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Abstract

We construct approximate confidence intervals for a nonparametric regression function. The con-

struction uses polynomial splines with free knot locations. The number of knots is determined by the

GCV criteria. The estimates of knot locations and coefficients are obtained through a nonlinear least

square solution that corresponds to the maximum likelihood estimate. Confidence intervals are then

constructed based on the asymptotic distribution of the MLE. Average coverage probabilities and accu-

racy of the estimate are examined via simulation. This includes comparisons between our method and

some existing ones such as smoothing spline and variable knots selection as well as a Bayesian version of

the variable knots method. Simulation results indicate that our method seems to work well for smooth

underlying functions and also reasonably well for unsmooth (discontinuous) functions. It also performs

well for fairly small sample sizes. As a practical example we apply the method to study the productivity

of US banks. The corresponding analysis supports certain research hypotheses concerning the effect of

federal policy on banking efficiency.

Key words: Nonparametric regression; Confidence intervals; MLE; Piecewise polynomials; Free knots;

B-splines.
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1 Introduction

The nonparametric regression model

yi = f(xi) + σ εi, 1 � i � n, εi
iid∼ N(0, 1), σ2 unknown (1)

has been studied extensively in the literature. We are interested in constructing estimates

that are accompanied by confidence intervals for the underlying function values, f(x).

There exist a number of procedures to estimate f . Kernel type methods include kernel

regression (Nadaraya (1964)) and local polynomial fitting (Fan and Gijbels (1996) and Loader

(1999)). Confidence bands based on kernel estimators can be derived with bootstrap methods

(Härdle and Marron (1991)) or bias-correction methods (Eubank and Speckman (1993),

Xia (1998)). Wavelets are now also widely used and some recent literature has begun to

investigate confidence intervals based on wavelet estimators (Tribouley (2000)).

Spline models provide another popular method for estimating f . Wahba (1983) discusses

confidence intervals based on smoothing spline estimators. For a detailed description of

smoothing splines, see Wahba (1990).

Because of their conceptual simplicity, polynomial spline methods have been widely used.

In these f(x) is estimated by a piecewise mth order ((m−1)th degree) polynomial connecting

smoothly at points t1 < t2, . . . < tr, which are referred as interior knots. It is important to

appropriately choose the number of knots r and the knot locations. In the current variable

knots selection literature, the possible knots come from a predetermined set such as the design

points or grid points in the range. A final set of knots is then chosen from these. Depending

on approach the choice of knots may involve a linear regression model selection scheme or a

Bayesian model. The estimation of regression coefficients given the knots is via linear least

squares. Some papers using this approach are Friedman and Silverman (1989), Friedman

(1991), and Stone, Hansen, Kooperberg and Truong (1997). Some more recent, effective

variations are in Smith and Kohn (1996), Denison, Smith and Mallick (1998), Lindstrom

(1999). All the work cited above is about the estimation of f . Zhou, Shen and Wolfe (1998)

provide confidence intervals along this line.

Following appearance of a preprint version of our manuscript Kooperberg and Stone

(2001) used a closely related free knot construction of confidence intervals for nonparametric

density estimates.

We use free knots polynomials, i.e., the knot locations are considered to be unknown
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parameters as well as the regression coefficients. Doing so provides flexibility to allow f(x)

with inhomogeneous smoothness which can then be fully estimated by the data. Asymptotic

confidence intervals can be constructed through a simple classical idea.

We emphasize that model selection is used only to choose the optimal number of knots

from among r = 1, 2, . . .. It is not used to choose knot locations among a large set of possible

locations, as is done in existing variable knots schemes cited above. Partly because of this

minimal use of model selection one can anticipate that the confidence intervals we construct

will have probabilities of coverage close to their nominal values. Numerical results and some

comparisons with smoothing splines and variable knots schemes including a Bayesian version

are presented in Section 4.

We now briefly introduce the method. One may view the set of order m splines with r

interior knots as a given family of piecewise polynomial functions {f(θ, x) : θ}. The 2r +m

dimensional parameter vector, θ, describes the r knot locations along with the r+m necessary

polynomial coefficients. The functions f(θ, x) are piecewise polynomials of (m−1)th degree.

If the knots are distinct then they have m − 2 everywhere continuous derivatives. f(θ, x)

may have a lower degree of smoothness at locations where a multiplicity of knots occurs.

For convenience we fix m = 4 throughout our treatment here.

Our motivation is to then view (1) as if it were a parametric nonlinear regression model:

yi = f(θ, xi) + σεi, i = 1, . . . , n. (2)

The estimation part of the statistical analysis involves first fixing r and estimating θ̂ = θ̂r by

maximum likelihood within the model (2). Then an estimated best value of r, called rmin is

chosen through a GCV model selection device. The function f̂ = f(θ̂rmin
, x) is our estimate

of f .

The description of this estimator also makes feasible the construction of asymptotically

valid confidence intervals for f(x). To understand the primary methodology note that when

f is itself a polynomial spline with r knots we can write

θ̂r ∼ N(θ, σ2I−1
(1)(θ)), as n → ∞,

where I(1) denotes the appropriate information matrix given in (15) and (19).

Let dT =
∂f

∂θ
=

(
∂f

∂θ1

, . . . ,
∂f

∂θs

)
. (Note that dT depends on x as well as θ.) Here

s = 2r + 4 is the number of relevant parameters. The variance of f(θ̂, x) given σ2 can be
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approximated by the delta-method as σ2dT I−1
(1)(θ)d since

f(θ̂, x) ≈ f(θ, x) +
∂f

∂θ
(θ̂ − θ).

