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Abstract

We consider a blockwise James-Stein estimator for nonparametric function estima-

tion in suitable wavelet or Fourier bases. The estimator can be readily explained

and implemented. We show that the estimator is asymptotically sharp-adaptive in

minimax risk over any Sobolev ball containing the true function. Further, for a mod-

erately broad range of bounded sets in Besov space our estimator is asymptotically

nearly sharp adaptive in the sense that it comes within the Donoho-Liu constant,

1.24, of being exactly sharp adaptive. Other parameter spaces are also considered.

The paper concludes with a Monte-Carlo study comparing the performance of our

estimator to that of three other popular wavelet estimators. Our procedure gener-

ally (but not always) outperforms two of these and is overall comparable, or perhaps

slightly superior, to the third.
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1 Introduction

Various levels of asymptotic adaptivity have become recognized as an important feature

of useful nonparametric function estimators. In the present paper we construct an easily

understood and implemented adaptive estimator. We investigate the adaptivity of the

procedure by using the minimax approach.

Under the minimax criteria, our estimator is sharp-adaptive over Sobolev spaces. This

is to say that its risk for estimating an unknown regression function, f , is asymptotically

bounded by the minimax risk over any Sobolev ball containing this function. This property

can even be shown to hold uniformly over a broad spectrum of Sobolev balls (See (12)).

For a moderately broad range of bounded sets in Besov space our estimator is nearly

sharp-adaptive, since it comes within the Donoho-Liu constant, 1.24 . . ., of being exactly

sharp adaptive. The range of Besov spaces over which our adaptivity holds is more

restricted than for the adaptivity property of the popular VisuShrink, SureShrink and

BlockJS wavelet estimators. (Donoho and Johnstone (1994, 1995); Cai (1999).) On the

other hand our estimator is more nearly sharp adaptive over suitable Besov sets and is as

easy, or easier, to implement.

Our adaptive estimator can be readily explained, as follows. Express the nonparametric

regression problem in terms of an empirical wavelet basis or Fourier basis. Group these

coefficients in blocks of slowly growing size. Apply the James-Stein shrinkage estimator

within each individual block. The details of this construction are described in steps 1-3 of

Section 2.

The idea of block thresholding can be traced back to Efromovich (1985) in orthogonal

series estimators; and Kerkyacharian, Picard and Tribouley (1996), for wavelet density

estimation. The closest in spirit to the blockwise James-Stein estimator proposed here is

the BlockJS procedure mentioned above. A similar construction was earlier used in Brown,

Low and Zhao (1997) to produce superefficient estimators. Goldenschluger and Tsybakov

(2003) have used a related construction for a nonparametric prediction problem.

The above mentioned wavelet estimators provide a level of adaptivity across a broad

range of bounded sets. There are a variety of other adaptive proposals that could be

mentioned. Most of these involve a more restricted range of sets. The earliest sharp-

adaptive estimators are those in Efromovich and Pinsker (1984). Adaptive estimators built

from kernel estimators are described in Lepski, Mammen and Spokoiny (1997). Efromovich
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(2000) describes another type of adaptive estimator in Sobolev spaces.

Zhang (2005) contains some broadly applicable results describing the existence of ex-

actly sharp-adaptive estimators across a range of sets that includes the Besov spaces in our

result. Our estimator is more easily implemented than his, and we suspect ours may have

superior numerical performance for small to moderately large sample sizes.

We conclude this paper with a Monte Carlo examination of the performance of our

estimator for sample sizes ranging from 512 to 8192. For four standard test functions,

performance of our estimator in terms of integrated squared error is compared with that

of three other popular adaptive wavelet procedures. It can be seen from Figure 1 that our

procedure generally (but not always) outperforms two of these and is overall comparable,

or perhaps slightly superior, to the third.

2 The estimator

We consider the canonical white noise model which is asymptotically equivalent to the

conventional formulation of nonparametric regression. See Brown and Low (1996), Brown,

Cai, Low, and Zhang (2002) and Brown and Zhao (2000). There is also a slightly less

direct equivalence to nonparametric density estimation. See Nussbaum (1996), Klemelä

and Nussbaum (1999), and Brown, Carter, Low and Zhang (2004).

