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SUMMARY. We consider the problem of testing whether a sample of observations
comes from a single Poisson distribution. Of particular interest is the alternative that the
observations come from Poisson distributions with different parameters. Such a situation
would correspond to the frequently discussed situation of overdispersion.

We propose a new test for this problem that is based on Anscombe’s variance stabiliz-
ing transformation. There are a number of tests commonly proposed, and we compare the
performance of these tests under the null hypothesis with that of our new test. We find
that the performance of our test is competitive with the two best of these. The asymptotic
distribution of the new test is derived and discussed.

Use of these tests is illustrated through two examples of analysis of call-arrival times
from a telephone call center. The example facilitates careful discussion of the performance
of the tests for small parameter values and moderately large sample sizes.

1. Introduction

A variety of tests is available for testing whether a sample of observa-
tions comes from a Poisson distribution. This article proposes an additional
test based on Anscombe’s (1948) variance stabilizing transformation. We
examine the performance of this test and compare it with three other tests
in current use. We find this new test to be competitive in performance with
the best of these alternatives. We recommend it on this basis, and also be-
cause the heuristic idea underlying it easily adapts for a variety of related
applications.

We use call-arrival data gathered at an Israeli call center as motivation
and illustration of the various problems and methodologies we discuss. We
provide a very brief discussion in Section 2 of this application.

Paper received December 2001.

AMS (2000) subject classification. 62F03, 62F05.

Keywords and phrases. Poisson variables, Anscombe’s transformation, likelihood ratio

test, chi-squared test, overdispersion.



612 lawrence d. brown and linda h. zhao

The three additional types of test statistics we examine are the likelihood
ratio statistic, the corresponding chi-squared statistic sometimes called the
“dispersion test”, and a putatively normal version of this statistic sometimes
attributed to Neyman and Scott. The performance of the Neyman-Scott
test is shown to be inferior to those built from the remaining statistics. We
favour the new test based on its ease of use, diagnostic ability and breadth
of application.

Suppose the null hypothesis is true, i.e., the data come from a Poisson(λ)
distribution. When λ is not small all three recommended tests (the new
test, the dispersion χ2, and the likelihood ratio) appear fully satisfactory for
practical applications. When λ is small the nominal null distribution for the
likelihood ratio test is quite inaccurate. The test should not then be used in
the usual form as presented here.

In Section 5 we state the asymptotic distribution of our new test statistic
as n → ∞ with λ fixed. It is shown that this implies that the heuristic
nominal null distribution is not fully accurate when λ is small, even if n → ∞.
Thus, when λ is small (say λ � 5), the new test we propose is slightly
inaccurate. The source of that inaccuracy is explained in Section 4, and an
easily implemented correction is proposed that is satisfactory for moderately
large sample sizes (say 50 or more, depending partly on how small λ is).

In Section 2 we describe the call center data we use as an example of an
application of our methodology. The various tests are described in Section 3,
including the new test we propose based on Anscombe’s variance stabilizing
transformation. Section 4 presents some simulation results comparing our
test and the various other tests. The asymptotic distribution of the new test
is discussed in Section 5.

2. Call Center Arrival Data

The data accompanying our study was gathered at a relatively small
Israeli bank telephone call center in 1999. The portion of data of interest
to us here involves records of the arrival time of service-request calls to the
center. These are calls in which the caller requests service from a call center
representative. It is reasonable to conjecture that these arrival times are well
modelled by an inhomogeneous Poisson process. The arrival rate for this
process should depend only on the time of day, and perhaps other calendar
related covariates such as month or day of the week. There are different
categories of service that may be requested, and preliminary analysis clearly
shows that this factor should also be considered since the arrival rate patterns



a test for the Poisson distribution 613

0 2 4 6 8

Figure 1: No. of daily calls for Internet Service arriving between 4:30pm
and 4:45pm, Regular weekdays, Aug. – Dec. n = 107, x̄ = 2.18, s2 = 2.47.

differ considerably. For more information about various aspects of this data
see Brown et. al (2001a). Other features of the call arrival process are
investigated in Brown, Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2001b).

If the arrival process for a given call category is as above then the number
of arrivals each day within any given interval of time should be independent
Poisson variables with a parameter that depends only on the given time
interval. If other covariates are involved (such as day of the week) then the
Poisson parameter may also depend on these covariates.

The histograms in Figures 1 and 2 show the results from two typical
samples. Figure 1 shows the number of standard calls arriving on each
regular workday in Nov. and Dec., between 4:30pm and 4:45pm. Figure 2
is a similar histogram for the special category of calls requesting internet
assistance arriving between 4:30pm and 4:45pm from Aug. through Dec. In
each case it is of interest to test the null hypothesis that these data arise
from Poisson populations with their own respective means. Note the different
levels of calls/day in these two samples, as well as the different sample sizes.