In addition, let σ̃2 be a suitable estimator of σ2. Thus we can derive an approximate

100(1 − α)% confidence interval for f(θ, x):

f(θ̂, x) ± zα/2

√
σ̃2 dT (x) I−1

(1)(θ)d(x) | θ̂ . (3)

One can produce simultaneous band for f(x) based on (3) but replacing zα/2 by ((2r +

4)F1−α)1/2 where F1−α is the upper α cut off point of an F distribution. One would expect

these to be conservative. We are investigating along this line in a separate paper.

The estimation idea following (2) seems to be very natural. Indeed, it has been mentioned

frequently in the literature. An early reference for splines is de Boor and Rice (1968).

Free knot splines have not been adopted widely by statisticians, partly because of their

computational difficulty. Jupp (1978) subsequently addressed this problem which has itself

become a subject with an extensive history of investigation, but this is not the primary topic

of this paper. Recent developments, both in computing power and methodology, have made

the idea feasible. Section 3.1 gives a brief review of the history.

So far as we know confidence intervals like those supplied by (3), although statistically

natural, have not previously been investigated in the setting of free knot splines. Section 4

reports simulation evidence relating to our confidence set objective. This suggests that these

confidence intervals perform well in terms of coverage and accuracy.

The method here is locally adaptive to variable smoothness in f because the procedure

will automatically place more knots in regions where f is not smooth. Furthermore, the

family {f(θ, x)} contains functions that have discontinuous derivatives or are themselves

discontinuous. These appear naturally as splines having repeated knots at the locations of

discontinuities. Because of this, the method we propose can reasonably effectively deal with

functions f having isolated discontinuities or discontinuous derivatives.

This paper is organized as follows: In Section 2 we introduce some background knowledge

about B-splines. In Section 3 we give details of our method. In Sections 4 and 5 we apply this

method to simulated data and to real data. The real data application in Section 5 involves

a study of banking efficiency first reported in Faulhaber (2000). Section 6 has discussions

about the free-knot methodology and reports explanatory empirical results that tend to
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support this as a confidence set methodology. It also describes some alternative types of

confidence bands. We conclude in Section 7 with a brief summary.

2 B-splines

An mth-order polynomial spline on [a, b] with r ordered interior knots t = (t1, ..., tr) is

a piecewise polynomial (of degree m − 1). When a < t1 . . . < tr < b these piecewise

polynomials connect at each knot with continuous (m − 2)th derivatives. The space of all

such functions, Sm,r,t, is a linear space of dimension m + r. In particular when m = 4,

S4,r,t consists of all cubic splines. Throughout we will use only the value m = 4. This

produces plots that are visually smooth. Our methodology can be easily applied with other

values of m. The commonly used bases for S4,r,t are the truncated basis and the B-spline

basis. The truncated basis has a simple form and is easy to understand, but it is less stable

computationally (Dierckx (1993)). Because of analytical and computational advantages the

standard B-spline basis is used below. ( The natural spline version of this basis could be

used instead (Eubank (1988) and Greville (1969)).)

The B-splines for m = 4 are completely determined by the interior knots t. Let t−3 =

....t0 = a < t1 � ... � tr < b = tr+1 = ... = tr+4. The B-spline Ni(x, t) is defined to be

Ni(x, t)
�
= (ti − ti−4)[ti−4, . . . , ti](· − x)3

+ (4)

�
= [ti−3 . . . , ti](· − x)3

+ − [ti−4, . . . , ti−1](· − x)3
+, i = 1, . . . , r + 4. (5)

Here “[ ]” denotes divided difference,

[ti, tj]g(·) � (g(tj) − g(ti))/(tj − ti),

[t1, . . . , tn]g(·) � g(n−1)(t) if t1 = . . . = tn = t,

[t1, . . . , tn]g(·) � [t2, . . . , tn]g(·) − [t1, . . . , tn−1]g(·)
tn − t1

.

Remarks:

1. From (5), we can see that there is a recursive relationship that can be used to describe

B-splines. This relationship provides a very stable numerical computation algorithm.
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2. One useful property of B-splines is that they are non-zero only on an interval which

covers no more than m + 1 = 5 knots. Equivalently at any point x there are no more

than m = 4 B-splines that are non-zero.

3. For a function representable by a B-spline basis with a given set of knots, the degree

of smoothness at a point is related to the number of repeating knots at that point as

follows:

number of stacked knots + degree of smoothness = order.

For example, if tk = tk+1 = tk+2 is used three times in constructing the B-splines, then

at t = tk, the degree of smoothness = 4 − 3 = 1, which means that f(x) is continuous

at t = tk but f ′(x) is discontinuous at t = tk.

The derivatives of Ni(x, t) with respect to t will be needed in the next section. We take

these from Schumaker (1981), page 132.

Lemma 2.1 When i � j � i + 4, we have

∂Ni(x, t)

∂tj
=




(ti+4 − ti)[ti, . . . , tj, tj, . . . , ti+4](· − x)3
+ (i < j < i + 4)

−[ti, ti, . . . , ti+3](· − x)3
+ (j = i)

[ti+1, . . . , ti+3, ti+4, ti+4](· − x)3
+ (j = i + 4)

(6)

∂Ni(x, t)

∂tj
= 0 otherwise.