Under the white noise model, we observe a stochastic processes Yn(t) governed by

dYn(t) = f(t)dt + n−1/2dW (t), 0 ≤ t ≤ 1

where W (t) is a standard Brownian motion. We wish to estimate the drift function f . The

accuracy of an estimator f̂ is measured by the mean integrated square error:

R(f, f̂) = E‖f̂ − f‖2
2.

Suppose {βi(t)}∞i=1 is an orthonormal basis of L2[0, 1]. Let yi =
∫

βi(t)dYn(t) and θi =∫
f(t)βi(t)dt. Then the function estimation problem is exactly equivalent to the following

sequence model.

Observe

yi = θi + n−1/2εi, εi
iid∼ N(0, 1), i = 1, . . . (1)

and wish to estimate θ under risk

R(θ, θ̂) = Eθ‖θ̂ − θ‖2
`2 . (2)
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An estimator θ̂ of the coefficient sequence θ directly provides an estimator

f̂(t) =
∞∑
i=1

θ̂i βi(t)

of the function f with an isometry of risk R(f, f̂) = R(θ, θ̂).

The estimation problem (1) - (2) is an infinite dimensional normal mean problem.

Among the many traditional shrinkage estimators developed in the multivariate normal

decision theory, the James-Stein estimator is perhaps the best-known and will be used

below. Efron and Morris (1973) showed that the (positive part) James-Stein estimator does

more than just demonstrate the inadequacy of the maximum likelihood estimator. It is a

member of a class of good shrinkage rules, all of which may be useful in different estimation

problems. The James-Stein estimator can also be regarded as truncated empirical Bayes

rules. See Efron and Morris (1973).

We propose a blockwise James-Stein estimator for estimating the infinite dimensional

normal mean θ. The estimator is constructed as follows:

1. Choose a “base” multiplier, b = bn > 1. Corresponding to b choose an initial block

length I0 = [bK0 ] with K0 an integer chosen so that I0 ≥ 3 and [bk] − [bk−1] ≥ 3 for

all k ≥ K0 + 1. Let K1 = K1(n) = [logb n]− 1 and I1 = [bK1 ]. Note I1 ≥ n/b.

2. Let GK0 = {i : 1 ≤ i ≤ I0 = [bK0 ]}, Gk = {i : [bk−1] < i ≤ [bk]}, k ≥ K0 + 1. Let

mk = [bk] − [bk−1] denote the number of indices in Gk and mK0 = I0. Note mk ≥ 3

for k ≥ K0. Let ‖Y ‖2
(k) =

∑
i∈Gk

y2
i , and ‖θ‖2

(k) =
∑

i∈Gk
θ2

i .

3. Define the corresponding estimator θ̃ by

θ̃i =

 (1− mk−2
n‖Y ‖2

(k)

)+yi if i ∈ Gk for some k = K0, . . . , K1(n)

0 if i > I1.
(3)

For our main results, we choose the base multiplier b = bn = 1 + 1/ log n and denote

the corresponding estimator of θ by θ̃∗ and the corresponding estimator of f by f̃ ∗. Other

choices of b are discussed in Sections 4 and 5.

3 Sharp adaptivity over Sobolev classes

We now investigate the minimaxity of the blockwise James-Stein estimator f̃ ∗. For our first

basic result we consider the Sobolev function class F which consists of periodic functions
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defined by the Sobolev condition

F(α, M) = {f : ‖f‖2
2 + ‖f (α)‖2

2 ≤ M.} (4)

Choose φ1 = 1, φ2i =
√

2 cos(2πit) and φ2i+1(t) =
√

2 sin(2πit). Then the problem of

estimating f under L2 loss is exactly equivalent to the sequence model with θ ∈ Θ where

Θ is defined as

Θ = Θ(α, B) = {θ :
∞∑
i=1

ciθ
2
i ≤ B} (5)

with c2i = 1+π2α(2i)2α = c2i+1 and M = B. Efromovich and Pinsker(1982) and Efromovich

(1998) show the minimax risk over Θ(α, B) (or F(α, M)) with

ci = Ci2α(1 + o(1)) as i →∞ (6)

is

R∗(α, B) = inf
θ̂

sup
θ∈Θ(α,B)

E‖θ̂ − θ‖2 = C∗(α)B
1

1+2α C− 1
1+2α n−

2α
1+2α (1 + o(1)) (7)

where C∗(α) is a constant depending on α; see Pinsker (1980) for the explicit formula for

C∗(α).