One reason for considering standard calls only for Nov. and Dec. is that
there is some evidence of an increased rate of standard calls in Nov. and
Dec.
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Figure 2: No. of daily calls for Standard Service arriving between 4:30pm
and 4:45pm, Regular weekdays, Nov. – Dec. n = 44, x̄ = 18.66, s2 = 25.95.

3. Tests for the Poisson Distribution

Let X1, . . . , Xn be independent non-negative integer valued random vari-
ables with P (X = x) = f(x). The basic null hypothesis of interest is that

H0 : Xi ∼ Poiss(λi), λ1 = . . . = λn. (1)

We consider the alternative hypothesis that

Ha : Xi ∼ Poiss(λi),
∑

(λi − λ)2 > 0. (2)

We propose a new test for this problem. We also briefly describe some
other tests in common use for H0. We will later focus our attention on
properties of the new test in relation to the others.

3.1. A new test based on Anscombe’s statistic. Anscombe (1948) derived
the second order variance stabilizing transformation for a Poisson variable.
Also see Bartlett (1947). If N ∼ Poiss(λ) Anscombe showed that

Varλ

(√
N +

3
8

)
=

1
4

+ O

(
1
λ

)
. (3)

On this basis it is natural to define Yi =
√

Xi + 3/8 and use the statistic

Tnew = 4
∑

(Yi − Y )2
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to provide a test for H0.
Formula (3) suggests that Yi is approximately normal with variance 1/4

and mean
ν(λi) = Eλi(Yi) = Eλi(

√
N + 3/8). (4)

Such an assertion is asymptotically correct as λi → ∞. Under this ap-
proximation it would follow that when H0 is true, Tnew has approximately a
Chi-squared distribution with n−1 df. We thus reject H0 if Tnew > χ2

n−1;1−α.
Further one may conclude that under Ha, Tnew has approximately a non-
central χ2

n−1 distribution. In summary it is reasonable to act as if

Tnew ∼ χ2
n−1

(
4

∑
(ν(λi) − νn)2

)
(5)

where

νn =
1
n

n∑
i=1

ν(λi).

The empirical results in Section 4 indicate that this approximation is rea-
sonably accurate under H0 even for fairly small λ and n. Further simulations
we have carried out (not reported here) suggest that this approximation is
also fairly good for a variety of choices of {λi} in Ha, even for moderate n
so long as none of the λi are small.

Section 5 presents some asymptotic theory concerning the distribution
of Tnew. This theory helps explain why (5) provides numerically satisfactory
results even though it is not quite asymptotically valid as n → ∞, even
under H0.

In the context of nonparametric density estimation Brown, Zhang and
Zhao (2001) suggested using the transformation

√
N + 1/4 instead of√

N + 3/8. This is because

Eλ(
√

N + 1/4) =
√

λ + O(1/λ).

In the context of Brown, Zhang and Zhao (2001) accuracy in estimation of√
λ is of prime importance, rather than stability of the variance. However

for the Poisson tests under investigation here validity of (3) is more impor-
tant, and the transformation

√
Xi + 3/8 performs slightly better than would√

Xi + 1/4.
Brown, Cai and DasGupta (2001) investigated confidence intervals for a

Poisson mean. This is a related problem but techniques for best confidence
intervals do not necessarily extend to best tests of H0, and vice-versa. Some
results about the confidence interval problem are also reported in Brown,
Zhang and Zhao (2001).
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The test statistic Tnew appears to us a natural proposal given Anscombe’s
well known variance stabilizing transformation. We expect it has been used
in the form (6) by some practitioners. But the only other reference we have
found is Huffman (1984) that presents a sample size two (n = 2) version of
this test, and also discusses testing a generalization of H0 when n = 2.

3.2 Likelihood ratio statistic. The likelihood ratio statistic for testing H0

versus Ha is

TLR = 2
n∑

i=1

Xi ln
(

Xi

X

)
. (6)

Under the null hypothesis this statistic is asymptotically distributed as a
Chi-squared variable with n − 1 df. (asymptotically as n → ∞ for fixed λ).
Hence this test rejects H0 when TLR > χ2

n−1;1−α.
Under alternatives in Ha this statistic has approximately a non-central

Chi-squared distribution with n − 1 df and non-centrality parameter ψ2 =∑n
i=1(λi − λ)2/λ where λ =

∑n
i=1 λi/n. We write, TLR ∼ χ2

n−1(ψ
2). This

approximation is asymptotically valid as λ → ∞ for fixed n with λ1, . . . , λn

chosen to depend on n in such a way that ψ2 remains constant, or as n → ∞
with λ1, . . . , λn chosen so that lim inf λ > 0 and ψ2 = O(

√
n).