3 Methodology

Given the number of knots r we model the mean function to lie in S4, r, t. Thus we treat the

data as if it came from the regression model

yi =
r+4∑
j=1

βj Nj(xi, t) + σεi, i = 1, . . . , n. (7)

Where εi
iid∼ N(0, 1), and θ = (β, t), σ2 and r are unknown parameters with β = (β1, . . . , βr+4)

T

and t = (t1, . . . , tr)
T . We first estimate θ and σ2 conditional on r. r will later be chosen

through the GCV criteria described in Section 3.4
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3.1 Estimation of f

We will use the MLE θ̂, to estimate θ. Because of the normal errors in the model (7) it is

easy to see that θ̂ solves the following nonlinear least square problem:

min
θ

n∑
j=1

(
yj −

r+4∑
i=1

βiNi(xj, t)

)2

. (8)

Immediately we have an estimate of f(x):

f̂(x) =
r+4∑
i=1

β̂iNi(x, t̂). (9)

The basic idea of solving (8) is the following: Given t, let

F (β, t) =
∑

j

(
yj −

r+4∑
i=1

βiNi(xj, t)

)2

. (10)

The linear least squares solution of β is produced, i.e. G(t) = minβ F (β, t). Then we search

for the minimum of G(t).

This nonlinear optimization problem needs to be treated carefully. Given a starting value

t∗, a local optima can be obtained from the Newton-Raphson algorithm. If G were strictly

concave, the true minimum would be unique and could be easily found.

Jupp (1978) pointed out that this simple method is not fool-proof in free-knot spline

regression. There are too many saddle points and minima on the least square surface. For

certain examples the chance of finding the global minimum based on a few sets of initial knots

may be very small with the original parameterization and the Newton-Raphson algorithm

has an appreciable chance of converging to the local minima that are distinct from the global

minimum.

Several programs are available to calculate minG(t) beginning from an initial choice of

knots. We use the IMSL routine DBSVLS. We have found this algorithm very fast and stable.

The computational speed of this routine makes feasible the use of several repetitions in the

search for a minimum, beginning from varied initial knot locations. This is an important

step to help eliminate falsely identifying local minima as global ones. We also note that

the statistical performance of our procedure is not overly sensitive to the final local minima

found. We discuss this issue more fully in Sections 3.6 and 6.
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3.2 Estimating σ2

In the case of a linear model, the usual choice of σ̂2 is σ̂2 = SSE/(n − k), where SSE is the

sum of squared residuals and k is number of regression coefficients. It is natural to extend

this estimator to our nonlinear regression as

σ̃2 = SSE/(n − (2r + 4)) (11)

since 2r + 4 is the number of relevant free parameters in our model.

This estimator is approximately unbiased and works well in our simulations. It agrees

with the general suggestion for non-linear least squares models in many standard references

such as Hastie and Tibshirani (1990) or Bates and Watts (1988).

In our simulations we have also investigated other methods of estimating σ2 directly from

the data. One possibility is

σ̃2
1 =

1

n − 2

n−2∑
i=1

(0.809yi − 0.5yi+1 − 0.309yi+2)
2. (12)

as proposed in Hall et al (1990). Our simulations indicate that this over estimates σ2 in

our setting, as one might expect. For a review on this and other difference-based variance

estimators, see Dette et al (1998).

3.3 Estimation of V ar(f̂)

Standard results for asymptotic efficiency of MLEs are then used to assess the variability

of f̂(x). The relevant formulas are summarized below in order to concretely describe our

procedure.

To proceed, let us write the model (7) in matrix form:

Y = f(t,β,X) + σ2 ε, (13)

here Y = (y1, ..., yn)T , X = (x1, ..., xn)T ,

f(t,β,X) =




N1(x1, t) · · · Nr+4(x1, t)
...

...

N1(xn, t) · · · Nr+4(xn, t)







β1

...

βr+4


 =




∑
Nj(x1, t)βj

...∑
Nj(xn, t)βj


 , (14)

and ε = (ε1, ..., εn)T , ε ∼ N(0, I).
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Let

Dn×(2r+4) �
(

∂f

∂t
,
∂f

∂β

)
=




r+4∑
i=1

βi
∂Ni(x1, t)

∂t1
· · ·

r+4∑
i=1

βi
∂Ni(x1, t)

∂tr
N1(x1, t) · · · Nr+4(x1, t)

... · · · · · · · · · · · · ...
r+4∑
i=1

βi
∂Ni(xn, t)

∂t1
· · ·

r+4∑
i=1

βi
∂Ni(xn, t)

∂tr
N1(xn, t) · · · Nr+4(xn, t)




.

(15)

The following lemma gives the information matrix for (θ, σ).

Lemma 3.1

I(θ, σ) =




DTD

σ2
0

0
n

σ2


 . (16)

Proof: The log likelihood function is

l = −(Y − f)T (Y − f)

2σ2
− n log σ + const.

Taking the derivative, we have

∂l

∂θ
=

DT (Y − f)

σ2
,

∂l2

∂θ2 = −DTD

σ2

∂l2

∂σ2
=

−3(Y − f)T (Y − f)

σ4
+

2n

σ2
,

∂l2

∂θ∂σ
= −2DT (Y − f)

σ3
.

These lead to (16). �

Let

dT =
∂f

∂θ
=

(
∂f

∂θ1

, . . . ,
∂f

∂θ2r+4

)
=

(
r+4∑
i=1

∂Ni(x, t)

∂t1
, · · · ,

r+4∑
i=1

∂Ni(x, t)

∂tr
, N1(x, t), · · · , Nr+4(x, t)

)
.

(17)

Standard results on asymptotic normality of MLEs, see e.g., Lehmann (1999, Theorems

7.5.1 and 5.4.6), yield

Theorem 3.1
f̂(x) − f(x)√

Var (f̂(x))
⇒ N(0, 1). (18)

Here, in the limit as n → ∞

Var (f̂(x)) ∼ σ2d(x)T (DTD)−1d(x) � σ2d(x)T I−1
(1)(θ)d(x), (19)

here I−1
(1) = (DTD)−1.
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The variance of f̂(x) is then estimated by a plug in method as

ˆVar (f̂(x)) = σ̃2 d(x)T (DTD)−1d(x)|θ̂, (20)

where θ̂ is obtained in (8) and σ̃2 is described in (11).