They also show this same expression yields the asymptotic linear minimax risk (i.e. the

value for the expression on the left of (7) when the procedures θ̂ are restricted to be linear).

If the periodicity restriction on f in (4) is dropped one needs to use a modification of the

standard Fourier basis, above. With the modified basis (5), (6) and (7) are still valid.

Theorem 1 The estimator θ̃∗ satisfies

lim
n→∞

supθ∈Θ(α,B) R(θ, θ̃∗)

R∗(α, B)
= 1 (8)

for all α > 0, B > 0.

Before we prove Theorem 1 we state a standard risk bound for the James-Stein estimator

(see, e.g., Donoho and Johnstone (1995)). Let Zi
ind∼ N(wi, σ

2), i = 1, . . . ,m ≥ 3, with σ2

known. Let w̃i = (1− (m− 2)σ2/s2)+Zi, where s2 =
∑m

i=1 Z2
i . Then

Ew(‖w̃ − w‖2) ≤ ‖w‖2(m− 2)σ2

‖w‖2 + (m− 2)σ2
+ 2σ2 ≤ ‖w‖2mσ2

‖w‖2 + mσ2
+ 2σ2. (9)

Proof of Theorem 1 : Fix α > 0, B > 0. For convenience we take C = 1 and ci = i2α. Only

minor modifications are needed under (6). As noted R∗ is attained by linear estimators.
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Further, Donoho, Liu and MacGibbon (1990) show it suffices to consider linear estimators

of the form θ̂i = dniYi, where each multiplier, dni depends on n (and α, B). We have

R∗(α, B) ≥ {1 + o(1)} inf
dni

sup
θ∈Θ(α,B)

∞∑
i=1

E(dniYi − θi)
2

≥ {1 + o(1)} sup∑K1
K0+1 b2kα‖θ‖2

(k)
≤B

inf
dni

K1∑
K0+1

∑
i∈Gk

E(dniYi − θi)
2.

Further, it is easy to verify that

sup
‖θk‖2≤t2k

inf
dni

∑
i∈Gk

E(dniyi − θi)
2 =

t2kmkn
−1

t2k + mkn−1
.

Thus

R∗(α, B) ≥ {1 + o(1)} sup∑K1
K0+1 b2kαt2k≤B

K1∑
K0+1

t2kmkn
−1

t2k + mkn−1
, (10)

since {θ :
∑K1

K0+1 b2kα‖θ‖2
(k) ≤ B, θi = 0 for i /∈ (I0, I1]} ⊂ Θ(α, B). On the other hand

R(θ, θ̃) =
∞∑

k=K0

∑
i∈Gk

E‖θ̃ − θ‖2
(k) ≤ mK0n

−1 +

K1∑
K0+1

‖θ‖2
(k)mkn

−1

‖θ‖2
(k) + mkn−1

+ 2K1n
−1 +

∞∑
i=I1+1

θ2
i

=

K1∑
K0+1

‖θ‖2
(k)mkn

−1

‖θ‖2
(k) + mkn−1

+ o(n−
2α

1+2α ),

since K1 = O(log n), mK0 bounded, and

∞∑
i=I1+1

θ2
i ≤

1

(I1 + 1)2α

∞∑
i

i2αθ2
i = O(n−2α) = o(n−

2α
1+2α ).

Thus

sup
θ∈Θ(α,B)

R(θ, θ̃) ≤ sup∑K1
K0+1 b2(k−1)αt2k≤B

K1∑
K0+1

t2kmkn
−1

t2k + mkn−1
+ o(n−

2α
1+2α ), (11)

since {θ :
∑K1

K0+1 b2(k−1)α‖θ‖2
(k) ≤ B} ⊃ Θ(α, B). The theorem follows from comparison of

(10) and (11). More precisely, by using the Lagrange multiplier, it is not difficult to show

that

sup∑K1
K0+1 b2kαt2k≤B

K1∑
K0+1

mkt
2
kn

−1

t2k + mkn−1
+ o(n−

2α
1+2α ) ∼ C∗(α)B

1
1+2α n−

2α
1+2α ,

where C∗(α) is the minimax constant. (See also Efromovich (1998)). Hence

lim
n→∞

supθ∈Θ(α,B) R(θ, θ̃)

R∗(α, B)
≤ lim

n→∞

C∗(α)(b2α
n B)

1
1+2α n

2α
1+2α

C∗(α)B
1

1+2α n
2α

1+2α

= 1.
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The expression (8) shows in a strong sense that θ̃∗ is adaptively asymptotically minimax.

