtually every area of statistical appli- 
cations. In particular, nonparametric regression techniques 
have been developing rapidly in last 20 years or so. Here 
observe Yl, ... ) Yn, and assume that 

yi = m(i) + Ei il.,n 

where xi's are fixed points, Ei's are independent E(ai) = 0, 
and var(E) =(2; that is, m(x) is the mean function of Y 
given X. There is no preassumption on the functional form 
of m. The goal is to estimate m(x). 

Several nonparametric methods have been proposed for 
the above problem (see, e.g., Fan 1993; Hardle 1990; Hastie 
and Tibshirani 1990; Zhao 1993). Many of these are linear 
methods, in the sense that the estimator of m is given by 

n 
mh(x) - E Wn (x; xi)yi, (1) 

i= 1 

where the weight functions Wn (x; xi) are independent of y. 
I show that such methods can often be improved by apply- 
ing the construction mentioned earlier. 

Linda H. Zhao is Assistant Professor, Department of Statistics, Univer- 
sity of Pennsylvania, Philadelphia, PA 19104 (E-mail: lzhao@stat. 
wharton. upenn. edu). 

In Section 5 I examine the improvement obtainable in 
three data analytic nonparametric regression situations. The 
first involves the analysis of Canadian income data dis- 
cussed by Chu and Marron (1991); the second, an analy- 
sis of geyser data treated by Hall and Turlach (1997). For 
these data, I investigate the improvement available by my 
method when applied to the interpolation estimator pro- 
posed by Hall and Turlach. Finally, I apply the method to 
some simulated data. Here I can precisely measure the rel- 
ative reduction in overall quadratic risk. The reductions ob- 
tained in these and similar examples vary from about 18% 
down to about 5% at the desirable bandwidths. For very 
small bandwidths, corresponding to low bias-high variance 
estimators, the improvement is much less (e.g., only 1%). 
The interested reader can go directly to this section to see 
the nature of the examples and of the attainable improve- 
ment. 

Section 2 presents the general theory of improved lin- 
ear estimators. Section 3 shows how this theory can often 
be applied in nonparametric regression. Section 4 presents 
some asymptotic results as n -< oc. In brief, the maxi- 
mum asymptotic improvement on three common estima- 
tors involving the Epanechnikov kernel can be as great 
as 29%. These same three methods involving a rectan- 
gular kernel can be asymptotically improved as much 
as 58.6%. 

2. A CLASS OF BETTER LINEAR ESTIMATORS IN 
MULTIVARIATE MEAN PROBLEMS 

Observe Y = (Yl,. . ., Yn)' and assume that Y has mean 
0 and variance o 2E, with known nonsingular matrix E. In 
many applications one makes the additional assumption that 
Y is normally distributed, but that assumption is not needed 
here. I want to estimate 0 under the weighted quadratic risk 
function. For an estimator 0, the risk function is 

R(O, 0) = Eo(O - 0)'D(O - 0) (2) 

for the given positive definite matrix D. 
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An estimator 01 is better than 02 if 

R(01,0) < R(02,0) V 0 

< for some 0. 

An estimator 0 is inadmissible if some other estimator is 
better. An estimator is admissible if it is not inadmissible. 

I am particularly interested in linear estimators 0 = MY 
for some M. Some simple calculations yield that for 0 - 

MY, 

R(0, 0) = (J2 tr(M'DM) + 0'(I - M)'D(I - M)0. (3) 

I refer to o72 tr(M'DM) as var(M) and to 0'(M - 

I)'D (M - I)0 as bias2 (M, 0). 
This general problem is structurally invariant under non- 

singular transformations. Hence without loss of generality 
I assume for now that E = I and oJ2 = 1. Remark 2 and 
Theorem 3 at the end of this section provide statements that 
show the effect of arbitrary E. (Transform Y to Y(1) AY. 
Then y(1) has mean O(1) = AO, etc. Let 0(1) - AO 
and D(1) = A-1DA-1. Then R(O,0) = RD(1) #1)' (1)) 
Choose A so that E(') = I.) 

Cohen (1966) investigated the case where D = I. If M is 
either not symmetric or is symmetric but has some eigenval- 
ues outside of [0, 1] then he explicitly constructed a better 
linear estimator. In the following two theorems I generalize 
Cohen's formula for D I and also provide formulas for 
D #4 I. 

Thieorem 1. Let E= I. Consider a linear estimator 0 
such that 

0 - MY 

for some M. If M is asymmetric or M is symmetric but 
maxeig M > 1, then there exists 0 < yo < 1 and a family of 
linear estimators, denoted by 0a, with a symmetric matrix 
G_<y0? < y < 1, such that 

O_7 = G_Y (4) 

satisfies 

R(O, 0) < R(0, 0) V 0. (5) 

The formula for 0yo is given in (13) and (14), and 

G - = I - 7D1/2[D1/2(I -M)'D(I -M)D1/2]1/2D-/2 

(6) 

Furthermore, if -y= 1, then 

bias2(G1,0) = bias2(M,0) V 0 

var(Gi) < var(M); (7) 

if ry=Yo, then 

bias2 (Ga0, 0) ? bias2 (M, 0) VO0 

var(GaO ) ? var(M) 

(if -yo > 0, then var(G-M) = var(M)); (8) 

and if -yo < -y < 1, then 

bias2(G-,O) < bias2(M,0) V 0 

var(G,) < var(M). (9) 

In (8) and (9) there is strict inequality in the bias2 statements 
whenever the right side is not 0. 

