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1 Outline of Talk

1. Sir Ronald Fisher devoted 15 pages of his Design of
Experiments to discussing his randomization test for
a 2� 2 table. Why 15 pages?

2. Review of randomization inference and sensitivity analy-
sis for additive e¤ects.

3. Attributable e¤ects in 2� 2 tables.

4. Attributable e¤ects in for quantile displacements.



2 Progress in Statistics Since 1935

� Fisher published Design of Experiments in 1935; hence,
that date as an anchor.

� How would statistics today look to statisticians in
the 1930�s, 1940�s, 1950�s?

� If we look back at papers written at that time, we
�nd a great deal of attention to computing formulas
� articles were constrained by what could be com-
puted. The �rst thing you notice, the dominant
impression.

� Looking back we see enormous progress facilitated
by computing.

� But I am not asking what the 1930�s look like to us.
I am asking what we would look like to statisticians
back then.



3 Two Quotes About Assumptions

Welch (1937, p. 21): �Of especial interest
are the cases of experimentation into which ran-
domization enters as part of the structure. R.
A. Fisher has pointed out that, in any such case,
it is possible to carry through arithmetical cal-
culations, from which the hypothesis under test
may be judged, without making any assump-
tions whatever.�

Corn�eld and Tukey (1956, p908): �The
question of what assumptions to make seems,
at �rst glance, to be a purely empirical ques-
tion . . . But closer study shows that the choice
of assumptions depends on more than empirical
questions about the behavior of the experimen-
tal material. It depends on the nature of the
sampling and randomization involved in obtain-
ing the data . . . �



4 The �Really Modern�Idea

� From Cochran and Cox (1950, 1957, p. 7) Experi-
mental Designs:

�This important result has been illustrated in
detail by Fisher (1.2), who has shown how tests
of signi�cance and con�dence limits can be con-
structed, using only the fact that randomization
has been properly applied in the experiment.
Randomization is one of the few characteristics
of modern experimental design that appears to
be really modern.�

� The premodern idea was that inferences were for-
mally developed from assumptions (linear model, Gaussian
errors, etc).

� The �really modern�(ie post-Fisher) idea is that in-
ferences are formally developed from research design.





5 Return to the Original Question

� How would statistics today look to statisticians in
the 1930�s, 1940�s, 1950�s?

� Doubtless impressed by the computer and analytical
tools it has made possible.

� Doubtless pleased to see that we conduct random-
ized experiments and probability samples.

� Perhaps disappointed that in our fondness for analyt-
ical tools, we have downplayed a �really modern�idea
of which that era was extremely proud, namely that
statistical inferences are formally developed from,
and warranted by, research design.



6 The �Really Modern�Idea Today

� Unless inferences are formally developed from re-
search design, it is hard to formalize the important
point that the uncertainty is greater with weaker re-
search designs.

� If it isn�t formalized � if it isn�t in the signi�cance
level or the con�dence interval � it is a footnote to
an addendum to an appendix.

� Fisher�s argument encourages randomized experimen-
tation when it is ethical and feasible.

� It also forces nonrandomized studies to formally ac-
knowledge greater uncertainty � e.g., longer con�-
dence intervals � than would be present in a ran-
domized study.



7 A Limitation

� Much of randomization inference tests the null hy-
pothesis of no treatment e¤ect. But interval esti-
mates are needed in practice.

� Can invert tests obtaining con�dence intervals for an
additive treatment e¤ect; Lehmann (1963), Hodges
& Lehmann (1963), Moses (1965).

� Additive model often inapplicable: binary responses,
distributions clearly not shifted, e¤ects vary as a
function of other outcomes.

� Common solution abandons the �really modern idea�
of formally developing inferences from research de-
sign.

� GOAL: Exact, distribution free, design-based, non-
null randomization inferences and sensitivity analy-
ses.



8 Review of Randomization Infer-
ence & Sensitivity Analysis for
Additive E¤ects

8.1 Notation

� S strata de�ned by pretreatment covariates, s =
1; : : : ; S, with ns subjects in stratum s, and N =P
ns subjects in total

� Zsi = 1 if the ith subject in stratum s is assigned
to treatment, Zsi = 0 if assigned to control. Z =�
Z11; Z12; : : : ; ZS;nS

�T
� ms =

Pns
i=1Zsi treated subjects in stratum s.

� Eg, treated/control matched pairs is the special case
with ns = 2, ms = 1 for s = 1; : : : ; S.



8.2 Review: Treatment E¤ects

� Each subject has two potential responses, a response
rTsi that would be seen under treatment and a re-
sponse rCsi that would be seen under control. (Ney-

man 1923, Rubin 1974). rT =
�
rT11; : : : rTS;nS

�T
,

rC =
�
rC11; : : : rCS;nS

�T
. Fixed features of the

�nite population of N subjects. Just 2N numbers.