Under slightly stronger assumptions an even stronger conclusion is possible. Take C = 1

in (6), without loss of generality, and assume the o(1) term in (6) is uniformly bounded

over the allowable range of α, B. Restrict that range to S = {α, B : 0 < α0 ≤ α ≤ α−1
0 , 0 <

B0 ≤ B ≤ B−1
0 }. Then in place of (8) one can write

lim
n→∞

sup
α,B∈S

supθ∈Θ(α,B) R(θ, θ̃)

R∗(α, B)
= 1 (12)

We omit the details of the proof, much of which closely follows that of Theorem 1.

Remark: If the blockwise James-Stein estimators θ̃ uses a constant base multiplier b, then

the estimator satisfies

lim
n→∞

supθ∈Θ(α,B) R(θ, θ̃)

R∗(α, B)
≤ b

2α
1+2α .

As mentioned in the introduction a blockwise James-Stein estimator, called BlockJS,

was proposed in the wavelet context by Cai (1999). This estimator is closely related to the

one developed in (3). There are two major differences between the two procedures. One

is that the block size in BlockJS is fixed at log n instead of weakly geometrically growing

as in (3), and another is that the constant λk ≡ mk − 2 in (3) is replaced by λ = 4.505 . . .

(solution to the equation λ − log λ − 3 = 0). The BlockJS estimator was proven in Cai

(1999) to have excellent asymptotic adaptivity. Although BlockJS enjoys many desirable

properties, it is not asymptotically sharp adaptive over Sobolev balls. That is, Theorem 1

does not hold for the BlockJS estimator.

4 Wavelet estimation

Wavelet bases and the associated Besov space have a slightly different structure. There (1)

is

yjk = θjk + n−1/2εjk, k = 1, . . . , 2j; j ≥ j0; εjk
iid∼ N(0, 1). (13)

As mentioned earlier, The BlockJS estimator enjoys excellent asymptotic properties over a

very wide range of Besov spaces. Here we restrict attention to adaptivity over a somewhat

restricted range of Besov spaces. Of interest are those spaces that are quadratically convex.

These are the spaces Bα
p,q with p ≥ 2, q ≥ 2. See Donoho and Johnstone (1998, p899-900).
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Consider Yjk as in (13) with

Θ = Bα
p,q(B) = {θjk :

∞∑
j=j0

(2j(α+1/2−1/p)(
2j∑

k=1

|θjk|p)1/p)q ≤ B}.

Let R∗W (α, p, q, B) denote the corresponding minimax risk

R∗W (α, p, q, B) = inf
θ̂

sup
θ∈Bα

p,q(B)

R(θ, θ̂).

Donoho and Johnstone (1998) calculate that the minimax rate is n−2α/(2α+1), i.e.,

R∗W (α, p, q, B) � n−2α/(2α+1) as n →∞ (14)

A wavelet basis also provides a natural blocking strategy. Use the resolution levels as blocks

and let ‖y‖2
(j) =

∑2j

k=1 y2
jk. Define θ̃w

θ̃w =

 (1− (2j−2)n−1

‖y‖2
(j)

)+yjk, if 1 ≤ j ≤ log2 n

0 if j > log2 n.
(15)

The following result shows that this estimator is nearly sharp-adaptive over a range of Besov

balls; it comes within the Donoho-Liu constant, 1.24 . . ., of being exactly sharp adaptive.

Theorem 2 For B > 0, p ≥ 2, and q ≥ 2

lim
n→∞

sup
θ∈Bα

p,q(B)

R(θ, θ̃w)

R∗W (α, p, q, B)
≤ Kp,q, (16)

where 1 ≤ Kp,q ≤ 1.25, and K22 = 1.

Proof: As in (22) the linear estimators are within Kp,q of being asymptotically minimax.