The following asymptotic pointwise 100(1 − α)% confidence interval for f(x) is then

obtained :

f̂(x) ± z1−α/2

√
ˆVar (f̂(x)). (21)

Remarks:

If the number of degrees of freedom d = n− (2r +4) is not large, then it may be desirable

to use the corresponding t-cutoff in place of z1−α/2.

If the knot locations are fixed, then (15) and (17) are reduced to

dT
∗ = (N1(x, t), · · · , Nr+4(x, t)) , D∗ =




N1(x1, t) · · · Nr+4(x1, t)
... · · · ...

N1(xn, t) · · · Nr+4(xn, t)


 (22)

and (19) reduces to σ2dT
∗ (DT

∗ D∗)
−1d∗. It follows that

dT (DTD)−1d > dT
∗ (DT

∗ D∗)
−1d∗ (23)

since the model underlying (22) is more restrictive than that underlying our method. In

most situations involving knot selection or variable knot locations statements based on (22)

should tend to noticeably undercover the true values; unless they somehow compensate by

overestimating σ2, or perhaps by including more knots than rmin.

3.4 Optimal number of knots

The number of knots, r, is usually unknown and needs to be estimated in a separate process.

A modified GCV(r) criteria is used. Given r GCV is defined to be

GCV(r) =

∑n
i=1(yi − f̂(xi))

2

(n − (2r + 4))2/n
. (24)

Here 2r + 4 is the total number of relevant parameters in the model.

We then use rmin which minimizes GCV(r) over a range of values of r. Because of

computational overhead for each fit, we only calculate GCV(r) for r � Rmax, which is taken

to be rmax = min{n/3, 20}. Section 6.1 shows an effect of using this choice of rmin.
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In preliminary studies we investigated some other popular model selection estimates for

r, such as AIC and BIC. We found that the GCV criterion generally produced somewhat

better results.

3.5 Algorithm

In summary, our automatic procedure can be described as follows:

1. For 1 � r � rmax solve the nonlinear least squares problem (8). This yields estimates

β̂, t̂, σ̃2 and f̂(x) as functions of r and the given data.

Efficient solution of this problem requires use of fast robust routines such as the IMSL

routine DBSVLS. Care must be taken to start from several initial sets of knots in order

to verify that the final solution is sufficiently close to the global minimum and is not

merely a possibly unsatisfactory local extremum. See Section 3.6, Section 4 and 6.

2. Calculate GCV(r), defined in (24). Find rmin to minimize this over the range of 1 �
r � rmax. Use the values of f̂ corresponding to rmin, β̂ and t̂ as the estimated function.

3. Use the corresponding SSE to construct the estimate σ̃2 defined in (11).

4. Calculate D and d defined in (15) and (17) and consequently ˆVar (f̂(x)) in (20) for

rmin, β̂ and t̂. Then calculate confidence intervals for f as in (21).

3.6 Multiple local minima

The least squares likelihood surface for fixed r may have several distinct local minima.

Consequently, different initial choices of knot locations may lead to different local minima

as apparent solutions when using an algorithm such as DBSVLS.

For our purposes the problem of multiple minima is not so serious as might at first be

feared. The knot locations corresponding to different apparent local least squares minima can

be different. But from our experience the corresponding estimates and confidence intervals

appeared qualitatively very similar apart from occasional local perturbations. This was also

confirmed by simulation of coverage probabilities and squared estimation error.

There is some theoretical support for this observed insensitivity relative to our statistical

objective. Note first that asymptotic theory supporting the use of the Wald method does

not require centering of confidence intervals at the exact maximum likelihood estimates (=
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least squares minima). It suffices to center on any sequence of estimates having likelihood

ratio relative to the MLE converging to one. Second, our primary goal of satisfactory con-

fidence intervals is somewhat robust with respect to use of formally incorrect local minima.

Some situations we observed involved local minima with about 5% larger least squares than

the apparent global minima found after repeated numerical solutions for fixed r involving

a variety of initial knot locations. However, as noted above the estimating function were

visually similar over much of the range of x-values. Further, an increase of say, 5% in the

least squares corresponds to an increased width factor of only
√

1.05; i.e. only about a 2.5%

increase in width. This helps explain why the average coverage, size and placement of our

confidence intervals was not highly sensitive to the existence of local minima with consid-

erably varying knot locations. This insensitivity of final confidence intervals was observed

to also carry over to our complete algorithm involving the GCV criterion to select the final

number of knots.

Nevertheless, the insensitivity described above is only an empirical observation aided by

some heuristic motivation. Furthermore, for occasional examples we have noticed that an

unfortunate choice of initial knots may lead to drastically inappropriate local minima that

would give misleading estimates and confidence set. For these reasons we recommend that

careful use of our algorithm involve repeated attempts to identify the global minimum by

beginning from varied initial knots location. One possibility is to begin with initial knots

locations involving independent uniform choices for the knots. Another that we found to be

more efficient and entirely satisfactory in our simulations was as follows: Begin by dividing

[a, b] into q equal, adjacent subintervals I1, . . . , Iq. ( Usually q = 2 sufficed. Throughout the

paper, all simulations were carried out by using q = 2. ) Place mi equidistant initial knots

at the interior of Ii, i = 1, . . . , q such that

∑
i

mi = r, 0 � mi � r, i = 1, . . . , q.

Repeat the calculation for all possible choices of m1, . . . ,mq; there are in all

(
r + q − 1

q − 1

)
such choices. (i.e. r + 1 when q = 2.)