The following standard lemma, also used by Cohen 
(1966), is needed. 

Lemma 1. For any square matrix A, 

tr(A'A)1/2 > tr(A) 

and strict inequality holds if A is asymmetric or if A is 
symmetric and mineig(A) < 0. 

Proof of Theorem 1. 

I first prove the assertion involving an asymmetric M. 

1. By the definition in (6), it is trivial to see that Ga is 
symmetric. 

2. To prove (7), observe that from (6), 

(I -Gj)/Dj - Gj) = (I -M)'D(I- M)) (10) 

and 

tr(DG,) = tr(D) 
- tr[(D1/2 (I - M)D1/2)' (D1/2 (I - M)D1/2)] 1/2. (11) 

Because M is asymmetric, so is D1/2(I- M)D1/2. Apply 
Lemma I to ( 11) to get 

tr(DGi) < tr(D) - tr(D1/2(I- M)D1/2) 
= tr(D) - tr(D) + tr(DM) 
= tr(DMM). (12) 

From (10), 

D-GID-DG, + GIDG, = D-M'D-DM + M'DM. 

Hence (12) yields tr(G/DGj) < tr(M'DM). This together 
with (10) leads to (7). 

3. To prove (8) and (9), begin by noting that 

(I - G)'D(I - G) = Y2(I - M)'D(I - M). 

Hence, because 'y < 1, 

0'(I - G-)'D(I/-D G )0 < 0'(I - M)'D(I - M) 

with inequality whenever the right side is not 0. Let 

gQ-y) =tr(G'DG-) 
= y2 tr((I - M)'D(I - M)) + cl' + co, (13) 

where cl -2 tr((D1/2 (I - M)'D(I - M)D1/2)1/2) and 
tr(D) are functions of M and D. Also, tr((I- 

M)'D(I - M)) > 0, because (I - M)'D(I - M) is at least 
positive semidefinite. This implies that g(-y) is an upward 
parabola (see Fig. 1). 



166 Journal of the American Statistical Association, March 1999 

tr(M ,'D M ,) .. .. . . . . . . . .... 00wz w* 0* / 

tr(G'DGi) .... . ......... 

O Yo 0.5 1 1.5 

Figure 1. Graph of g(-y). 

From step 2, 

g(l) tr(G/DGi) < tr(M'DM). 

This guarantees that the smallest root of g(y) = tr(M'DM) 
will be less than 1. Take 

'yo = max{0, the smaller root of g(y) = tr(M'DM)}. 
(14) 

Then 

0 < Yo <1. 

If 7y=o0, then 

tr(G/,0DG_M) < tr(M'DM), 

which leads to (8). If 

7o <a7<1, 

then 

tr(G/,DG-) < tr(M'DM), 

which leads to (9). 
Now suppose that M is symmetric and maxeig M > 

1. Then mineig D1/2(I _ M)D1/2 < 0. Hence (12) holds 
because of the last assertion in Lemma 1, and the remainder 
of the proof is the same. 

Remark. For asymmetric M, Cohen (1966) has the 
same result in the special case when D = I and 'y = 1. 
He also gives an improvement when D = I and M is sym- 
metric with maxeig M > 1, but there his improvement is 
different from ours. 

Numerical implementation of this estimator is simple and 
direct. One need only construct the quadratic equation in 
(14) to solve for -y0. The estimator (6) is then a direct matrix 
computation that involves producing the square root of the 
bracketed matrix in (6). This can be done quickly with stan- 
dard software for sample sizes in the hundreds. For larger 
values of n-, it may be helpful to make-use of special proper- 
ties of M, such as the fact that in nonparametric regression 

it is often a banded matrix. Similar comments apply to the 
estimator in Theorem 2. 

Notice that the improved estimators always have the max- 
imum eigenvalue < 1. In the case where the minimum 
eigenvalue < 0, one can get further improvement via the 
following theorem. 

Theorem 2. Let E= I. Consider a linear estimator 0 
such that 

0 MY. 

Suppose that M is symmetric and mineig(M) < 0. De- 
note the orthogonal decomposition of M as M = QAQ' 
with A1 < 0, ... A< <0 Ar+i i = 1 .... .n-r. Let U = 
diag(ui), where ui Ai ,i = ,... r and ui = 0 otherwise. 
Define 

Hp= M + pD-1QUQ' (15) 

for 0 < p < p*, where p* is as in (21). Then Op = HpY 
dominates 0. Also, 6p dominates 0 when p = p* so long as 
P1 #t P2, where P1 and P2 are defined in (18) and (20). 

Proof. 

bias2 (M, 0) - bias2(Hp, 0) 
= 0'[2pQ(I - A)UQ' - p2QUQ'D-1QUQ']0 
= 0'Q[2p(I - A)U - p2UQ'D-QU]Q'0 (16) 

p20'QU1/2(I + U)1/2 - T} (I + U)1/2Ul/2Q0 

(17) 

where T = (I + U)-1/2Ul/2Q/D- QU1/2(I + U)-1/2 
which is a symmetric positive semidefinite rank r matrix 
with nonzero entries only in the upper left r x r quadrant. 
Take 

2 
P1 maxeig(T) >0 (18) 

then (17) will be greater than or equal to 0 if p < P1. The 
equality holds only if QO = (0, .. ., . , O*n). 

For the variance terms, 

var(M) - var(HP) 
=-2p tr(AU) _ p2 tr(UQ'D-1QU) 
> 0 for 0 < P < P2, (19) 

where 
P2 = 2 tr(U2) > (20) 

tr(UQ'D1'QU) 

Let 

P* = mill{pl, p2} > 0? (21) 

This complete the proof. 