For these we have

inf
θ̂L

sup
θ∈Bα

p,q(B)

R(θ, θ̂L) = sup
θ∈Bα

p,q(B)

∞∑
j=j0

2j∑
k=1

θ2
jkn

−1

θ2
jk + n−1

(17)

≤ sup
{tj :

∑∞
j=j0

(2j(α+1/2−1/p)tj)q<B}

log2 n∑
j=j0

t2j2
jn−1

t2j + 2jn−1
+ o(n−2α/(2α+1))

since the supremum occurs when each θ2
jk = t2j2

−j and then
∑2j

j=1 θp
jk = tpj2

j(1−p/2). At the

same time, letting ‖θ‖2
(j) =

∑2j

k=1 θ2
jk we have

sup
θ∈Bα

p,q(B)

R(θ, θ̃) = sup
θ∈Bα

p,q(B)

{
log2 n∑
j=j0

‖θ‖2
(j)2

jn−1

‖θ‖2
(j) + 2jn−1

+
∑

j>log2 n

‖θ‖2
(j) + 2n−1 log2 n}

= sup
θ∈Bα

p,q(B)

∞∑
j=j0

2j∑
k=1

θ2
jkn

−1

θ2
jk + n−1

+ o(n−2α/(2α+1)). (18)
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since supθ∈Bα
p,q(B)

∑
j>log2 n ‖θ‖2

(j) = o(n−2α/(2α+1)). Combining (18), (17) and (14) yields

(16).

Remark: The estimator (15) has also been considered in Donoho and Johnstone (1995).

It is shown that the estimator does not perform well numerically. The main reason is that

the block sizes grow too fast and the estimator is not well localized.

Instead of using resolution levels as natural blocks, we can also apply the blocking

method used in Section 3 in the wavelet setting. In a wavelet basis, the coefficients θj,k can

be matched to (1) by using a lexicographic correspondence. To do this set θi = θjk with

i = (2j − 2j0)+ k. Then, for example, for Besov balls in Bα
2,2 (5) holds with ci = 22αj. Note

that these ci have a slightly different structure from (6) since (6) implied ci+1/ci → 1. The

ci here are constant over the range corresponding to 2j − 2j0 + k, k = 1, . . . , 2j which is

clearly consistent with this, but c2j−2j0+1/c2j−2j0 = 2−2α, which is not.

In general, we can construct a blockwise shrinkage estimator in a wavelet basis by

first piecing together the empirical wavelet coefficients at different resolution levels (in the

order of the lowest to the highest) as a vector, then applying the Steps 1-3 to the vector

of the empirical coefficients with a base multiplier bn = 1 + 1/ log n. Denote the resulting

estimator by θ̃. Then by using a similar proof as that of Theorem 1, it can be shown that

the estimator is adaptively rate optimal over a range of Besov balls. We omit the details

of the proof here.

Theorem 3 For B > 0, p ≥ 2, and q ≥ 1

lim
n→∞

sup
θ∈Bα

p,q(B)

R(θ, θ̃)

R∗W (α, p, q, B)
= Mp,q,

where Mp,q is a constant.

Our simulation results in Section 6 show that this rate-adaptive estimator performs well

numerically.

5 Other parameter spaces

Various generalizations to a wider variety of parameter spaces are possible, and follow easily

from the steps used in the preceding proofs. One may then conclude that θ̃ is adaptively
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minimax in rate and provide very good bounds on the relative constants multiplying the

rate. Here are two such generalizations, plus sketches for their proofs. For the first we

consider the parameter set

Θ1(α, B) = {θ :
∑

e2αiθ2
i ≤ B}. (19)

This function class has been considered in Efromovich and Pinsker (1982), and Donoho

and Liu (1991). In this problem it may be calculated as in Donoho, Liu and MacGibbon

(1990) that the minimax risk

R∗1(α, B)
.
= inf

θ̂
sup

θ∈Θ1(α,B)

R(θ, θ̂)

satisfies

R∗1(α, B) =
log n

2αn
(1 + o(1)) as n →∞ (20)

uniformly for all 0 < B0 ≤ B ≤ B−1
0 .