(Pittman (2001) contains recent research into alternative numerical methods that may

alleviate the local minima problems. As noted we have used DBSVLS only because we

found it to be convenient, fast and computationally stable.)
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4 Simulation studies

4.1 Coverage probability

We begin with some simulation investigations of coverage probabilities under our method-

ology. We present results for three regression functions. These functions represent a varied

selection of those we have studied. We will return later to present other results for some of

these functions.

The first function g1 is very well behaved from the perspective of our methodology. It

is a two-knot spline on [0, 1] with interior knots at 0.25 and 0.8 and B-basis coefficients

{5, 1, 3, 0,−2,−8}. Figure 1 shows a plot of this function along with typical scatterplots for

samples of size n = 200 and σ = .45 and .76, respectively. These two values of σ correspond

to signal to noise ratios of 5 and 3, and thus correspond in a context such as this to well

modeled data and to moderately noisy data. (The signal to noise level is defined in general

as S/N = σg/σ where σg =
√∫

(g(x) − g)2 dx.)

We take n = 200 design points to be equidistant on [0, 1]. The simulation reports sum-

marize the results from 1000 replications. Figure 2 shows the simulation average conditional

coverage probabilities for 95% confidence intervals from our procedure conditional on x.

(The true conditional coverage probability at xk is defined as

CCP (xk) = P (f(xk) ∈ C(α, xk)), (25)

and we define the average coverage probability as

ACP =
1

n

n∑
k=1

CCP (xk). (26)

These probabilities of course depend on n, f, σ. The empirical estimates of these quantities

will be denoted by ECCP and EACP)

The second function is typical among several we looked at involving moderately difficult

to model data. It is taken from Wand (1999) where it is used to investigate accuracy of

function estimates. The function is

g2(x) = 1.5ϕ

(
x − 0.35

0.15

)
− ϕ

(
x − 0.8

0.04

)
, 0 � x � 1.

Here ϕ denotes the standard normal density.
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Figure 1: Scatterplots for function g1 corresponding to S/N=5 (Signal/Noise) (left) and 3 (right).
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Figure 2: Empirical coverage plots for function g1 corresponding to S/N =5 (left) and 3 (right).
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Figure 3: Scatterplots for function g2 corresponding to S/N=5 (left) and 3 (right).
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Figure 4: Empirical coverage plots for function g2 corresponding to S/N=5 (left) and 3 (right).

15



0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Figure 5: Scatterplots for function g3 corresponding to S/N=5 (left) and 3 (right).
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Figure 6: Empirical coverage plots for function g3 corresponding to S/N=5 (left) and 3 (right).
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Table 1: EACP for g1,g2,g3; S/N = 3, 5; and n=50,100,200. The top figure is for S/N=3 and the bottom is

for S/N = 5. The numbers in parentheses are 25% and 75% quantiles based on 1000 simulations.

g1 g2 g3

n = 50 0.8881 (0.8770, 0.9030)

0.9175 (0.9110, 0.9230)

0.8809 (0.8490, 0.9170)

0.9161 (0.9130, 0.9320)

0.8002 (0.7700, 0.8900)

0.8142 (0.7600, 0.8900)

n = 100 0.9186 (0.9140, 0.9240)

0.9305 (0.9255, 0.9370)

0.9148 (0.9115, 0.9280)

0.9327 (0.9215, 0.9440)

0.8109 (0.7850, 0.8900)

0.9038 (0.8900, 0.9350)

n = 200 0.9300 (0.9260,0.9360)

0.9348 (0.9300, 0.9410)

0.9276 (0.9200, 0.9380)

0.9306 (0.9175, 0.9440)

0.8797 (0.8690, 0.9140)

0.9139 (0.9060, 0.9370)

Figure 3 shows this function along with typical samples having n = 200 and S/N = 5, 3

(σ = .054, .09). Figure 4 shows empirical plots of CCP for 95% intervals for this situation

based on 1000 simulations.

The third function is chosen by us. It is a hard to model function. It is a third order

spline, but has 7 knots with a point of discontinuity at x = .8 and another discontinuity in

it’s derivative at x = 0.408.

g3(x) =




3(3(x − .2)2 + .5) 0 � x < .4079

3(−1.2(x − .65)2 + .7) .4079 � x < .8

3(−1.2(x − .65)2 + .7 − .07) .8 � x � 1

Figure 5 and 6 show corresponding results for this function.

Our use of this function is intended to emphasize that free knots spline methodology can

be appropriate for functions having discontinuities. Nevertheless such functions can be very

hard to fit on the basis of noisy data. This is reflected in fairly narrow downward spikes

in coverage probability in the neighborhood of the discontinuities. (We know of no other

standard, general procedure designed to produce confidence bands for such a situation having

possibly discontinuous noisy data. Hence we have no suitable comparison to know whether

our procedure has done reasonably well or poorly for this case.)

Table 1 summarizes our results by giving values of EACP for g1, g2 and g3, for sample sizes

50, 100, 200 and signal to noise ratio 5 and 3. It turns out that the values of ECCP(xk), k =

1, . . . , n are heavily skewed to the left for the hard to fit function, g3. To give a better

idea of the empirical distribution of CCP(xk) we also report in Table 1 the lower and upper
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quantiles of {ECCP(xk) : k = 1, . . . , n}.

4.2 Comparison to smoothing spline confidence intervals

Smoothing splines have been used to provide an important standard methodology for non-

parametric regression confidence intervals. Wahba (1983) and Nychka (1988) show that

smoothing splines are Bayes estimators corresponding to a particular Gaussian prior and

f̂ = Aλ̂Y, Var (f̂ |Y ) = σ2Aλ̂,

where Aλ̂Y is the smoothing spline estimator evaluated at (x1, . . . , xn)T and λ̂ is the smooth-

ing parameter chosen by minimizing generalized cross validation (GCV). Correspondingly,

they propose an approximate 100(1 − α)% confidence interval of the form

f̂(xi) ± zα/2 σ̂
√

Aii,

where σ2 is estimated by σ̂2 = SSE/(n − tr(Aλ̂)). See Wahba (1990) for more information

about smoothing spline techniques.