When D =I and mineig(M) < ?, P2 =2, Pi > 2, and 
the maximum improvement in the special cases when p =1 
or p =2 can be characterized. 
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Corollary 1. Assume that D = I. Consider a linear 
estimator 0 = MY, such that M is symmetric and A0 = 
mineig(M) < 0. M = QAQ' for some orthogonal matrix 
Q and 

At (-A1 ) 
0 A 

with A1 and A2 diagonal, where A1 is r x r, A1 > 0, A2 > 0. 
Assume that IAol < 1; then 

H, Q (??)Q" (22) 

H2=Q (' 0A 2) 
0 

(23) 

Let 0+ and 6abs be the linear estimators with matrices H1 
and H2. Both estimators improve on 0. The maximum rel- 
ative improvements are 

R(0),0) -R(0+, 0) 
maxI 

O R(0, 0) 

max{1 A I2 1- (I-A)2 (24) 

and 

R(, 0) )- R(abs,) 0) I + A0 
m0x R(0, 0) 1(2 ) 

where 

At 0 Ai < 
it l Ai Ai>?0. 

Proof. Improvement of 0+ and 6abs over 0 follows from 
Theorem 2, because here P2 = 2 and p1 > 2. 

To prove (24), note that 

R(, 0) - R(O, 0) max I 
o R(O, 0) 

max { tr(M2)- tr(M+2) + 0/((_M)2_(I -M+)2)0 } 
-mM 

tr(M2) + 0I - M)20 

= a tr(M+2) ma 01(l M+)200 = 
max{- tr(M2) -0 0/(I -M)20 

= max { 1 A 1-min( (1A'))} 

A21 (1 A -)2 

Note that the expression 1 - (Z A+2 / E Ai) gives the im- 
provement in the variance term when using 0+. Equation 
(25) can be proven similarly. 

Remark]1. In Theorem 2, Hp may not be symmetric 
when D is not a multiple of the identity. One may use 

(p,as described in Theorem 1. This matrix is symmet- 
ric and has maxeig(Hp) K 1. If mineig (Hp) < 0, then 
one may repeat the procedure of Theorem 2 to get further 
improvement. 

Remark 2. When Y has variance of o2 D and E is 
known, one can use the structural invariance of the prob- 
lem to obtain similar explicit results. For a linear estimator 
0 GY, the risk function can be written as 

R(0, 0) = Eo(GY - 0)'D(GY - 0) 
= Eo(i) (E-1/2G E1/2y(l) _ 0(1)- ) 

X -1/2D 1/2(E-1/2GE1/2y(l) _ 0(1)) 

where 0(1) = i-1/20 y(l) = E-1/2y with E(Y(1)) = O(1) 
and var(Y(1)) = 072J. So GY is admissible if and only if 
E-1/2GEl/2 is symmetric and all of the eigenvalues of G 
are between 0 and 1. Furthermore, E-1/2GEl/2 is sym- 
metric if and only if GE is symmetric. This leads to the 
following general theorem. 

Theorem 3. Consider a linear estimator 0 GY. Let 
072E denote the covariance matrix of Y, with E 7 I. If GE 
is not symmetric or the mineig(G) < 0 or maxeig(G) > 1, 
then we can construct a class of linear estimators that are 
better than 0. 

Proof. As noted, set M = E-1/2GEl/2 and replace D 
by E1/2DEl/2 in Theorems 1 and 2. 

3. APPLICATIONS IN 
NONPARAMETRIC REGRESSION 

In this section the nonparametric regression model is con- 
sidered. Observe Y, ... , y., and assume that yi = m(xi) + 
?i i = l,...,n. Here xi E I = (ca,3) C R,yi E X, and m 
is the mean function of Y given X; that is, 

m(x) = E(Y x), (26) 

and E is observational error. Assume that 

Ei are independent with mean 0 and variance J2. (27) 

The unknown function m will be estimated. This model 
does not put any restriction on the functional form of m. 
For most applications, assumptions are made concerning the 
smoothness of m, but such assumptions are not required for 
the following discussion. 

The idea of kernel smoothing in density estimation can be 
traced back to Rosenblatt (1956) and Parzen (1962). This 
was adapted to the nonparametric regression problem by 
Nadaraya (1964) and Watson (1964), who proposed the fol- 
lowing scheme. 

Take a symmetric function K(x) such that f K(x) dx 
1. Let 

For given hn, define the weight at xc given to yi as 

Kh,T , { L_ Kh (X- (29) 
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(Assume that the denominator is positive, which will nor- 
mally be true in applications.) Then the Nadaraya-Watson 
estimator is the weighted average of yi given by 

INW (x) EWi (x).yi (30) 

Here K is called the kernel; hn, the bandwidth. 
Various kernel functions have been used in general. For 

example, one may take the rectangular kernel 

K(x) 1 -I[_l](x), 

which produces the local average. The normal (0, 1) density 
function 

K((x) e2/2 

is also frequently used. The Epanechnikov (1969) kernel, 

K(x) = .75(1- X2)[_1,1] (x), 

which has certain optimality properties, is sometimes pre- 
ferred (see, e.g., Donoho and Liu 1991; Donoho, Liu, and 
MacGibbon 1990; Sacks and Ylvisaker 1981). 

Although the choice of K is relevant, it is more crucial 
which hn is used. The choices of hn are beyond the scope 
of this article. I assume here that hn is fixed, but see the 
remark following Corollary 2. 