Theorem 4 Consider the problem (1)−(2) with Θ = Θ1 as in (19). Let θ̃ be the estimator

defined in (3) with a constant base multiplier b. Let B0 > 0. Then for each α

lim
n→∞

supθ∈Θ1(α,B) R(θ, θ̃)

R∗1(α, B)
≤ b +

4α

log b
(21)

uniformly for B ∈ [B0, B
−1
0 ].

Proof: Reasoning as in (11) yields

sup
θ∈Θ1(α,B)

R(θ, θ̃) ≤ sup∑K1
K0+1 e2αbk−1 t2k≤B

K1∑
K0+1

t2kmkn
−1

t2k + mkn−1
+

2 logb n

n
+ o(

log n

n
).

(The term 2 logb n/n derives from the additional 2σ2 term on the right of (9).) A standard

Lagrange multiplier bound then yields

sup
θ∈Θ1(α,B)

R(θ, θ̃) ≤ b log n

2αn
+

2 log n

n log b
+ o(

log n

n
).

(21) follows from this and (20).

For the second example we choose a particular case of a quadratically convex Θ. Choos-

ing only a particular case as we have done should hopefully make clear how to handle the

general situation, but without requiring detailed general definitions. Let

Θ = Θ2(α, B) = {θ :
∑

i4αθ4
i ≤ B}.
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Let L denote the class of linear estimators . Then

R∗∗2(α, B)
.
= inf

θ̂L∈L
sup

θ∈Θ2(α,B)

R(θ, θ̂L) = sup
θ∈Θ2(α,B)

∑ θ2
i n

−1

θ2
i + n−1

= C2(α)B
1

4α+1 n−
4α−1
4α+1 (1+o(1)).

Since Θ is quadratically convex Donoho, Liu and MacGibbon (1990) show that

R∗∗2(α, B) ≤ 1.25R∗2(α, B)
.
= 1.25 inf

θ̂
sup

θ∈Θ2(α,B)

R(θ, θ̂) (22)

(It is possible with more care to replace the constant 1.25 in (22) by a slightly smaller

value, but still larger than 1. It is also possible to evaluate C2(α).)

Theorem 5 Let θ̃ be a blockwise James-Stein estimator with a constant base multiplier b.

Then for each α > 1/4, B > 0

lim
n→∞

supθ∈Θ2(α,B) R(θ, θ̃)

R∗2(α, B)
≤ 1.25 lim

n→∞

supθ∈Θ2(α,B) R(θ, θ̃)

R∗∗2(α, B)
≤ 1.25b

4α
1+4α ≤ 1.25b (23)

For the estimator θ̃∗ the upper bound is 1.25.

Proof: First note that

sup∑
i∈Gk

θ4
i =t4

∑
i∈Gk

θ2
i n

−1

θ2
i + n−1

=
t2mkn

−1

t2 + m
1/2
k n−1

= sup∑
i∈Gk

θ4
i =t4

‖θ‖2
(k)mkn

−1

‖θ‖2
(k) + mkn−1

since both suprema occur when each θi = m
−1/4
k t. Following the plan of proof of Theorem

1 we can thus write

R∗∗2(α, B) ≥ sup
{t:

∑K1
K0+1 b4kαt4k≤B}

K1∑
K0+1

t2kmkn
−1

t2k + m
1/2
k n−1

= C∗
2(α)B

1
1+4α n−

4α−1
4α+1 (1 + o(1)) (24)

and

R(θ, θ̃) ≤ (1 + o(1)) sup
{t:

∑K1
K0+1 b4kαt4k≤Bb4α}

K1∑
K0+1

t2kmkn
−1

t2k + m
1/2
k n−1

(25)

= C∗
2(α)B

1
1+4α b

4α
1+4α n−

4α−1
4α+1 (1 + o(1)).

Taking the ratio of (24) and (25) yields the second inequality in (23).
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6 Numerical results

In the earlier sections it is shown that the blockwise James-Stein estimator as described

in Steps 1-3 in Section 2 enjoys a number of desirable adaptivity properties. In contrast

to some of the other adaptive minimax estimators in the literature, our estimator is very

easy to implement with O(n) computational cost. In this section we study the numerical

performance of the estimator f̃ ∗ in a wavelet basis. In implementing f̃ ∗ in a wavelet basis,

we first piece the empirical wavelet coefficients at different resolution levels (in the order of

the lowest to the highest) together as a vector, then the Steps 1-3 are applied to the vector

of the empirical coefficients with a base multiplier bn = 1 + 1/ log n. The blocking scheme

can be adjusted so that all blocks fall within single resolution levels. There might be a

slight advantage in doing so, but we choose to implement our estimators in the simplest

way.

