SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity

Qingyuan Zhao1, Murat A. Erdogdu1, Hera Y. He1, Anand Rajaraman2, Jure Leskovec2

Department of Statistics1 and Computer Science2, Stanford University

KDD’15, Aug 12, 2015
Information cascade

An information cascade occurs when people engage in the same actions.

Source: wikimedia.org

Source: adweek.com
Twitter provides the ideal playground to study information cascades.

- **Start:** a Twitter user posts a 140-character message which can be seen by his/her followers.
- **Spread:** a tweet is forwarded in Twitter by another user.
Predicting cascades in real time

Goal

Given the tweet and retweets up to time T, predict its final popularity.
Predicting cascades in real time

Goal

Given the tweet and retweets up to time T, predict its final popularity.

Applications

- Ranking content.
- Detecting viral/breakout tweets.
- Understanding human social behavior.
Mathematical definitions

Data

- Relative retweet time $t_0 = 0, t_1, t_2, \ldots$
 - Number of retweets by time t: $R_t = \sum_{t_i \leq t} 1$.
- Number of followers of each retweeter n_0, n_1, n_2, \ldots
 - Number of exposed users by time t: $N_t = \sum_{t_i \leq t} n_i$.

Problem statement

Given (R_t, N_t) for $0 \leq t \leq T$, predict R_∞.

Mathematical definitions

Data

- Relative retweet time $t_0 = 0, t_1, t_2, \ldots$
 - Number of retweets by time t: $R_t = \sum_{t_i \leq t} 1$.
- Number of followers of each retweeter n_0, n_1, n_2, \ldots
- Number of exposed users by time t: $N_t = \sum_{t_i \leq t} n_i$.

Problem statement

Given (R_t, N_t) for $0 \leq t \leq T$, predict R_∞.
Approaches to cascade prediction

Broadly categorized into two groups:

- **Feature based methods (the majority):**
 - Feature engineering: temporal, network structure, content, user, . . .
 - Supervised learning: linear regression, collaborative filtering, regression trees, topic modeling, . . .

- **Point process based methods:**
 - Dynamic Poisson process, reinforced Poisson process
 - Our model (SEISMIC): self-exciting point process.
Approaches to cascade prediction

Broadly categorized into two groups:

- **Feature based methods (the majority):**
 - Feature engineering: temporal, network structure, content, user, ...

- **Point process based methods:**
Approaches to cascade prediction

Broadly categorized into two groups:

- **Feature based methods (the majority):**
 - Feature engineering: temporal, network structure, content, user, . . .
 - Supervised learning: linear regression, collaborative filtering, regression trees, topic modeling, . . .

- **Point process based methods:**
Approaches to cascade prediction

Broadly categorized into two groups:

- **Feature based methods (the majority):**
 - Feature engineering: temporal, network structure, content, user, . . .
 - Supervised learning: linear regression, collaborative filtering, regression trees, topic modeling, . . .

- **Point process based methods:**
 - Dynamic Poisson process, reinforced Poisson process
Approaches to cascade prediction

Broadly categorized into two groups:

- **Feature based methods (the majority):**
 - Feature engineering: temporal, network structure, content, user, . . .
 - Supervised learning: linear regression, collaborative filtering, regression trees, topic modeling, . . .

- **Point process based methods:**
 - Dynamic Poisson process, reinforced Poisson process
 - Our model (SEISMIC): self-exciting point process.
Example

Matt Bellamy
@mottbollomy

- Saddam Hussein
- Osama Bin Laden
- Col. Gaddafi
- Justin Bieber

5:40 AM - 20 Oct 2011

RETWEETS 16,258 FAVORITES 906
Example
SEISMIC (Self-Exciting Model of Information Cascades) is a flexible model of information cascades.

Highlights

- Generative model.
- Easy interpretation.
- Scalable: prediction takes $O(\# \text{ retweets})$.
- State-of-the-art performance.
Background: point processes

Point process models

\[R_t \text{ is characterized by its intensity } \lambda_t = \lim_{\Delta \downarrow 0} \frac{\mathbb{P}(R_{t+\Delta} - R_t = 1)}{\Delta}. \]
Background: point processes

Point process models

\[R_t \] is characterized by its intensity \(\lambda_t = \lim_{\Delta \downarrow 0} \frac{\mathbb{P}(R_t + \Delta - R_t = 1)}{\Delta} \).

Examples

- Poisson process: \(\lambda_t = \lambda \);
- Reinforced Poisson process\(^1\): \(\lambda_t = p \cdot \phi(t) \cdot g(R_t) \).

