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Abstract

We consider the problem of testing whether a sample of observations comes from a single Poisson distribution.

Of particular interest is the alternative that the observations come from Poisson distributions with different

parameters. Such a situation would correspond to the frequently discussed situation of overdispersion.

We propose a new test for this problem that is based on Anscombe’s variance stabilizing transformation. There

are number of tests commonly proposed, and we compare the performance of these tests under the null hypothesis

with that of our new test. We find that the performance of our test is competitive with the two best of these.

The asymptotic distribution of the new test is derived and discussed.

We also describe how to compute Minimum Bayes Factors for our test and the various alternative tests.

Use of these tests is illustrated through two examples of analysis of call-arrival times from a telephone call

center. The example facilitates careful discussion of the performance of the tests for small λ and moderately large

n.
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1 Introduction

A variety of tests is available for testing whether a sample of observations comes from a Poisson

distribution. This article proposes an additional test based on Anscombe’s (1948) variance stabi-

lizing transformation. We examine the performance of this test and compare it with four other

tests in current use. We find this new test to be competitive in performance with the best of these

alternatives. We recommend it on this basis, and also because the heuristic idea underlying it easily

adapts for a variety of related applications. In this connection, see Brown, Mandelbaum, Sakov,

Shen, Zeltyn and Zhao (2001) and Brown, Zhang and Zhao (2001).

In this article we use call-arrival data gathered at an Israeli call center as motivation and illus-

tration of the various problems and methodologies we discuss. We provide a very brief discussion

in Section 2 of this data application.

We investigate both the conventional P-values for these test settings and the minimum Bayes

factors as described by Berger (2001). We feel that such factors are more appropriate than P-values

in contexts like the principle examples treated here, and hence feel it is important to provide a

methodology that enables computation of these factors.

The four additional types of test statistics we examine are the likelihood ratio statistic, the

corresponding chi-squared statistic sometimes called the “dispersion test”, a putatively normal

version of this statistic sometimes attributed to Neyman and Scott and the multinomial Pearson

chi-squared statistic. The multinomial chi-squared statistic is not well suited for the range of

applications we address. The performance of the Neyman-Scott test is shown to be inferior to those

built from the remaining three statistics. Among those three we favor the new test based on its

ease of use, diagnostic ability and breadth of application.
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Suppose the null hypothesis is true, that the data come from a Poisson(λ) distribution. When

λ is not small all three recommended tests (the new test, the dispersion χ2, and likelihood ratio)

appear fully satisfactory for practical applications. When λ is small the nominal null distribution

for the likelihood ratio test is quite inaccurate. The test should not then be used in the usual form

as presented here.

In Section 5 we derive the asymptotic distribution of our new test statistic as n → ∞ and λ

fixed. It is shown that this implies that the heuristic nominal null distribution is not fully accurate

when λ is small, even if n → ∞. Thus, when λ is very small (say λ � 5), the new test we

propose is slightly inaccurate. The source of that inaccuracy is explained in Section 4, and an easily

implemented correction is proposed that is satisfactory for moderately large sample sizes (say 50 or

more, depending partly on how small is λ).

In Section 2 we describe the call center data we will use as an example of an application of our

methodology. The various tests are described in Section 3, including the new test we propose based

on Anscombe’s variance stabilizing transformation. Section 4 presents some simulation results

comparing our test and the various other tests. The asymptotic distribution of the new test is

discussed in Section 5. Section 6 contains a derivation of the Minimum Bayes factors for the

respective statistics. Section 7 concludes with some empirical results for the call center data and

some further empirical results about the situation with small λ.

2 Call Center Arrival Data

The data accompanying our study was gathered at a relatively small Israeli bank telephone call

center in 1999. The portion of data of interest to us here involves records of the arrival time of
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service-request calls to the center. There are calls in which the caller requests service from a call

center representative. It is reasonable to conjecture that these arrival times are well modeled by

an inhomogeneous Poisson process. The arrival rate for this process should depend only on time

of day, and perhaps other calendar related covariates such as month or day of the week. There are

different categories of service that may be requested, and preliminary analysis clearly shows that

this factor should also be considered since the arrival rate patterns differ considerably. For more

information about various aspects of this data see Brown, Gans, Mandelbaum, Sakov , Shen, Zeltyn

and Zhao (2001). Other features of the call arrival process are investigated in Brown, Mandelbaum,

Sakov, Shen, Zeltyn and Zhao (2001).