3.3 Conditional Chi-squared statistic. Under the null hypothesis the
conditional distribution of X1, . . . , Xn given

∑
Xi = nX is multinomial

(nX, (1/n, . . . , 1/n)). This motivates as a test statistic,

TCC =
∑ (Xi − X)2

X
=

(n − 1)S2

X
(7)

where under H0 has an (asymptotic) Chi-squared distribution with n−1 df.
(Hence we reject H0 if TCC > χ2

n−1;1−α.) This statistic can also be motivated
as the asymptotic chi-squared approximation to the likelihood ratio test of
Section 3.2. Some authors (e.g., Rice(1995)) call this the Poisson dispersion
test or the variance test (Cochran, 1954). See also Agresti (1990, p. 479).

Under Ha, TCC ∼ χ2
n−1(ψ

2), with this approximation being asymptoti-
cally valid under the same conditions as described for TLR.

3.4 Neyman-Scott statistic. This statistic is directly motivated by the ex-
pression (7). It is often used as a test of H0. See for example Lindsay (1995)
and Jongbloed and Koole (2001) for application of this test to telephone
call-center data. The statistic is

TNS =

√
n − 1

2

(
S2

X
− 1

)
.



a test for the Poisson distribution 617

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4

Normal Quantile

Figure 3: Histogram (with best fitting normal curve) and Normal Quantile
plot for TNS ; λ = 12, n = 12, 10,000 Monte Carlo samples

This statistic is normalized so that asymptotically TNS ∼ N(ψ2/
√

2n, 1).
(Hence this test rejects if TNS > Φ−1(1 − α).) The asymptotic assertion
here is valid as n → ∞ with λ1, . . . , λn chosen so that ψ2 = O(

√
n) and

lim inf λ > 0.
It can be seen that under H0, TNS is the standard normal approximation

to the chi-squared statistic TCC . The null distribution of TNS is not close to
its limiting normal distribution until n is moderately large. This is shown
in Fig 3, which displays an empirical approximation to the null distribution
of TNS for the case λ = 12, n = 12.

The fact that the true null distribution of TNS is not close to its nominal
limiting distribution means that tests constructed using critical values from
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this will not have close to their nominal significance level. Correspondingly
their nominal P-values based on the limiting distribution will also be con-
siderably in error. For this reason we recommend against use of TNS . (For
comparative purposes we have nevertheless included TNS in the numerical
results in Section 4.)

4. Empirical Results Under H0

This section reports selected empirical results about the null distribution
of the statistics Tnew, TLR, TCC , TNS . These results are summarized in
Table 1. This table gives information about the empirical type I error rates
for tests computed using the nominal null distribution of various statistics.
The table also contains an overall measure of how close is the empirical χ2

or normal null distribution. The table also indirectly provides information
about the accuracy of P-values calculated from the nominal distributions
since accuracy of type I error rates and of P-values are linked concepts.

The general impression from the table is that the empirical type I error
rates using any of Tnew, TLR, TCC are reasonably accurate when λ � 12.
Even when λ = 5 satisfactory accuracy is evident for Tnew and TCC . The
results in Section 5 suggest a modified nominal null distribution be used
when λ is even smaller to calculate critical values for Tnew. The results in
Section 5 also confirm that TLR is a less desirable choice when λ � 5. Overall,
the empirical type I errors using the TNS are less accurate than those from
the other three statistics, as one would also expect from the results reported
in Fig 3.

Table 1. Empirical Type I errors (10,000 repetitions) and D̂∗
N defined in (8)

n λ Statis- α = .1 α = .05 α = .01 α=.005 D̂∗= sup |Ĥ − G|
tic SE.=0.003 SE.=0.002 SE.=0.001 SE.=0.001 ESE.=0.007

20 5 Tnew 0.1107 0.0585 0.0132 0.0070 0.0130
20 5 TLR 0.1359 0.0724 0.0173 0.0089 0.0588
20 5 TCC 0.0977 0.0495 0.0103 0.0059 0.0105
20 5 TNS 0.1039 0.0620 0.0220 0.0148 0.0457