\(^1\) S. Gao, J. Ma, and Z. Chen. Modeling and predicting retweeting dynamics on microblogging platforms. In WSDM '15, 2015.
Background: point processes

Point process models

R_t is characterized by its intensity $\lambda_t = \lim_{\Delta \downarrow 0} \frac{P(R_{t+\Delta} - R_t = 1)}{\Delta}$.

Examples

- Poisson process: $\lambda_t = \lambda$;
- Reinforced Poisson process1: $\lambda_t = p \cdot \phi(t) \cdot g(R_t)$.

They are not suitable to model viral tweets.

Key steps of retweeting

- How often does a user check Twitter?
- What is the user’s probability of retweeting a given tweet?

\[\lambda_t = p \cdot \sum_{t_i \leq t} n_i \phi(t-t_i), \quad t \geq t_0. \]
Key steps of retweeting

- How often does a user check Twitter?
 - Memory kernel (power law distribution).
- What is the user’s probability of retweeting a given tweet?
Key steps of retweeting

- How often does a user check Twitter?
 - Memory kernel (power law distribution).
- What is the user’s probability of retweeting a given tweet?
 - Tweet infectiousness.
Key steps of retweeting

- How often does a user check Twitter?
 - Memory kernel (power law distribution).
- What is the user’s probability of retweeting a given tweet?
 - Tweet infectiousness.

Self-exciting point process

- Infectiousness: “probability” of retweeting
 \[\lambda_t = p \cdot \sum_{t_i \leq t} n_i \phi(t - t_i), \quad t \geq t_0. \]
- Self-exciting: “rate” of viewing
Time-varying infectiousness

- Fixed p is not enough to model viral tweets.

- SEISMIC replaces p by a smooth process p_t.
We estimate p_t by locally smoothing the maximum likelihood estimator (MLE):

- "Number of retweets"

$$
\hat{p}_t = \frac{\sum_{i=1}^{R_t} K_t(t - t_i)}{\sum_{i=0}^{R_t} n_i \int_{t_i}^{t} K_t(t - s) \phi(s - t_i) ds}.
$$

- "Number of views"
Predict popularity

SEISMIC prediction formula

Assume the out-degrees in the network have mean n_* and the infectiousness parameter $p_t \equiv p$ for $t \geq T$. Then

$$
\mathbb{E}[R_\infty | \mathcal{F}_T] = \begin{cases}
R_T + \frac{p(N_T - N^e_T)}{1 - pn_*}, & \text{if } p < \frac{1}{n_*} \\
\infty, & \text{if } p \geq \frac{1}{n_*}.
\end{cases}
$$

where $N^e_T = \sum_{i=0}^{R_T} n_i \int_{t_i}^T \phi(t - t_i)dt$.

See our paper for derivation.
Example

Histogram of Retweet Times

Prediction by SEISMIC

Time since original tweet (hour)

Retweets

Retweet Count

Final SEISMIC Cumulative
Experiments: dataset

- Raw dataset: all tweet and retweet activities from October 7 to November 7, 2011.
- Filter by:
 - Posted in the first 15 days.
 - English tweets;
 - No hashtag;
 - At least 50 retweets;
- End up with 166076 cascades (in total over 34 million tweets/retweets).
Baselines

We compare SEISMIC to four different baselines:

1. **LR**: linear regression
2. **LR-D**: linear regression with degree
3. **DPM**: dynamic Poisson model
4. **RPS**: reinforced Poisson model
Comparison: Absolute Percentage Error (APE)

\[APE = \left| \hat{R}_\infty - R_\infty \right| / R_\infty. \]

15% vs 25% percentage error when observe 1 hour.
Comparison: Coverage of breakouts

- A list of **true top 500 tweets** with most retweets.
- Lists of **predicted top 500 tweets** at all time points.

70% vs 55% coverage when observe 25% retweets.
In conclusion, SEISMIC

- Effectively models information cascades by self-exciting point processes;
- Efficiently updates parameters and makes prediction;
- Outperforms several baselines and state-of-the-art.

Code and data available online at http://snap.stanford.edu/seismic.
Estimation of memory kernel $\phi(t)$

Figure 4: Plot of observed reaction time distribution and estimated memory kernel $\phi(s)$. The reaction time is plotted on a log scale, hence a linear trend in the plot suggests a power law decay in the distribution.
More detail: final tweak

- The prediction is unstable when \hat{p}_t is close to $\frac{1}{n^*}$.
- The real p_s is likely to decrease.

Stabilized prediction

$$\hat{R}_\infty(t) = R_t + \alpha_t \frac{\hat{p}_t (N_t - N^e_t)}{1 - \gamma_t \hat{p}_t n^*}$$

where $0 < \alpha_t, \gamma_t \leq 1$ are trained for the network.