If the arrival process for a given call category is as above then the number of arrivals each day

within any given interval of time should be independent Poisson variables with a parameter that

depends only on the given time interval. If other covariates are involved (such as day of the week)

then the Poisson parameter may also depend on these.

The histograms in Figure 1 and 2 show the results from two typical samples. Figure 1 shows

the number of standard calls arriving on each regular workday in Nov. and Dec., between 4:30pm

and 4:45pm. Figure 2 is a similar histogram for the special category of calls requesting internet

assistance arriving between 4:30pm and 4:45pm from Aug. through Dec. In each case it is of interest

to test the null hypothesis that these data arise from Poisson populations with their own respective

means. Note the different levels of calls/day in these two samples, as well as the different sample

sizes.

One reason for considering standard calls only for Nov. and Dec. is that there is some evidence

of an increased rate of standard calls in Nov. and Dec. Fig 3 presents the data that provides
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Figure 1: No. of daily calls for Internet Service arriving between 4:30pm and 4:45pm, Regular weekdays, Aug. –
Dec. n = 107, x̄ = 2.18, s2 = 2.47

8 16 24 32

Figure 2: No. of daily calls for Standard Service arriving between 4:30pm and 4:45pm, Regular weekdays, Nov. –
Dec. n = 44, x̄ = 18.66, s2 = 25.95

this evidence. The hypothesis of interest here would be that the daily arrival rate is the same in

each month. An extensive discussion related to testing such a hypothesis can be found in Brown,

Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2001).

5



N

5

10

15

20

25

30

8 9 10 11 12

month

Figure 3: Conventional side-by-side dot plot for Standard Service calls from 4:30pm – 4:45pm (Means diamonds are
from the conventional one-way ANOVA analysis. For description of a more appropriate type of analysis see Brown,
Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2001).)

3 Tests for the Poisson distribution

Let X1, . . . , Xn be independent non-negative integer valued random variables with P (X = x) =

f(x). The basic null hypothesis of interest is that

H0 : Xi ∼ Poiss(λi), λ1 = . . . = λn. (1)

In a context such as ours the alternative hypothesis is not always delineated precisely. In general

one usually wishes to focus on alternatives that are “over-dispersed” in the sense that

E(S2)

E(X)
> 1 (2)

where

S2 =
1

n − 1

n∑
i=1

(Xi − X)2, X =
1

n

n∑
i=1

Xi.
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For this reason we consider the alternative hypothesis that

Ha : Xi ∼ Poisson(λi),
∑

(λi − λ)2 > 0. (3)

We propose a new test for this problem. We also briefly describe four tests in common use for

H0. We will later focus our attention on properties of the new test in relation to the others.

3.1 A new test based on Anscombe’s statistic

Anscombe (1948) derived the second order variance stabilizing transformation for a Poisson variable.

If N ∼ Poiss(λ) he showed that

Varλ

(√
N +

3

8

)
=

1

4
+ O

(
1

λ

)
. (4)

On this basis it is natural to define Yi =
√

Xi + 3/8 and use the statistic

Tnew = 4
∑

(Yi − Y )2

to provide a test for H0.

Formula (4) suggests that Yi is approximately normal with variance 1/4 and mean

ν(λi) = Eλi
(Yi) = Eλi

(
√

N + 3/8). (5)

Under this approximation it would follow that when H0 is true Tnew has approximately a Chi-

squared distribution with (n − 1)df. We thus reject H0 if Tnew > χ2
n−1;1−α. Further one may

conclude that under Ha Tnew has approximately a noncentral χ2
n−1 distribution. In summary it is
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reasonable to act as if

Tnew ∼ χ2
n−1(4

∑
(ν(λi) − νn)2) (6)

where

νn =
1

n

n∑
i=1

ν(λi).

The empirical results in Section 4 indicate that this approximation is reasonably accurate under

H0 even for fairly small λ and n. Further simulations we have carried out (not reported here)

suggest that this approximation is also fairly good for a variety of choices of {λi} in Ha, even for

moderate n so long as all λi are not small.

Section 5 presents some asymptotic theory concerning the distribution of Tnew. This theory helps

explain why (6) provides numerically satisfactory results even though it is not quite asymptotically

valid as n → ∞, even under H0.