Another popular kernel-based estimator was proposed by 
Gasser and Muller (1979). Assume, with no loss of general- 
ity, that the xi have been arranged in nondecreasing order. 
Let si1i < xi < si,i = 1,..., n, according to some pre- 
determined scheme; for example, take so = -00, Sn = 00, 

and sj = (xj + xj+1)/2, 1, ... . n - 1. Then define 

oSi 

Wi(x) j Kh,(x - t) dt (31) 

with Khn as in (28). The Gasser-Muller estimator is the 
weighted average with weights defined in (31). It is denoted 
by 

nGM (x) Wi (x)yi (32) 

A third popular kernel-based technique is locally 
weighted polynomial regression, as proposed by Cleveland 
(1979) and Stone (1977). For simplicity, I discuss only lo- 
cally weighted linear regression. Consider the weighted lin- 
ear regression that finds the minimum solution to 

minZ (yi (a+b(xi-x))2K (ih ) (33) 

Suppose that a and b are the minimizer of (33). Then a 
will be used to estimate m(x). Denote a by rnLL. Simple 
calculation gives the form of rnLL as 

rnLL(x) ZWiyi, 

where wi i with 
E j 

ai =K (X 
- xi (Sn7,2 (X) - (X -Xi) S I (X)) 

and 

sn,l(x)=K( 
hn 

I(-il I1,2. (34) 

Properties of the foregoing estimators have also been given 
by Fan (1993) and Hastie and Loader (1993). More details 
about the three popular nonparametric regression methods 
mentioned in this section have been provided by Hastie and 
Tibshirani (1990) and Hardle (1990). 

When an estimator Ai is linear, as earlier, it can be written 
as 

Al(x) Z wi (x)yi (35) 

for some wi(x), which is a function of {xi} and x only. 
One useful measure of the accuracy of an estimator is its 

weighted mean integrated squared error (WMISE), defined 
as 

WMISE(m, ih) 

Em ( (m(x) _ M(x) )2A (x) dx) (36) 

where A(x) > 0 is a weight function. The discrete version 
of (36) is 

RA (m, AI) = E (m(xi) -_ r(xi))2dii, (37) 

which is most often used with dii > 0. [If the xi are equally 
spaced, then the choice dii = A(x-)/n makes (37) a good 
approximation of (36).] 

Let 

Km(Xl) A A K (xj) 
m= . m= 

m(xn), Kh(Xn) 

'Yi 
Y - ( D- (dij) diag(dii). (38) 

By the foregoing definition, D > 0. Notice that estimating 
m(x) in nonparametric problems under RA is equivalent 
to estimating m' in a multivariate mean problem under the 
same weighted squared error loss. Results about the latter 
problem, especially the results in the previous section, then 
can be applied to the nonparametric regression problems. 

In the previous section I gave a simple method for im- 
proving a linear estimator whose matrix is either not sym- 
metric or has some negative eigenvalues. Next I show that 
all three commonly used estimators mentioned earlier in 
this section are linear but with asymmetric matrices and 
thus can be improved in the sense that RA can be reduced. 
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Theorem 4. The Nadaraya-Watson, Gasser-Miiller, and 
locally weighted linear estimators are all linear but with 
asymmetric matrices. 

Proof. The linearity is a direct result of the definition 
in (30), (32), and (34). To see the asymmetricity, let MNW 
denote the matrix corresponding to the Nadaraya-Watson 
estimator; that is, mNW MNWY. By (28)-(30), 

MNW(i, j)= K ( ) (39) 
El1 Kh,- (Xci - Xl1) 

and 

MNW (j,i) = K ( ) (40) 
El1 Kh,-,(Xj - Xl') 

Note that Kh- (Xi - Xj) Kh- (Xj - xi) because of the 
symmetry of K, but El Kh-(Xi - Xl) > El Kh-(Xj - Xl) 
for some i and j. This inequality will occur if xi h Xj and xi 
is sufficiently close to an endpoint of the interval (av, p). It 
will also frequently occur if the x's are not equally spaced. 
This shows that MNW is asymmetric. 

I can also explicitly write the other two matrices. 
Let MGM and MLL denote the matrices corresponding 
to Gasser-Muller and locally weighted linear estimators. 
Then, by (31)-(32), 

psi 

MGM (i, j) Khn (xc - t) dt (41) 

By (34), 

K (xxn) (S8,2(Xi) - (Xi -Xj)cs,j(Xi)) 
MLL(i,j) h/ 

EK (jhn) (Sn,2(Xi) - (Xi - Xl)Sn,I(Xi)) 

(42) 
where 

sn,m=ZK(c h c ) (Xi-xci)m, m = 1, 2. 

The asymmetry arguments for these matrices are similar to 
the argument for MNW; I omit the details. Note that when- 
ever s,,,j 0 O, one should expect MLL(i, j) # MLL(J, i) for 
i#j. 

As a corollary of Theorem 4, the three commonly used 
estimators can be improved according to Theorem 1. 

Corollary 2. The Nadaraya-Watson, Gasser-Muller, 
and locally weighted linear estimators can be constructively 
improved in the sense that RA can be reduced. 

Proof In view of Theorem 4, Theorem 1 can be applied 
to explicitly construct new matrices by formula (6). 

Remarks. The new estimators can be improved further 
by Theorem 2 (15) if there are some negative eigenvalues. 