We use Wahba’s setting by taking her three smooth functions with one, two and three

humps respectively. They are

f1(t) = 1
3
β10,5(t) + 1

3
β7,7(t) + 1

3
β5,10(t)

f2(t) = 6
10

β30,17(t) + 4
10

β3,11(t)

f3(t) = 1
3
β20,5(t) + 1

3
β12,12(t) + 1

3
β7,30(t)

where

βp,q(t) =
Γ(p + q)

Γ(p)Γ(q)
tp−1(1 − t)q−1, 0 � t � 1

is the β density function.

The five noise levels are σ = .0125, .025, .05, .1 and .2 as in Wahba (1990). The three

sample sizes are n = 32, 64 and 128. The S/N values corresponding to σ = .1 for three

functions are 6.88, 9.6 and 5.4, respectively. Values of σ � .5 correspond to larger signal

to noise ratio. We feel such values are of less interest for statistical applications, especially

when n = 64, 128, but have nevertheless reported results for them because they are included

in Wahba’s study.

Figure 7 shows a typical sample from testing function f1 with n = 128 and σ = .1. The

function f1 is plotted as a solid line. Applying our method we get the fitted line (dashed)

and the 95% point wise confidence bands (dotted lines).
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Figure 7: A typical result under f1 when n = 128, σ = .1.
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Figure 8: Empirical coverage probability as a function of x, under f1, n = 128, σ = .1
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Figure 9: A typical result under f3 when n = 32, σ = .1
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Figure 10: Empirical coverage probability as a function of x, under f3, n = 32, σ = .1

20



Table 2: Empirical Average Coverage Probabilities (EACP) for testing function f1 to f3. The nominal level

is 95%. Unshaded columns are results from FUNFITS; Shaded columns are from our method.

n=32 n=64 n=128

σ = 0.0125

Case 1 90.84 85.94 94.98 90.69 93.16 92.94

Case 2 86.87 82.59 93.96 90.31 91.96 92.16

Case 3 94.21 53.06 94.56 88.52 94.20 93.05

σ = 0.025

Case 1 91.50 88.31 88.92 91.14 93.79 92.61

Case 2 90.56 79.41 86.39 88.70 94.18 92.65

Case 3 95.34 57.25 91.59 88.80 94.05 92.29

σ = 0.05

Case 1 95.93 86.59 93.04 91.08 92.82 93.02

Case 2 91.46 82.19 93.68 90.56 94.72 92.72

Case 3 95.40 68.91 91.42 89.98 92.01 92.88

σ = 0.1

Case 1 95.28 85.31 94.34 91.08 94.96 92.09

Case 2 94.12 86.16 94.51 90.59 91.02 91.15

Case 3 95.25 78.63 95.32 91.31 89.96 92.30

σ = 0.2

Case 1 92.62 84.25 89.67 88.02 94.30 92.02

Case 2 95.21 84.81 90.67 90.72 92.71 92.73

Case 3 92.59 84.09 93.51 90.53 94.18 91.95
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Figure 8 reports pointwise empirical coverage probabilities at each x for the same setting

as above based on 500 replications. This shows that the coverage probability is fairly close

to the nominal level .95.

Figure 9 and Figure 10 are similar to that in Figure 7 and Figure 8 but with testing

function f3 and sample size 32. Even though the sample size is relatively small the perfor-

mance of our method in terms of the function estimation as well as coverage probability is

reasonably satisfactory.

Table 2 reports empirical values of ACP for our method and for Wahba’s method. This

table is based on 100 replications at each level. (Wahba runs simulations involving only

10 replicates. To get suitable accuracy we re-ran simulations for her examples in order

to produce Bayesian smoothing spline confidence intervals. For this we used the software

FUNFITS provided by Nychka et al (1996).) Our method appears to produce values of ACP

acceptably close to the nominal level of 95%. (All but 5 of the 45 values for our method

exceed 90%.) The two lowest values for our method (86.8% and 86.39%) digress somewhat

from the overall pattern and could possibly be underestimates of the true value attributable

to random variation. By contrast 20 of the 45 results for FUNFITS fall below 90%. For the

largest sample size here, n = 128, both methods appear to have acceptable ACP’s.

4.3 Comparison of MSE with other polynomial spline procedures

Along with its confidence bands our procedure of course also produces estimates of the

regression function. There is a wide range of existing methods designed to produce such

estimates. Some are mentioned in our introduction. In this section we compare the estimates

from our procedure with those from two other popular related methods – the adaptive knot

selection procedure POLYMARS developed by Stone, et al (1997) and the variable knots

Bayesian spline procedure br developed by Smith and Kohn (1996). (It should be noted that

POLYMARS is piecewise linear and it was developed to apply also in higher dimensional

problems. Thus it might be not expected to be competitive as an estimator in our situation.)

The average root mean square error (RMSE) will be used to judge accuracy. It is defined

as

RMSE =

√√√√ 1

n

n∑
i=1

(f̂(xi) − f(xi))2.

We give results for the three functions defined in Section 4.1 with the same simulation
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Figure 11: Boxplots of log10(RMSE) for function g1(x) with S/N=5 (left panel) and 3 (right panel).
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Figure 12: Boxplots of log10(RMSE) for function g2(x) with S/N=5 (left panel) and 3 (right panel).
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Figure 13: Boxplots of log10(RMSE) for function g3(x) with S/N=5 (left panel) and 3 (right panel).
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setup. The boxplots in Figures 11 - 13 summarize our results. These are boxplots of the

values of log10(RMSE) for 1000 Monte-Carlo replications of the problem. In summary, it ap-

pears that br and our free-knots method are generally competitive as estimation procedures

and both improve on POLYMARS. The only major difference in performance appear in the

left panel of Figure 13.