In the context of nonparametric density estimation Brown, Zhang and Zhao (2001) has suggested

using the transformation
√

N + 1/4 instead of
√

N + 3/8. This is because

Eλ(
√

N + 1/4) =
√

λ + O(1/λ).

In the context of Brown, Zhang and Zhao (2001) accuracy in estimation of
√

λ is of prime impor-

tance, rather than stability of the variance. However for the Poisson tests under investigation here

validity of (4) is more important, and the transformation
√

Xi + 3/8 performs slightly better than

would
√

Xi + 1/4.

In Brown, Cai and DasGupta (2001) we investigated confidence intervals for a Poisson mean.

This is a related problem but techniques for best confidence intervals do not necessarily extend
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to best tests of H0, and vice-versa. Some results about the confidence interval problem are also

reported in Brown, Zhang and Zhao (2001).

The test statistic Tnew appears to us a natural proposal given Anscombe’s well known variance

stabilizing transformation. We expect it has been used in the form (6) by some practitioners. But

the only reference we have found is Huffman (1984) that presents a sample size two (n = 2) version

of this test, and also discusses testing a generalization of H0 when n = 2.

3.2 Likelihood ratio statistic

The likelihood ratio statistic for testing H0 versus Ha is

TLR = 2
n∑

i=1

Xi ln

(
Xi

X

)
.

Under the null hypothesis this statistic is asymptotically distributed as a Chi-squared variable with

n − 1 df. (asymptotically as n → ∞ for fixed λ). Hence this test rejects H0 when TLR > χ2
n−1;1−α.

Under alternatives in Ha this statistic has approximately a non-central Chi-squared distribution

with (n − 1)df and non-central parameter ψ2 =
∑n

i=1(λi − λ)2/λ where λ =
∑n

i=1 λi/n. We write,

TLR ∼ χ2
n−1(ψ

2). This approximation is asymptotically valid as λ → ∞ for fixed n with λ1, . . . , λn

chosen to depend on n in such a way that ψ2 remains constant, or as n → ∞ with λ1, . . . , λn chosen

so that lim inf λ > 0 and ψ2 = O(
√

n).
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3.3 Conditional chi-squared statistic; also called the Poisson dispersion test

Under the null hypothesis the conditional distribution of X1, . . . , Xn given
∑

Xi = nX is multino-

mial (nX, (1/n, . . . , 1/n)). This motivates as a test statistic,

TCC =
∑ (Xi − X)2

X
=

(n − 1)S2

X

where under H0 has an (asymptotic) Chi-squared distribution with (n − 1)df. (Hence reject H0 if

TCC > χ2
n−1;1−α.) This statistic can also be motivated as the asymptotic chi-squared approximation

to the likelihood ratio test of Section 3.2. Some authors (e.g., Rice(1995)) call this the Poisson

dispersion test or the variance test (Cochran (1954)). See also Agresti (1990, p. 479).

Under Ha TCC ∼ χn−1(ψ
2); with this approximation being asymptotically valid under the same

conditions as described for TLR.

3.4 Neyman-Scott statistic

This statistic is directly motived by the expression (2). It is often proposed as test of H0. See

for example Lindsay (1995); and see Joengbloed and Koole (2000) for application of this test to

telephone call-center data. The statistic is

TNS =

√
n − 1

2

(
S2

X
− 1

)
.

This statistic is normalized so that asymptotically TNS ∼ N(ψ2/
√

2n, 1). (Hence this test rejects

if TNS > Φ−1(1 − α).) The asymptotic assertion here is valid as n → ∞ with λ1, . . . , λn chosen so

that ψ2 = O(
√

n) and lim inf λ > 0.
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Figure 4: Histogram (with best fitting normal curve) and Normal Quantile plot for TNS ; λ = 12, n = 12, 10,000
Monte Carlo samples

It can be seen that under H0 TNS is the standard normal approximation to the chi-squared

statistic TCC . It should therefore not be surprising that the null distribution of TNS is not close

to its limiting normal distribution until n is moderately large. Fig 4 shows this non-normality

in the case n = 12. The fact that the true null distribution of TNS is not close to its nominal

limiting distribution means that tests constructed using critical values from this will not have close

to their nominal significance level. Correspondingly their nominal P-values based on the limiting

distribution will also be considerably in error. For this reason we recommend against use of TNS.