We compare the MSE of f̃ ∗ with those of VisuShrink (Donoho and Johnstone (1994)),

translation-invariant denoising (Coifman and Donoho (1995)), and BlockJS (Cai (1999)).

See the original papers for details of the methods. We use the four well-known test functions

of Donoho and Johnstone (1994) to compare the performance of the estimators. The test

functions are normalized so that all of the functions have equal s.d.(f) = 10. Each of

the four methods is applied to noisy versions of the test functions. Daubechies compactly

supported wavelet Symmlet 8 is used. Table 1 reports the mean squared error over 100

replications with sample sizes ranging from n = 512 to n = 8192 and signal-to-noise ratio

(SNR) 3. Figure 1 provides a graphical comparison of the mean squared error of f̃ ∗ with

those of the other three estimators. In Figure 1, the vertical bars represent the ratios of

the MSEs of various estimators to the corresponding MSE of f̃ ∗. The higher the bar the

better the relative performance of f̃ ∗, and a value of one means that the estimators have

equal performance. For each signal the bars are ordered from left to right by the sample

sizes (n = 512, 1024, 2048, 4096, 8192).

Simulation shows that the estimator f̃ ∗ overall enjoys significantly better performance

relative to both VisuShrink and TI-denoising , especially when the underlying function has

large spatial variability. f̃ ∗ outperforms VisuShrink in 17 out of 20 cases, and is better than

TI-denoising in 15 out of 20 cases. In many cases the reduction in MSE is substantial. See

Figure 1. For three of the four test functions, Doppler, Bumps, and Blocks, the estimator

has better precisions with sample size n than VisuShrink with sample size 2 · n for all n
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from 512 to 8192 (see Table 1).

n f̃ ∗ Visu TI BlockJS n f̃ ∗ Visu TI BlockJS

Doppler Bumps

512 2.25 5.43 4.33 2.49 512 6.42 18.21 14.46 9.22

1024 1.26 3.76 3.01 1.49 1024 4.93 11.73 8.98 4.56

2048 0.87 2.38 1.87 0.85 2048 2.94 8.10 5.78 2.54

4096 0.46 1.36 1.05 0.56 4096 1.83 4.32 2.94 1.81

8192 0.31 0.90 0.67 0.31 8192 1.04 2.68 1.76 0.92

Blocks HeaviSine

512 4.67 9.02 8.08 6.16 512 1.25 1.06 0.90 1.05

1024 3.49 6.68 5.91 3.94 1024 0.82 0.64 0.56 0.64

2048 2.36 4.82 4.27 2.58 2048 0.54 0.45 0.38 0.41

4096 1.66 2.78 2.51 2.10 4096 0.35 0.35 0.26 0.35

8192 1.13 1.97 1.71 1.35 8192 0.20 0.25 0.18 0.24

Table 1: Mean Squared Error From 100 Replications (SNR = 3).

Figure 1: Comparison of MSEs. For each signal the bars are ordered from left to right by the

sample sizes (n=512 to 8192). The higher the bar the better the relative performance of f̃∗.

It is interesting to compare the numerical performance of f̃ ∗ with that of BlockJS in

terms of mean squared error. Overall, the estimator proposed in this paper outperforms

BlockJS for Doppler, Blocks, and HeaviSine (in the large sample size case), and under-

performs BlockJS for Bumps and HeaviSine (in the small sample size case). See Table 1

and Figure 1. Recall that the block size in BlockJS is fixed at log n for all blocks instead

of growing as in (3). At the higher resolution levels, BlockJS has smaller block size than

f̃ ∗ and can thus more readily adjust to the local smoothness properties of the underlying

function. The Bumps signal is spatially inhomogeneous. Its wavelet coefficients vary sig-

nificantly and the large coefficients at high resolution levels cluster in group around the

peaks of the function. BlockJS is well suited for such a spatially inhomogeneous signal. On

the other hand, wavelet coefficients of relatively smooth signals do not vary significantly at

high resolution levels. In such a case, our new estimator f̃ ∗ performs very well.
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