12 12 Tnew 0.1050 0.0540 0.0122 0.0065 0.0094
12 12 TLR 0.1102 0.0563 0.0120 0.0062 0.0130
12 12 TCC 0.1007 0.0505 0.0104 0.0054 0.0057
12 12 TNS 0.1082 0.0670 0.0260 0.0179 0.0611

5 25 Tnew 0.1008 0.0510 0.0103 0.0053 0.0035
5 25 TLR 0.1027 0.0517 0.0101 0.0051 0.0069
5 25 TCC 0.0994 0.0490 0.0095 0.0046 0.0066
5 25 TNS 0.1059 0.0696 0.0312 0.0231 0.0955
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The quantities reported in Table 1 are defined as follows. Let G denote
generally the nominal null cumulative distribution of a statistic T . (For
TNS , G is standard normal. For the other statistics G is χ2

n−1.) Let κα

denote the α critical values, κ(α) = G−1(1 − α). Let H denote the true
null distribution of the statistic. Then the true type I error is 1 − H(κ(α)).
The table reports Monte-Carlo estimates based on 10,000 samples of these
quantities for various statistics and values of n, λ. The standard errors
reported in the table are the theoretical values

√
α(1 − α)/10000.

Table 1 also reports a measure of the disparity between the nominal G
and the true H as measured via the Kolmogorov-Smirnov distance

D∗ = sup
t

|H(t) − G(t)|.

Again, the values reported derive from 10,000 simulations. To be more
precise, each entry in the last column of the table reports the value of

D̂∗
N = sup

t
|ĤN (t) − G(t)| (8)

where Ĥ denotes the sample CDF from the N=10000 simulated values of T .
Simulated values of D̂∗

N have the Kolmogorov-Smirnov limiting distri-
bution. This is not a normal distribution. In particular, a 95% confidence
region for H(t) is

sup
t

|H(t) − Ĥn(t)| � 2 ESE

where
ESE =

1.96 × 0.5
1.36

√
10000

= 0.007.

For this reason we have chosen to report the effective standard error, ESE,
as the measure of the precision of our Monte-Carlo simulation.

Note that for Tnew and TCC , D∗
N is acceptably small. Indeed, it is less

than 2 × ESE, and hence using this we would not reject at level .05 the
null hypothesis that H = G. This is also true for TLR when λ = 12 and 25.
But when λ = 5 the performance in this regard is less satisfactory, as is the
performance of TNS for all combinations of n, λ in the table.

5. Asymptotic Distribution of Tnew

We have suggested approximating the null distribution of Tnew as a Chi-
squared with n− 1 df. The empirical results in the previous section suggest
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that this approximation is satisfactory for practical applications. We now
explore the asymptotic distribution of Tnew as n → ∞. We show that the
limiting null distribution is not Chi-squared (n − 1) but is very close to
Chi-squared (n − 1) so long as λ is not small. This closeness explains why
the Chi-squared approximation is suitable for most practical applications.
Finally, we also provide similar results about the distribution under Ha.

Note that Eλ(Tnew) = 4(n − 1)Varλ(Y ). As noted at (3), Anscombe
(1948) proved by an asymptotic expansion that

ξ(λ)
�
= 4Varλ(Y ) = 1 + O(1/λ). (9)

This expression is not only asymptotically accurate — it is nearly the exact
truth so long as λ > 4. Figs 4 and 5 show plots of ξ(λ) = 4Varλ(Y ) =
Eλ(Tnew)/(n − 1) derived via direct calculation. In particular,

ξ(λ) = (n − 1)−1Eλ(Tnew) � 1.0025. (10)

(The maximum value of Eλ(Tnew) occurs at approximately λ = 5.5.) This
means that Tnew is positively biased by at most a very small amount, and
so suggests that a test based on Tnew will not have significance levels much
below their nominal value. That is, this suggests while the test based on
Tnew may be conservative, it will not be radical by very much.

The results in Figs 4 and 5 suggest that the distribution of Y may ef-
fectively be very close to normal. As further exploration of this possibility,
note that if Y were exactly normal then we would have Var((Y − νλ)2) = 2.
Fig 6 is a plot of

ρ(λ) =
[
Var((Y − νλ)2)

2

]1/2

. (11)

Note that ρ(λ) ≈ 1 whenever λ > 4. In particular, ρ(λ) � 1.054 with the
maximum occurring at λ = 5.4. Again, this suggests that the test based on
Tnew will be conservative for very small λ, but will not for any λ be “radical”
by very much.

Here is a formal statement of the asymptotic result.