(For comparative purposes we have nevertheless included TNS in the numerical results in Section
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4.)

3.5 Multinomial Chi-squared statistic

Let Mj = #{Xi : Xi = j}, j = 0, 1, . . .. It is possible to view {Mj} as a multinomial variable and

construct a Chi-squared test of H0 on this basis. This can be reasonably satisfactory if n is fairly

large and λ is rather small, as for the data in Fig 2. Otherwise we do not recommend it. We include

this test in this subsection for the sake of completeness, but will not discuss it in the remainder of

the paper.

In general the test statistic is formally as follows. Let Gk = {mk−1 + 1, . . . ,mk}, k = 1, . . . , K,

be mutually disjoint sets of consecutive integers, where m0 = 0, mK = ∞. Let

M∗
k =

∑
j∈Gk

Mj, k = 1, . . . , K. (7)

under H0 M∗ = {Mk} is multinomial(nX, p∗) where p∗ = {p∗k} with

p∗k(λ) =
∑
j∈Gk

λj exp(−λ)

j!
. (8)

Let λ̂∗ denote the MLE of λ based on observation of M∗ under the multinomial model (8). Define

the test statistic to be

TMC =
∑ (M∗

k − p∗k(λ̂
∗))2

p∗k(λ̂∗)
.

Reject H0 if TMC > χ2
K−2;1−α where χ2

K−2;1−α denotes the (1 − α)th quantile of the Chi-squared

distribution with K − 1 df.

It is generally asserted that this test has approximately the nominal level of significance, α, so
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long as no p∗k(λ̂
∗) is small. (Values of p∗k(λ̂

∗) > 3, or > 5, are often claimed to be satisfactory here; we

have not investigated this issue.) The necessity to form suitable groups Gk that depend somewhat

on nX and λ makes this test awkward to implement in general. Calculation of λ̂∗, while feasible is

also not in general convenient. Further, this test is an omnibus test of H0 that is not particularly

focused on detecting over-dispersion. For these reasons we do not feel this test is desirable for the

range of application we are considering, and we do not discuss it in the remainder of the paper.

When λ is small and n is moderately large one may satisfactorily implement this test with

Gk = {k − 1}, k = 1, . . . , K − 1 and GK = {K − 1, . . .} and one may take λ̂∗ = λ̂ = X. (K should

be chosen so that p∗k(λ̂
∗) is not small.) This is the case for the data in Fig 2. For that data choosing

K = 7 yields TMC = 2.970 with a P-value of p = 0.295.

4 Empirical results under H0

This section reports selected empirical results about the null distribution of the statistics Tnew,

TLR, TCC , TNS. These results are summarized in Table 1. This table gives information about

the empirical type I error rates for tests computed using the nominal null distribution of various

statistics. The table also contains an overall measure of how close is the empirical χ2 or normal

null distribution. The table also indirectly provides information about the accuracy of P-values

calculated from the nominal distributions since accuracy of type I error rates and of P-values are

linked concepts.

The general impression from the table is that the empirical type I error rates using any of Tnew,

TLR, TCC are reasonably accurate when λ � 12. Even when λ = 5 satisfactory accuracy is evident

for Tnew and TCC . The results in Section 5 suggest a modified nominal null distribution be used
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when λ is small to calculate critical values for Tnew. The results in Section 5 also confirm that

TLR is a less desirable choice when λ � 5. Overall, the empirical type I errors using the TLR are

less accurate than those from the other three statistics, as one would also expect from the results

reported in Fig 4.

The quantities reported in Table 1 are defined as follows. Let G denote generally the nominal null

cumulative distribution of a statistic T . (For TNS, G is standard normal. For the other statistics

G is χ2
n−1.) Let κα denote the α critical values, κ(α) = G−1(1 − α). Let H denote the true null

distribution of the statistic. Then the true type I error is 1 − H(κ(α)). The table reports Monte-

Carlo estimates based on 10,000 samples of these quantities for various statistics and values of n,

λ. The standard errors are the theoretical values
√

α(1 − α)/10000.

Table 1 also reports a measure of the disparity between the nominal G and the true H as

measured via the Kolmogorov-Smirnov distance

D∗ = sup
t

|H(t) − G(t)|.