5 Analysis of banking data

As an example of our methodology we will reanalyze a data set discussed in Faulhaber

(2000). We summarize below the essential features of this data and some of the conclusions

it yielded. The original article should be consulted for further details.

The data was collected to study the “productivity” of US banks. Analysis of this data

supported certain research hypotheses concerning the effect of federal policy on banking

efficiency. These hypotheses are briefly summarized following our analysis of the data.

The data involves quarterly reports from a subset of US banks having assets over $1

billion in 1984. (The study thus involves only “mid-size” to “large” banks.) The period

covered is 1984 through 1992.

The independent variable in this regression analysis is the total quarterly revenue for

each bank. The y-variable is a measure of the banks quarterly risk to earnings ratio. In all,

the data set contains 1483 (x, y) values, each representing the quarterly report from some

mid-size or larger bank.

Some of the data points represent reports from the same bank over different quarterly

periods. These points should thus exhibit some degree of temporal correlation. Faulhaber

(2000) ignored this issue in his analysis and we will also do so, and treat the data as if

the random errors are independent. (Neither bank identities nor the quarter number were

reported in the paper or in the data communicated to us.)

Figure 14 contains a plot of the data in terms of x = log(revenue) (with revenue in

thousand dollars). We chose to use log(revenue) for this plot rather than revenue itself since

the distribution of revenue is more nearly uniform in the logarithmic scale. The analysis on

the log scale is thus more stable and more informative. Figure 14 also shows the polynomial

spline regression curve produced by our method and the 95% confidence intervals for this

regression curve.
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Figure 14: The bank data in log scale with fitted curve (solid) and 95% confidence intervals (dotted).
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Figure 15: The fitted curve (solid) together with 95% confidence intervals for the bank data; original scale.
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It is more conventional to interpret this data in terms of revenue rather than log(revenue).

Figure 15 shows on this scale the regression curve and confidence region from Figure 14.

Three statistically significant qualitative features are visible on this plot:

1. A sharp decrease in this curve at very small values of revenue.

2. A subsequent increase in the curve.

3. A leveling-off of the curve for larger values of the revenue.

These three features are explained in some detail in Faulhaber (2000) as respectively

reflecting the following factors:

1. The decrease at small revenues is consistent with earlier studies done for smaller bank

sizes that shows risk/earnings generally decreases with bank size in this range.

2. The subsequent rise in the curve reflects an optimal response to the “too big to fail”

hypotheses. That hypothesis holds that for a range of revenues there is a probability that

the bank will be bailed out by the government in case of failure. That probability increases

with bank size over a range of values of revenue. The bank managers should be more prone

to engage in risky behavior as this probability increases.

3. Above a certain revenue the probability of bail-out is nearly one. This explains why

the curve levels off at larger revenues.

The plot together with the preceding explanation suggests that the “too big to fail” effect

begins to occur for quarterly revenues in the vicinity of $1, 000, 000 and is nearly complete for

quarterly revenues above about $10, 000, 000. As one may judge from the confidence bands,

the slightly concave pattern of our curve above this value is not statistically significant, and

may partly be an artifact of our spline methodology.

6 Discussion

This section investigates two aspects of the free-knot methodology as we have applied it to

a statistical setting. First we examine the practical effect of the two steps of our method

that are only justified by asymptotic criteria. Second we address confidence band as an

alternative object.
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6.1 Nonlinearity and model selection

Part of the justification for our methodology is its ability to provide suitable estimates

and confidence intervals when the true regression function is a polynomial spline. In this

subsection we examine in detail the performance of our procedure when the true regression

is the two-knot spline g1 of Section 4.1.

If the knot locations of g1 were known then the problem would involve an ordinary Gaus-

sian linear model. The estimation accuracy would be optimal in a number of accepted senses

and the confidence coverage would be exact. The expected root mean square error will agree

exactly with the theoretical value

RMSE1 =

(
σ2

n

n∑
i=1

dT
∗ (xi)(D

T
∗ D∗)

−1d∗(xi)

)1/2

(27)

obtained from the right side of (23).

If the function were assumed to be a two-knot spline then it could be fit by the nonlinear

least squares procedure in (8) with r fixed at r = 2. The asymptotic average root mean

square error is given by the left side of (23) as

RMSE2 =

(
σ2

n

n∑
i=1

dT (xi)(D
TD)−1d(xi)

)1/2

. (28)

This value need not be attained in practice since the theory leading to (28) is only asymptotic.

For the same reason, the expected average coverage of confidence intervals constructed in

this way need not achieve the nominal value (95%).

Finally, we are mainly interested in the practical situation where r is unknown, and the

modeled value of r is chosen via GCV. In this case the estimation and confidence performance

can be adversely affected by incorrect choice of r as well as by the various stochastic errors

discussed above.