Theorem 5.1 Assume H0 is true, λ is fixed and n → ∞. Then

1
ρ(λ)

√
n − 1

2

(
Tnew

n − 1
− ξ(λ)

)
→ N(0, 1) (12)

in distribution where ξ, ρ are defined in (10) and (11).
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Figure 6: Plot of ρ(λ) as defined in (11)

Remarks. Recall that if Z ∼ χ2
n−1 then

√
n − 1

2

(
Z

n − 1
− 1

)
→ N(0, 1).

Note that both ξ(λ) ≈ 1 and ρ(λ) ≈ 1. It is thus clear that for large n,
Tnew is reasonably closely approximated as a χ2

n−1 variable, even though its
asymptotic distribution is not exactly χ2

n−1 as n → ∞ for fixed λ.
If one were in a situation where n is moderately large and λ is small

then (12) suggests that the nominal χ2 critical values (and P-values) can
be slightly improved by calculating critical values (and P-values) from the
normal distribution in (12) calculated at λ̂ = X.

The formula for the approximate P-value thus becomes

P ≈ 1 − Φ−1

(
1

ρ(X)

√
n − 1

2

(
Tnew

n − 1
− ξ(X)

))
. (13)

Proof: The result follows from the definition of ξ, ρ, the central limit
theorem and Slutsky’s theorem. We omit the straightforward details.
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Similar reasoning using the central limit theorem for independent non-
identically distributed random variables yields the following result.

Theorem 5.2 Let λ1, . . . , λn depend on n. Let

ξn =
1
n

∑
ξ(λi) (14)

ρ2
n =

1
n

∑
ρ2(λi)

ψ2 = 4
∑

(ν(λi) − νn)2

νn =
1
n

∑
ν(λi).

Assume
lim inf
n→∞ ρn > 0 and lim sup

n→∞
ρn < ∞. (15)

Then

P

(
1
ρn

√
n − 1

2

(
Tnew

n − 1
− ξn

)
> C

)
→ 1 − Φ

(
C − 4

∑
(ν(λi) − νn)2

ρn

√
2(n − 1)

)

(16)
as n → ∞.

It is possible to effectively implement Theorem 5.2 to get values of the
power of the test when more accuracy is desired than is provided by (5) and
n is quite large. In order to best use (12) and (16) we suggest defining

ξ̃n =
1
n

n∑
i=1

ξ(Xi)

ρ̃
2
n =

1
n

n∑
i=1

ρ2(Xi), (17)

since these are the obvious estimates of the corresponding quantities in (14).
Then construct the test that rejects when

1
ρ̃n

√
n − 1

2

(
Tnew

n − 1
− ξ̃n

)
> Φ−1(1 − α). (18)

Note for later use that under H0

ξ(X) ≈ ξ̃, ρ2(X) ≈ ρ̃
2 (19)
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with asymptotic equality as n → ∞. (19) should also be approximately valid
when the alternative is not far from H0. In such situations one could use
the simpler values ξ(X), ρ2(X) in place of ξ̃, ρ̃

2. Because of (19) the test in
(18) is very similar to that described in (13).

Theorem 5.2 implies the power of the test given in (18) is

Pλ(Tnew satisfies (18))

→ 1 −E

(
Φ

(
ρ̃n

ρn

Φ−1(1−α)
)

+

√
n − 1

2
ξ̃n−ξn

ρn

−4
∑

(ν(λi)−νn)2

ρn

√
2(n−1)

)
, (20)

where λ = {λi}.
Now, ρ̃n → ρn in probability. Also, ρn ≈ 1 so long as minλi > 4 as a

consequence of the results plotted in Fig 6.
Let

Var(
√

n − 1(ξ̃n − ξn)) = ε(λ).

Recall that ξ(λ) is nearly constant for λ > 4. Hence ε is numerically quite
small so long as min λi > 4. It follows that then

Pλ(Tnew satisfies (18)) =1−E

(
Φ(Φ−1(1−α)− ψ2√

2(n−1)
+ε(λ))+Op(1)

)

→1 − Φ

(
Φ−1(1 − α) − ψ2√

2(n − 1)
+ ε∗

)
(21)

for some numerically small ε∗. ( ε∗ is numerically small because of its relation
to the random variable ε(λ) which is also numerically small.)

If Tnew were exactly noncentral χ2 as assumed in (5) then we would have

Pλ

(√
n − 1

2

(
Tnew

n − 1
− 1

)
> Φ−1(1 − α)

)

→ 1 − Φ
(

Φ−1(1 − α) − ψ2

2
√

n − 1

)
, under (5). (22)

Since ε∗ is numerically small, these facts suggest that so long as all (or most)
λi > 4, (5) is a very good approximation even though it is not asymptotically
exact as n → ∞ with λ = O(1).
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