The previous considerations apply to kernel estimators 
for which the bandwidth, hn, is not dependent on Y. In 
practice, one often uses a data-dependent hn, such as de- 
termined by some type of cross-validation. A heuristically 
promising approach in such situations would be to apply 

the methodology of this article as if hn = hn that is, after 
computing hn substitute hn in (39), (41), and (42) as appro- 
priate, and then apply the methodology of Theorems 1 and 
2 to construct new estimates. This appears to work well in 
the various simulations that I have conducted, but I have 
not yet found theoretical proof for its desirability. 

4. ASYMPTOTIC COMPARISONS 

This section gives a theorem that describes the asymp- 
totic maximum relative improvement (as n -+ oc) for two 
commonly used kernel or weight functions. 

Theorem 5. Suppose that {xi} are equally spaced on 
[-1,11. Let M = (mij) denote the matrix corresponding to 
the Nadaraya-Watson, Gasser-Miller, or locally weighted 
linear regression estimator. When n is sufficiently large and 
hn is sufficiently small and the rectangular or Epanechnikov 
kernels are used, then the estimators can be improved. Es- 
pecially, if D = I, then the maximum improvement (%) as 
n -X oc and hn - oo, Tnhn - oc will be at least 32.5 for H1 
and 58.6 for H2 for the rectangular kernel, and 15.24 for 
H1 and 29.22 for H2 for the Epanechnikov kernel, where 
H1 and H2 are defined in Corollary 1. 

Proof. I give a sketch of the proof. 

1. Consider the Nadaraya-Watson estimator. Under the 
foregoing assumption, M is almost symmetric because, by 
(28)-(30), 

1 
K 

_x __x _ 
K 

_x __x 

m - h (h nh (h) 

LjE f (i-li ) S hK (ih) t) dt 

nh hJ 
- Xih(h)j 

So Theorem 2 can be applied if there are some negative 
eigenvalues. The same asymptotic formula holds for the 
other two methods. 

2. Notice that the linear transformation M: Rn _+ Rn 
is asymptotically equivalent to the linear operator L: C2 

?2, defined as 

L (g) (x) = K ( h g(t) dt, 9 C C2- 

To find the limiting eigenvalues of M when nhn -? oo, it 
suffices to find the eigenvalues of L. 

3. The periodic eigenfunctions of L are sin(kirt) and 
cos(kirt) with eigenvalues 

J K (t) cos(kirt) dt, k 1. 

This can be shown by taking g = sin(k-rx) 

I 
flK (xh ) sin(k7rt) dt 

=ih ( h) sin(krx - k7t) dt 
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- h j K (h) cos(kirt) dtsin(kirx). 

This can be done similarly for g = cos(k7rx). 
4. Consider the rectangular kernel; that is, 

K(x) 1 2I[_l,I](x) 

The eigenvalues are 

Ak - j cos(k1rt) dt 

sin(k-7h) 
- k7rh k 1,... 

Let 

A0 = m}n s s 
= -.217 ... 

w w J OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOw 

with wo = 4.493... Let hn - 0 with nh, -? oc and let 
Mn(t) = sin(wot/hn)- 

Let m* denote the normalized vector of means: 

(m*) = ,E(Yjjxj = 2i/n -1) 

= Mn ( (2i/Ti - 1) 
Ti h 

The normalization, 2-/r, is chosen so that 

nm2 - 

_ 
QO (2 ) 

hn 
) 

- / m ( h? 2 dt = 1. 

Then, by steps 1 and 3, 

(Mm)i =Zmij (m*j n 
j) 

WO (mn)i+o () 

as n -? oc, with the o(l) term being uniform in i for nhn < 
i <ri(I - hn). Furthermore, for any i, IM(m )iI < 2//n, be- 
cause M(m*)i is a weighted average of terms of magnitude 
at most W2/r. 

5. It follows from the bounded convergence theorem that 
m* is asymptotically an eigenvector of M in the sense that 
Mm* -+ Aom*. More precisely, 

n( + o ( -0 2 -)+ E(())XO 

From this it follows that the minimum eigenvalue of M, say 
A(n), satisfies lim sup A(n) < A0. (Actually, one can show 
further that A(n) - A0.) 

Now formulas (24) and (25) can be applied to find that 
the maximum percentage improvements will be 

1 (~~1 2 o HI: I (- iY WO 32.5% 

and 

H2: I( + Wo 58.6%. 

The arguments for the Gasser-Miller and locally 
weighted linear regression estimators are entirely similar, 
and yield the same improvements. 

The proof for the Epanechnikov kernel is analogous, ex- 
cept that one must now define A0 = minf{3sinw/w3- 
wcosw)} = -.08617..., with the minimum attained at 
wo = 5.763.... 

Remarks. The foregoing maximum improvements oc- 
cur when hn and m(t)= mn(t) are as defined in the proof 
of the theorem and a-2/((nhn) -? 0. This is an uncommon 
sequence of mean functions, and hn would not be a desir- 
able bandwidth if this were known to be the situation. For 
practical situations and well-chosen bandwidths, one should 
expect much smaller percentage improvements from the ap- 
plication of Theorem 2. In some of those situations, how- 
ever, significant improvements also are available from using 
Theorem 1. Some examples are given in the next section. 