Table 3 gives values of (27) and (28) and various empirical simulation results including

average coverage probabilities as well as average confidence interval widths based on 500

simulations at each level. The table includes results for n = 50 and 200 and for S/N level

1, 3, 5. Entries with subscript 1 refer to fitting with the correct knot locations; with subscript

2 refer to fitting with two knots at free locations; and with no subscript refer to our scheme

with GCV as choice of knots. Entries beginning with “E” are empirical simulation results;

the others are theoretical, as described above.
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Table 3: Theoretical and empirical values (“E”) for g1. See text for complete descriptions.

n=50 n=200

S/N= 1 3 5 1 3 5

RMSE1 0.6789 0.0754 0.0272 0.3926 0.1309 0.0785

“E”RMSE1 0.6829 0.0759 0.0273 0.3815 0.1272 0.0763

RMSE2 0.8717 0.1000 0.0362 0.4523 0.1511 0.0907

“E”RMSE2 0.8906 0.1107 0.0398 0.4535 0.1519 0.0889

“E”RMSE 1.0222 0.1379 0.0466 0.5320 0.1651 0.0971

“E”ACP1 0.9421 0.9421 0.9421 0.9462 0.9462 0.9462

“E”ACP2 0.9377 0.9201 0.9284 0.9299 0.9341 0.9434

“E”ACP 0.9050 0.8870 0.9133 0.8811 0.9257 0.9316

“E”AWidth1 1.5193 0.5064 0.3039 0.7294 0.2431 0.1459

“E”AWidth2 1.7404 0.5812 0.3507 0.8411 0.2819 0.1692

“E”AWidth 1.5614 0.5799 0.3565 0.7961 0.2903 0.1745

Figure 16 shows the histogram of the number of knots chosen by our GCV criterion

in these simulations. Note that at higher S/N values and larger sample sizes the GCV

virtually never underfits by choosing too small a number of knots. It sometimes does mildly

overfit, but such mild overfitting does not have serious negative consequences for the various

performance criteria.

Note that the values of “E”RMSE2 are close to their theoretical values, RMSE2. Hence

the asymptotic values are fairly close to the actual ones. Next, “E”RMSE is somewhat larger

than RMSE2. This describes the estimation penalty for not knowing how many knots g1

has.

The three values of “E”ACP decrease somewhat, but not too drastically as one progresses

from the precise, correct model to our free knot model with r to be chosen by GCV. (The

values of “E”ACP1 are constant at the three noise levels because the same set of simulated

values of εi were used for the given n at all three noise levels.) The theoretical value of

“E”ACP1 is 0.95, and the observed deviation is attributable to the random simulation effect.

Finally, “E”AWidth1 is generally smaller than “E”AWidth2 as one should expect. How-

ever the values of “E”AWidth2 and of “E”AWidth are comparable in spite of the fact that

the free-knot model is less precise than the two-knot model of “E”AWidth2. This juxta-

position suggests that the free-knot confidence intervals may be somewhat too narrow and
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Figure 16: Histogram of the number of knots chosen by GCV in the simulations involving g1.

that better fidelity to nominal coverage values would be obtained by somewhat increasing

their width. Such an increase could be motivated by taking into account that the free-knot

method involves “estimation” of the true value of r as well as of the 2r + 4 coordinates of θ.

But our methodology does not make an upward adjustment in length of interval because of

“estimation” of r. While we could do so in an ad hoc fashion we do not know of a statistical

principle that would prescribe the magnitude of such an adjustment.

6.2 Alternate objectives:

As noted, our primary objective is to produce regression estimates accompanied by confidence

intervals for f(x). These confidence intervals, CI(x), have as a goal the nominal property

P (f(x) ∈ CI(x)|x) � 1 − α, (29)

and consequently

E

(
1

n

n∑
i=1

ICI(x)(f(xi))

)
� 1 − α. (30)

Of course, our algorithm is not exact, and so the degree to which (29)-(30) hold in particular

examples needs to be investigated numerically. Section 4 reports some typical investigations.

29



Generally in our examples involving signal to noise ratios between 3 and 5 and sample sizes

50 to 200 we found (as expected) noticeable variability in (29) as a function of x, especially

for inhomogeneous f and higher noise levels; but there was only a mild tendency for under

coverage on average with values of (30) for nominal 1 − α = .95 ranging from the mid 80%

range to nearly .95, depending on the example. For signal to noise ratios of one or less we

found noticeable degradation in the coverage performance of our intervals, as well as of the

few existing alternative methods we have tried.

We have concentrated only on this confidence criterion (25) because we feel this is likely

to be the one most often useful in practice. However we note that our algorithm can easily be

adapted to other confidence objectives. One can, for example, produce bands with nominal

simultaneous coverage of 1 − α, that is with the goal

P (f(x) ∈ CI(x) ∀x) � 1 − α. (31)

For this purpose one could replace the value z1−α/2 in (21) by ((2r + 4)F1−α)1/2 where F1−α

denotes the upper α cutoff point of an F - distribution with (2r + 4) and n − (2r + 4) df.

This simultaneous confidence band would nominally be conservative (asymptotically). One

might hope to reduce this conservativity by using, for example, methods of Johansen and

Johnstone (1990), but we have so far been unable to implement these methods in the current

non-linear setting.

One could alternatively desire prediction intervals of the usual sort instead of confi-

dence intervals for f(x). For this purpose one would replace

√
ˆV ar(f̂(x)) in (21) by√

σ̃2 + ˆV ar(f̂(x).

There is heuristic reason to believe that performance of our methods for the above ob-

jectives would be even better than that for our primary confidence objectives (1), (2). This

will be reported elsewhere. (Zhao (in preparation).)

7 Summary

The method of polynomial splines has been made more flexible by letting knot locations vary

freely.

The number of knots is chosen via a model selection (GCV) method, the other basic

parameters are estimated via maximum likelihood. (σ2 is estimated by an asymptotically
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unbiased estimator, as is customary in such settings.) The predominant use of maximum

likelihood estimation supports the construction of reliable confidence intervals for the un-

derlying regression function. Simulation, as well as general theory, supports the conclusion

that these confidence intervals generally have coverage acceptably near their nominal value.

One of the advantage of our method is that it exploits existing algorithms so the coding is

relatively flexible and easy. The main program is written in MATLAB using Spline Toolbox

(de Boor (1998)) with function calls to IMSL.
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