Again, the values reported derive from 10,000 simulations. To be more precise, each entry in the

last column of the table reports the value of

D̂∗
N = sup

t
|ĤN(t) − G(t)| (9)

where Ĥ denotes the sample CDF from the N=10000 simulated values of T .

Simulated values of D̂∗
N have the Kolmogorov-Smirnov limiting distribution. This is not a normal
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Table 1: Empirical Type I errors (10,000 repetitions) and D̂∗
N defined in (9)

n λ Statistic α = .1 α = .05 α = .01 α = .005 D̂∗ = sup |Ĥ − G|
SE. = 0.003 SE. = 0.002 SE. = 0.001 SE. = 0.001 ESE. = 0.007

20 5 Tnew 0.1107 0.0585 0.0132 0.0070 0.0130
20 5 TLR 0.1359 0.0724 0.0173 0.0089 0.0588
20 5 TCC 0.0977 0.0495 0.0103 0.0059 0.0105
20 5 TNS 0.1039 0.0620 0.0220 0.0148 0.0457
12 12 Tnew 0.1050 0.0540 0.0122 0.0065 0.0094
12 12 TLR 0.1102 0.0563 0.0120 0.0062 0.0130
12 12 TCC 0.1007 0.0505 0.0104 0.0054 0.0057
12 12 TNS 0.1082 0.0670 0.0260 0.0179 0.0611
5 25 Tnew 0.1008 0.0510 0.0103 0.0053 0.0035
5 25 TLR 0.1027 0.0517 0.0101 0.0051 0.0069
5 25 TCC 0.0994 0.0490 0.0095 0.0046 0.0066
5 25 TNS 0.1059 0.0696 0.0312 0.0231 0.0955

distribution. In particular, a 95% confidence region for H(t) is

sup
t

|H(t) − Ĥn(t)| � 2 ESE

where

ESE =
1.96 × 0.5

1.36
√

10000
= 0.007.

For this reason we have chosen to report the effective standard error, ESE, as the measure of the

precision of our Monte-Carlo simulation.

Note that for Tnew and TCC D∗
N is acceptably small. Indeed, it is less than 2×ESE, and hence

using this we would not reject at level .05 the null hypothesis that H = G. This is also true for TLR

when λ = 12 and 25. But when λ = 5 the performance in this regard is less satisfactory, as is the

performance of TNS for all combinations of n, λ in the table.
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5 Asymptotic distribution of Tnew

We have suggested approximating the null distribution of Tnew as a Chi-squared with (n−1)df. The

empirical results in the previous section suggest that this approximation is satisfactory for practical

applications. We now explore the asymptotic distribution of Tnew as n → ∞. We show that the

limiting null distribution is not Chi-squared (n− 1) but is very close to Chi-squared (n− 1) so long

as λ is not small. This closeness explains why the Chi-squared approximation is suitable for nearly

all practical applications. Finally, we also provide similar results about the distribution under Ha.

Note that Eλ(Tnew) = 4(n − 1)Varλ(Y ). As noted at (4), Anscombe (1948) proved by an

asymptotic expansion that

ξ(λ)
�
= 4Varλ(Y ) = 1 + O(1/λ). (10)

This expression is not only asymptotically accurate – it is nearly the exact truth so long as λ > 4.

Figs 5 and 6 show plots of ξ(λ) = 4Varλ(Y ) = Eλ(Tnew)/(n − 1) derived via direct calculation. In

particular,

ξ(λ) = (n − 1)−1Eλ(Tnew) � 1.0025. (11)

(The maximum value of Eλ(Tnew) occurs at approximately λ = 5.5.) This means that Tnew is

positively biased by at most a very small amount, and so suggests that a test based on Tnew will

not have significance levels much below their nominal value. That is, this suggests while the test

based on Tnew may be conservative, it will not be radical by very much.

The results in Figs 5 and 6 suggest that the distribution of Y may effectively be very close to

normal. As further exploration of this possibility, note that if Y were exactly normal then we would
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Figure 7: Plot of ρ(λ) as defined in (12)

have Var((Y − νλ)
2) = 2. Fig 7 is a plot of

ρ(λ) =

[
Var((Y − νλ)

2)

2

]1/2

. (12)

Note that ρ(λ) ≈ 1 whenever λ > 4. In particular, ρ(λ) � 1.054 with the maximum occurring at

λ = 5.4. Again, this suggests that test based on Tnew will be conservative for very small λ, but will

not for any λ be “radical” by very much.