For the rectangular and Epanechnikov estimators in The- 
orem 5, some asymptotic improvement is always avail- 
able. It follows from the foregoing proof and Corollary 1 
that one can always use H1 to improve on the variance 
term without increasing the bias2 term. The variance im- 
provement when using H1, is 1 - EAt2/EA?. The limiting 
value of this can be calculated. For the rectangular kernel, 
Ak = [sin(kirh)j/kirh as shown in step 4 from the forego- 
ing proof. So the asymptotic improvement in variance as 
hn -+ 0 is 

E (sin+ (k?rhn) 2 

1 - EAt2//A = - 2V1_ k7rh J Z (sin(k7rhn)) 

tk-7rh, 

f00 (sin+ (x))2 

X 
7 

1- /2 as hn <0 
fOC (sin(x) ) 

- .067. 

Similarly, the improvement for the Epanechnikov kernel 
is .7%. 

5. EXAMPLES FOR MODERATE n 

The preceding asymptotic improvements are based only 
on the negative eigenvalues of M, through Theorem 2 and 
Corollary 1. They do not take into account the improvement 
due to asymmetry of M, as in Theorem 1. For realistic, 
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moderate values of n, this improvement can be substantial. 
The degree of available improvement depends on the place- 
ment of {xi}, on the details of the estimation method used, 
and on m(x). As no general numerical statement seems fea- 
sible, I give some examples to provide some idea of what 
may occur. 

Example 1. Consider the income data collected in 
Canada in 1985 and discussed by Chu and Marron (1991). 
Figure 2 shows a plot of this data together with a local lin- 
ear fit based on the Epanechnikov kernel with bandwidth 
h = 8 and the plots of two improved estimators discussed 
here. In the following I assume the model (26)-(27). 

The covariance matrix El = diag(l/ni), where ni is 
the number of observations corresponding to xi. Take 
DI = diag(ni). Applying the transformation in Theorem 
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14 . . . 

-13.6 ~ ~ - 

1.. . 

E 0 . 
C.) 

0 1 

125 

20 25 30 35 40 45 50 55 60 65 
age 

(a) 

14.5 

14 . - 

1345 - . * * . s . . . 

E 

o~ ~ . s . . .. 

80 

0 13 - 

12.5 

12 
20 25 30 35 40 45 50 55 60 65 

age 

(b) 

Figure 2. (Example 1: Scatterplots of the Income Data. ---, local 
linear fits with h = 8; , obtained with variance reduction (a) and 
with Bias2 reduction (b). 

3 yields D = E = I. One can proceed so as to empha- 
size reduction in variance (option A) or reduction in bias2 
(option B). 

Option A. To achieve the largest reduction of the vari- 
ance part of the risk, one can begin by applying (6) with 
-y = 1. This results in a 9.49% decrease in the variance of 
the estimator and no decrease in the bias2 term. 

Because the resulting matrix G has some negative eigen- 
values, the estimator can be further improved by applying 
(15). For the choice that gives maximum improvement in 
the variance term in general, use p = p2/2 if p2/2 < Pl. 
When D = I, p = 1, because p2/2 = 1 < P1. 

Iterating this two-step process leads to a symmetric ma- 
trix with all its eigenvalues in [0, 1]. Compared to the orig- 
inal estimator, the variance is reduced by 9.88%. Applying 
Corollary 1 yields an asymptotic figure for the maximum 
reduction in the bias2 term of 14.24%. The actual reduc- 
tion in bias2 is probably much less than this theoretical 
maximum. 

Option B. For a maximum reduction in bias2 term, one 
should use -y = -yo in (6) and p = p* in (15). After only one 
step, the resulting matrix is already symmetric with all the 
eigenvalues in [0, 1]. The asymptotic maximum reduction in 
bias2 is 16.54%, and the variance is the same as the original. 

Discussion. In Figure 2 note that the kernel estimator 
(dashed curve) gives a visually smooth curve as a conse- 
quence of bandwidth choice based on a prior notion that 
the curve should be smooth. The variance-reducing estima- 
tor (solid curve) in option A inherits the smoothness of the 
kernel estimator, which it dominates in risk. This appears 
to also be the case in other examples investigated, and there 
are heuristic grounds for thinking that it will usually be so. 

On the other hand, the curve (solid one) in option B ap- 
pears much more jagged than the other two. This is not 
surprising in view of the fact that the emphasis in its con- 
struction is on reduction of bias. Nevertheless, as a con- 
sequence of the theory, even if the underlying population 
curve is smooth, the (jagged) estimator produced here dom- 
inates the original smoother kernel estimator. 

Because it is visually more pleasing, option A should be 
preferred to option B for situations in which plots of the 
data are an important part of the output. 

Example 2. Consider the geyser data treated by Hall 
and Turlach (1997), as obtained from Hardle (1991). This 
dataset has the property that the predictor (x) variables are 
very unevenly spaced and most of them are concentrated 
in two clusters, one located in approximately the lower 

of their range and the other in approximately the upper 2 
of their range. 

Hall and Turlach used this dataset to investigate the per- 
formance of a modified kernel-based estimator they propose 
that is particularly suited for data with very unevenly spaced 
predictor variables. The sample size of the dataset is 274. 
Hall and Turlach first produced a "benchmark" estimate 
for the regression curve from the entire dataset. They then 
produced subsamples of size nr= 25 by sampling without 
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replacement from all of the data. Nonparametric regression 
estimators were computed using Hall and Turlach's method 
from each of the samples of size 25 and were compared to 
the benchmark curve. 

Hall and Turlach's estimator is linear in our sense. They 
used a fixed bandwidth of h = 1.96 for the kernel on which 
their procedure is based, and the remaining procedure they 
suggested is then linear. 