Here is a formal statement of the asymptotic result.

Theorem 5.1 Assume H0 is true, λ is fixed and n → ∞. Then

1

ρ(λ)

√
n − 1

2

(
Tnew

n − 1
− ξ(λ)

)
→ N(0, 1) (13)

in distribution where ξ, ρ are defined in (11) and (12).
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Remarks: Recall that if Z ∼ χ2
n−1 then

√
n − 1

2

(
Z

n − 1
− 1

)
→ N(0, 1).

Note that both ξ(λ) ≈ 1 and ρ(λ) ≈ 1. It is thus clear that for large n Tnew is reasonably closely

approximated as a χ2
n−1 variable, even though its asymptotic distribution is not exactly χ2

n−1 as

n → ∞ for fixed λ.

If one were in a situation where n is moderately large and λ is small then (13) suggests that

the nominal χ2 critical values (and P-values) can be slightly improved by calculating critical values

(and P-values) from the normal distribution in (13) calculated at λ̂ = X.

The formula for the approximate P-value thus becomes

P ≈ 1 − Φ−1

(
1

ρ(X)

√
n − 1

2

(
Tnew

n − 1
− ξ(X)

))
. (14)

See Table 4 in Section 7 for a data example.

Proof: The result follows from the definition of ξ, ρ, the central limit theorem and Slutsky’s

theorem. �

Similar reasoning using the central limit theorem for independent non-identically distributed

random variables yields
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Theorem 5.2 Let λ1, . . . , λn depend on n. Let

ξn =
1

n

∑
ξ(λi) (15)

ρ2
n =

1

n

∑
ρ2(λi)

ψ2 = 4
∑

(ν(λi) − νn)2

νn =
1

n

∑
ν(λi).

Assume

lim inf
n→∞

ρn > 0 and lim sup
n→∞

ρn < ∞. (16)

Then

1

ρn

√
n − 1

2

(
Tnew

n − 1
− ξn

)
→ N

(
4
∑

(ν(λi) − νn)2

ρn

√
2(n − 1)

, 1

)
(17)

in distribution as n → ∞.

Proof: The theorem follows from Lindeberg’s central limit theorem (Feller (1966, p491)) and

Slutsky’s theorem. We omit the details, but note that the condition (16) could be considerably

weakened. �

It is possible to effectively implement Theorem 5.2 to get values of the power of the test when

more accuracy is desired than is provided by (6) and n is quite large. In order to best use (13) and

(17) we suggest defining

ξ̃n =
1

n

n∑
i=1

ξ(Xi)

ρ̃
2

n =
1

n

n∑
i=1

ρ2(Xi), (18)
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since these are the obvious estimates of the corresponding quantities in (15). Then construct the

test that rejects when

1

ρ̃n

√
n − 1

2

(
Tnew

n − 1
− ξ̃n

)
> Φ−1(1 − α). (19)

Note for later use that under H0

ξ(X) ≈ ξ̃, ρ2(X) ≈ ρ̃
2

(20)

with asymptotic equality as n → ∞. (20) should also be approximately valid when the alternative

is not far from H0. In such situations one could use the simpler values ξ(X), ρ2(X) in place of ξ̃,

ρ̃
2
. Because of (20) the test in (19) is very similar to that described in (14).

Theorem 5.2 implies the power of the test given in (19) is

Pλ(Tnew satisfied (19)) → 1 − E

(
Φ

(
ρ̃n

ρn

Φ−1(1 − α)

)
+

√
n − 1

2

ξ̃n − ξn

ρn

− 4
∑

(ν(λi) − νn)2

ρn

√
2(n − 1)

)
,

(21)

where λ = {λi}.

Now, ρ̃n → ρn in probability. Also, ρn ≈ 1 so long as min λi > 4 as a consequence of the results

plotted in Fig 7.

Let

Var(
√

n − 1(ξ̃n − ξn)) = ε(λ).

Recall that ξ(λ) is nearly constant for λ > 4. Hence ε is numerically quite small so long as
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min λi > 4. It follows that then

Pλ(Tnew satisfies (19)) = 1 − E

(
Φ(Φ−1(1 − α) − ψ2√

2(n − 1)
+ ε(λ)) + Op(1)

)
(22)

→ 1 − Φ(Φ−1(1 − α) − ψ2√
2(n − 1)

+ ε∗)

for some numerically small ε∗. ( ε∗ is numerically small because of its relation to the random variable

ε(λ) which is also numerically small.)

If Tnew were exactly noncentral χ2 as assumed in (6) then we would have

Pλ(

√
n − 1

2
(

Tnew

n − 1
− 1) > Φ−1(1 − α)) → 1 − Φ(Φ−1(1 − α) − ψ2

2
√

n − 1
), under (6). (23)

Since ε∗ is numerically small, these facts suggest that so long as all (or most) λi > 4 (6) is a very

good approximation even though it is not asymptotically exact as n → ∞ with λ = O(1).

6 Minimum Bayes Factors

Sellke, Bayarri and Berger (2001) (“SBB”, below) and Berger (2001) note that small P-values are

commonly interpreted to imply greater evidentiary evidence against H0 than is actually warranted.

They propose minimum Bayes factors as an alternative measure. We show in our situation that

approximately minimum Bayes factors for testing H0 versus Ha are readily computable. In our

context we agree with SBB, and feel that these factors provide a better evidentiary measure than

P-values. In Section 7 these factors are implemented on our call-center arrival data with tests TLR,

TCC and Tnew.
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Suppose T is a test statistic such that T ∼ χ2
m(ψ2), and we wish to test

H0 : ψ2 = 0 versus Ha(R) : ψ2 = R (24)

for some fixed R > 0. Let fr denote the noncentral χ2
m(r) density. Then the Bayes factor is

f0(T )

fR(T )
. (25)

If instead we wish to test H0 versus

Ha : ψ2 > 0 (26)

then the minimum Bayes factor (MBF) is

MBF = inf
ψ2>0

f0(T )

fψ2(T )
=

f0(T )

fψ̂2(T )
(27)

where ψ̂2 is the maximum likelihood estimate of ψ2 based on T . It is possible to calculate ψ̂2

numerically for any given m and T but we have found that the simple estimate

ψ̃2 = (T − m)+ (28)

gives very good numerical accuracy in place of ψ̂2 in (27). (ψ̃2 is the truncated UMVUE of ψ2.)

Over a range of values of m, T we found the error in the MBF calculated from using ψ̃2 to be well

less than 1% of the true value as calculated from ψ̂2.

We refer the reader to SBB and articles cited therein for a discussion of various interpretations of

the MBF, and for discussion of why the MBF provides a better evidentiary measure than P-values.
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Table 2: P-values and MBF’s for Ha of (26)

df T P-values MBF MBF∗

5 10 0.0752 0.402 0.5291
5 15 0.0103 0.0775 0.1287
5 20 0.0013 0.0115 0.0227
5 25 0.0001 0.0015 0.0034
10 15 0.1321 0.5885 0.7268
10 20 0.0293 0.1866 0.2808
10 25 0.0053 0.0431 0.0760
10 30 0.0009 0.0082 0.0165
20 30 0.0699 0.3665 0.5053
20 35 0.0201 0.1346 0.2135
20 40 0.0050 0.0402 0.0720
20 45 0.0011 0.0103 0.0204
20 50 0.0002 0.0023 0.0051
50 70 0.1958 0.0324 0.3019
50 80 0.0045 0.0360 0.0659
50 90 0.0004 0.0044 0.0094

Table 2 illustrates the difference in evidence provided by MBF’s and P-values in the general

Poisson problem. For a selection of values of df and possible observations T it gives the MBF and

P-value for testing (26). SBB also suggest a non-parametric (omnibus) MBF which is

MBF ∗ = −eP log(P ) (29)

where P is the conventional P-value. For comparison this value is also included in Table 2. We

remark that direct comparison of P-values and MBF’s may be facilitated by transforming the MBF

to MPP=MBF/(1+MBF). (As explained in SBB, this is the Minimum Posterior Probability of H0

under the prior giving equal mass to H0 and some {λi} ∈ Ha.) We do not include MPP in Table 2,

but note that for small values of MBF one has MBF ≈ MBF / (1 + MBF)= MPP.
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7 Empirical Examples

Unless λ is small the statistics Tnew, TLR and TCC all have approximately non-central chi-squared

distributions, as discussed in Section 3. Hence their P-values and MBF’s can readily be calculated

for given data sets.