I also took subsamples of size 25 and computed the Hall 
and Turlach estimator. Then I computed my improved es- 
timator via option B (= maximum bias2 improvement). A 
typical result is shown in Figure 3. Figure 3(a) shows the 
scatterplot and the benchmark fit; 3(b) shows for a typical 
subsample of size 25 the estimator produced by Hall and 
Turlach's method and the improved estimator produced by 
a two-step implementation in my option B. 
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FigJure 3. Example 2: Scatterplots of the Geyser Data Together With 
the Local Linear Fit, h = .5 (a), and of a Subsample Size 25 Together with 
Hall and Turlach's Fitted Line (---) and the Improved One ( --), h 
= 1.96. 

I repeated this subsampling procedure 50 times. Each 
time I computed the quadratic fit to the benchmark of the 
Hall-Turlach estimator and of my modification of it after 
two steps, and compared these values to find the relative 
reduction in quadratic loss. The relative reductions varied 
from 13.2% to 18.1%, with a mean of 15.05% and a stan- 
dard error of .95%. 

Example 3. 1 also calculated the relative improvement 
in a number of special examples with known choices of 
m(.). The results varied greatly, of course, depending on 
the choice of m, the sample size, the sample distribution 
of the independent variables, and the bandwidth h. Across 
the range of examples, I found relative improvements rang- 
ing from negligible amounts up to about 20%. Because of 
the extremely wide variety of potential examples and the 
sensitivity of the relative improvement results to detailed 
features of these examples, it seems most useful to just 
present the results from one rather typical example. 

Figure 4 summarizes this example. The sample size was 
50, and the independent variables were a random sample 
from a normal distribution with mean .75 and variance 1. 
Their histogram is shown in Figure 4(a). The function m for 
this example has three modes and is given by the equation 

( )_ 1 1 
((x - .03)2 + .01) ((x - 

.9)2 + .03) 
1 

((x- 1.6)2 + .02) 

Figure 4(b) shows this underlying function, m. For this ex- 
ample, c was chosen to be or = 15. Figure 4(b) also shows 
a typical scatterplot for this situation. Figure 4(c) shows 
the basic result for this situation. This plot shows the rela- 
tive reduction in risk obtained for various values of h. The 
results shown are from using the improved estimator with 

a yo in (6) and then p = p* in (15), which emphasizes 
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Figure 4. Results for a Typical Simulation as Described in Example 
3. (a) Histogram of X; (b) underlying function; (c) proportional reduction 
at various h; (d) cross-validation; (e) risk. 
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bias reduction. Relative reduction with ry = 1 was much 
smaller here-in the range of .5% to 2%. I emphasize that 
these reductions are calculated from the algebraic formulas 
in Theorems 1 and Theorem 2. They depend on the loca- 
tion of independent variables, as shown by the histogram in 
Figure 4(a); they do not depend on the specific y values in- 
dicated in Figure 4(b). Suitable bandwidth choices for this 
example range from about .25 to about .45. For those val- 
ues, the relative reduction shown in Figure 4(c) ranges from 
10% to 13.5%. To confirm this as the suitable range of band- 
width, Figure 4(d) shows the cross-validation plot from the 
S-PLUS locfit function corresponding to the data pictured 
in Figure 4(b). The cross-validated bandwidth choice here 
is h = .4. The oracle bandwidth for this example would be 
h = .15. This can be seen from the risk function shown in 
Figure 4(e). 

[Received March 1996. Revised July 1998.] 

REFERENCES 
Chu, C., and Marron, S. (1991), "Choosing a Kernel Regression Estimator," 

Statistical Science, 6, 404-436. 
Cleveland, W. S. (1979), "Robust Locally Weighted Regression and 

Smoothing Scatterplots," Journal of the American Statistical Associa- 
tioni, 74, 829-836. 

Cohen, A. (1966), "All Admissible Linear Estimators of the Mean Vector," 
Annals of Mathematical Statistics, 37, 458-463. 

Donoho, D. L. (1994), "Statistical Estimation and Optimal Recovery," The 
Annals of Statistics, 22, 238-270. 

Donoho, D. L., and Liu, R. (1991), "Geometrizing Rates of Convergence 
III," The Annals of Statistics, 19, 668-701. 

Donoho, D. L., Liu, R., and MacGibbon, B. (1990), "Minimax Risk Over 
Hyperrectangles and Implications," The Annals of Statistics, 18, 1416- 
1437. 

Epanechnikov, V. A. (1969), "Nonparametric Estimates of a Multivariate 
Probability Density," Theory and Probability Applications, 14, 153-158. 

Fan, J. (1993), "Local Linear Regression Smoothers and Their Minimax 
Efficiencies," The Annals of Statistics, 21, 196-216. 

Gasser, T., and Muller, H. G. (1979), "Kernel Estimation of Regression 
Function," in Smoothing Techniques for Curve Estimation, eds. Gasser 
and Rosenblatt, Heidelberg: Springer-Verlag. 

Hall, P., and Turlach, B. A. (1997), "Interpolation Methods for Adapting to 
Sparse Design in Nonparametric Regression," Journal of the American 
Statistical Association, 92, 466-472. 

Hardle, W. K. (1990), Applied Nonparametric Regiession, Cambridge, MA: 
Cambridge University Press. 

Hastie, T., and Loader, C. (1993), "Local Regression: Automatic Kernel 
Carpentry," Statistical Science, 8, 120-143. 

Hastie, T., and Tibshirani, R. (1990), Generalized Additive Models, Lon- 
don: Chapman and Hall. 

Nadaraya, E. A. (1964), "On Estimating Regression," Theory of Probability 
and Applications, 10, 186-190. 

Parzen, E. (1962), "On the Estimation of a Probability Density and Mode," 
Annals of Mathematical Statistics, 33, 1065-1076. 

Rao, C. (1976), "Estimation of Parameters in a Linear Model," Annals of 
Statistics, 4, 1023-1037. 

Rosenblatt, M. (1956), "Remarks on Some Nonparametric Estimates of 
a Density Function," Annals of Mathematical Statistics, 27, 832-835, 
1956. 

Sacks, J., and Ylvisaker, D. (1981), "Asymptotically Optimum Kernels for 
Density Estimation at a Point," Annals of Statistics, 9, 334-346. 

Stone, C. J. (1977), "Consistent Nonparametric Regression," Annals of 
Statistics, 5, 595-620. 

Watson, G. S. (1964), "Smooth Regression Analysis," Sankhya, Ser. A, 26, 
359-372. 

Zhao, L. H. (1993), "Frequentist and Bayesian Aspects of Some Nonpara- 
metric Estimation Problems," Ph.D. thesis, Cornell University. 


	Article Contents
	p. 164
	p. 165
	p. 166
	p. 167
	p. 168
	p. 169
	p. 170
	p. 171
	p. 172
	p. 173

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 94, No. 445 (Mar., 1999), pp. 1-357
	Front Matter [pp. ]
	Applications and Case Studies
	Markovian Structures in Biological Sequence Alignments [pp. 1-15]
	Meta-Analysis of Migraine Headache Treatments: Combining Information from Heterogeneous Designs [pp. 16-28]
	Hierarchical Generalized Linear Models in the Analysis of Variations in Health Care Utilization [pp. 29-42]
	A Hierarchical Latent Variable Model for Ordinal Data from a Customer Satisfaction Survey with "No Answer" Responses [pp. 43-52]
	Estimating Multistate Transition Hazards from Last-Move Data [pp. 53-63]
	The Influence of Social Programs in Source Countries on Various Classes of U.S. Immigration [pp. 64-74]
	Comparing Predictions and Outcomes: Theory and Application to Income Changes [pp. 75-85]

	Theory and Methods
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling [pp. 86-97]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment [pp. 97-99]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment [pp. 99-100]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment [pp. 100-102]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment [pp. 102-105]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Comment [pp. 106-107]
	Prediction of Spatial Cumulative Distribution Functions Using Subsampling: Rejoinder [pp. 107-110]
	Semiparametric Regression Models for Repeated Events with Random Effects and Measurement Error [pp. 111-124]
	Semiparametric Inference in the Proportional Odds Regression Model [pp. 125-136]
	Censored Median Regression Using Weighted Empirical Survival and Hazard Functions [pp. 137-145]
	Nonparametric Estimation of a Recurrent Survival Function [pp. 146-153]
	Methods for Estimating a Conditional Distribution Function [pp. 154-163]
	Improved Estimators in Nonparametric Regression Problems [pp. 164-173]
	A Class of Locally and Globally Robust Regression Estimates [pp. 174-188]
	Quasi-Linear Wavelet Estimation [pp. 189-204]
	High-Breakdown Rank Regression [pp. 205-219]
	On Estimation of Monotone and Concave Frontier Functions [pp. 220-228]
	Combining Conditional Log-Linear Structures [pp. 229-239]
	Treatment Effects in a Logistic Model Involving the Box-Cox Transformation [pp. 240-246]
	Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models [pp. 247-253]
	Variance Estimation for Survey Data with Composite Imputation and Nonnegligible Sampling Fractions [pp. 254-265]
	Order Statistic Properties, Random Generation, and Goodness-of-Fit Testing for a Minimal Repair Model [pp. 266-272]
	A Class of Permutation Tests of Bivariate Interchangeability [pp. 273-284]
	Data-Driven Rank Tests for Independence [pp. 285-301]
	Combining the Advantages of One-Sided and Two-Sided Test Procedures for Comparing Several Treatment Effects [pp. 302-307]
	Adjusted Score Tests of Homogeneity for Poisson Processes [pp. 308-319]
	The Versatility of Function-Indexed Weighted Log-Rank Statistics [pp. 320-332]

	Book Reviews
	Review: untitled [pp. 334-335]
	Review: untitled [pp. 335-337]
	Review: untitled [pp. 337-338]
	Review: untitled [pp. 338-339]
	Review: untitled [pp. 340-341]
	Review: untitled [pp. 341]
	Review: untitled [pp. 341-343]
	Review: untitled [pp. 343]
	Review: untitled [pp. 343-344]
	Review: untitled [pp. 344-345]
	Review: untitled [pp. 345-346]
	Review: untitled [pp. 346]
	Review: untitled [pp. 347]
	Review: untitled [pp. 347-348]
	Review: untitled [pp. 348]
	Review: untitled [pp. 348]
	Review: untitled [pp. 348-349]
	Review: untitled [pp. 349]
	Review: untitled [pp. 349-350]
	Review: untitled [pp. 350]
	Telegraphic Reviews
	Review: untitled [pp. 350]
	Review: untitled [pp. 350]
	Review: untitled [pp. 350-351]
	Review: untitled [pp. 351]
	Review: untitled [pp. 351]
	Review: untitled [pp. 351]
	Review: untitled [pp. 351]


	Letters to the Editor
	The Future of Ecological Inference Research: A Comment on Freedman et al. [pp. 352-355]
	Response to King's Comment [pp. 355-357]

	Back Matter [pp. ]