Table 3 compares these quantities as calculated for the data shown in Fig 2 where λ is estimated

by X = 18.66, which is not small.

Table 3: P-values and MBF’s for the data in Fig. 2

Statistic Value P-value MBF
Tnew 63.79 0.0213 0.1393
TLR 62.93 0.0253 0.1604
TCC 59.80 0.0457 0.2592

Note that among the three tests here Tnew yields the smallest P-value and MBF, and hence yields

the most significant result. (Since λ is clearly not small here we may consider all three test as being

valid in the sense that their significance levels are approximately correct under H0.)

For the data in Fig. 1 the estimate of λ is X = 2.18. The values of Tnew, TLR and TCC for this

data are given in Table 4. The next column of the table gives the nominal P-value based on the

assumption that the null distributions are χ2
106.

The discussion in Section 6 establishes that this nominal null distribution is not accurate for

Tnew with λ ≈ 2.18. Instead, that discussion suggests (14) as a reasonable alternative. The column

of Table 4 headed “Asymptotically corrected P-value” gives the result of (14) for Tnew.

The very different nominal P-values calculated for TLR and TCC suggests that one or both of these

do not actually possess the nominal χ2
106 distribution under H0, in spite of the fact that n = 107 is

fairly large.
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Table 4: Chi-squared P-values and corrected P-values for the data in Fig. 1

Asymptotically Empirically
Statistic Value χ2 P-value corrected P-value corrected P-value

Tnew 110.86 0.354 0.152 0.19
TLR 134.13 0.034 0.18
TCC 120.15 0.164 0.17

To investigate this possibility we performed a simulation giving 5000 samples of size n = 107

from the Poisson (λ = 2.18) distribution. We compute for each sample the value of T . This gives

an empirical estimate of the null distribution of T at λ = 2.18 and n = 107. From this we can

determine an empirical P-value corresponding to the actual observed value of T . These empirically

corrected P values are given in the last column of Table 4.

Note that the empirically corrected P-value for TLR is very different than the χ2 P-value. For

Tnew the two corrected P-values are in reasonable (but not perfect) agreement. For TCC the χ2 P-

value appears quite adequate. The process of calculating empirically corrected P-values in the above

manner is one standard form of bootstrapped test procedure. See for example Politis, Romano and

Wolf (1999, p. 37).

It is interesting to note that the empirical null distributions produced by the simulations for

Table 4 turn out to be well approximated by both normal and Gamma distributions.

Table 5: Simulated null distributions under Poiss (λ = 2.18). (From 5000 repetitions.)

Statistic Normal Gamma
Tnew µ = 99.7, σ2 = 163.76 r = 60.4, s = 1.65
TLR µ = 120.0, σ2 = 251.2 r = 57.1, s = 2.10
TCC µ = 106.1, σ2 = 216.1 r = 52.4, s = 2.03 (approx χ2

105)

The entries in Table 5 give the parameters of the normal and gamma distribution that provide
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the best fit to the simulated null distribution. In each case in Table 5 the normal approximation

is a reasonably good fit to the simulation distribution but the Gamma approximation is an even

better fit. (The parameters in this table correspond to a gamma density written in the form

gr,s(x) = Cr,sx
r−1 exp (−x/s).) We can also compute the P values from the gamma distributions in

Table 5. They are essentially the same as those reported in Table 4.

Note that the asymptotic normal distribution (13) for Tnew that was used in Table 4 has mean

= 99.8 and variance = 159. This asymptotic approximation therefore agrees quite well with the

empirical normal distribution found in Table 5. The empirical gamma distribution for TCC is

approximately χ2
105 which agrees almost perfectly with the nominal χ2

106 distribution for this statistic.

We do not give MBF’s in Table 4. There are two reasons for this. From a practical perspective

they are not needed; since the P-values are not small, the MBFs will also not be small. Also, since

the statistic TLR clearly does not have its nominal limiting distribution here, one would apparently

need to calculate its MBFs from a simulation. Perhaps the MBF for TCC could reasonably be

calculated from its asymptotic non-central chi-squared distribution. For Tnew one could use the

normal approximation in Section 4 to construct an MBF as described in SBB (2001).
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