� Causal e¤ect compares rTsi and rCsi. Challenge:
we see one or the other, never both.

� Null hypothesis of no e¤ect: H0 : rTsi = rCsi for
all s; i, or rT = rC .

� Model of an additive e¤ect, rTsi = rCsi + � for all
s; i or rT = rC + � 1. Shifted distributions.

� The treatment has a nonnegative e¤ect if rTsi �
rCsi for each s; i



8.3 Review: Randomization

� There are K =
QS
s=1

�
ns
ms

�
possible values z of the

N�dimensional treatment assignment Z withms =Pns
i=1 zsi for s = 1; : : : ; S.

� Collect these K vectors z in the set 
.

� In a randomized experiment, Z is picked at random
from 
, that is, Pr (Z = z) = 1

K for each z 2 
.

� The di¢ culty in an observational or nonrandomized
study is that this may not be true, and Pr (Z = z)
is typically unknown.

� Randomization inference uses Pr (Z = z) = 1
K as

the basis for inference. Sensitivity analysis asks how
far Pr (Z = z) must move from 1

K to change the
conclusions.



8.4 Review: Observed Responses

� Observe responses to treatment, rTsi, from treated
subjects, Zsi = 1, and responses to control, rCsi,
from control subjects, Zsi = 0.

� Observe Rsi = Zsi rTsi + (1� Zsi) rCsi. A ran-
dom variable: it depends on Zsi. R =

�
R11; : : : ; RS;nS

�T
.

� However, under the null hypothesis of no treatment
e¤ect, H0 : rT = rC , the observed responses are
R = rC and are �xed, unchanging with treatment
assignment, and observed.

� Under the model of an additive e¤ect, rT = rC +

� 1, the observed responses areR = rC+� Z which
are random variables depending on treatment assign-
ment Z whenever � 6= 0.



8.5 Review: Randomization Test of No

E¤ect

� Under the null hypothesis of no treatment e¤ect,
H0 : rT = rC , the observed responses are R = rC
�xed and observed.

� Any test statistic, T = t (Z;R), is a function of
treatment assignment Z and observed responses R.

� Under the null hypothesis, H0 : rT = rC , in a
randomized experiment, things are simple, because
T = t (Z; rC) is a function of �xed, observed con-
stants, R = rC , and a random variable Z with
a known distribution, Pr (Z = z) = 1

K for each
z 2 
.

� Hence the distribution of T = t (Z; rC) is known in
this case because it was created by the randomiza-
tion, which forms the �reasoned basis for inference�.



8.6 Review: Fisher�s Exact Test

� Binary responses, rTi = 1 or 0, rCi = 1 or 0. One
stratum, S = 1, drop the s:

Ri Treated Control Total
1

P
ZiRi

P
Ri

0
P
(1�Ri)

Total m =
P
Zi

P
(1� Zi) n

� Under the null hypothesis of no e¤ect saying H0 :
rT = rC = R, table equals:

rCi Treated Control Total
1

P
ZirCi

P
rCi

0
P
(1� rCi)

Total m =
P
Zi

P
(1� Zi) n

and
P
ZirCi has the hypergeometric distribution.



8.7 Review: Other Randomization Tests

� The same logic works for any test statistic, T =

t (Z;R).

� Under H0 : rT = rC = R, in a randomized ex-
periment, T = t (Z; rC) is a function of �xed, ob-
served constants, R = rC , and a random variable
Z with a known distribution, Pr (Z = z) = 1

K for
each z 2 
.

� One obtains in this way the exact distributions of
Fisher�s exact test for a 2 � 2 table, the Mantel-
Haenszel-Birch test for a 2�2�S table, the Wilcoxon
rank sum test, the Wilcoxon signed rank test, the
Hodges-Lehmann aligned rank test, and many oth-
ers.

� Welch (1937): null randomization distribution of an
anova test, T = t (Z;R), say the F-test, converge
in distribution to the usual F-distribution.



8.8 Review: Point and Interval Estimates

by Inverting the Test

� If the treatment had an additive e¤ect, rT = rC +
� 1, the observed responses are R = rC + � Z.

� To test H0 : � = �0, compute the (observed) ad-
justed responses, R� �0Z, which equal rC if H0 is
true, so randomization creates the null distribution
of T = t (Z;R� �0Z) = t (Z; rC).

� Eg, With one stratum, S = 1, to test H0 : � =
�0, subtract �0 from responses in the treated group,
obtaining R� �0Z, and apply the rank sum test to
them, T = t (Z;R� �0Z).

� The set of values �0 not rejected by a 0:05 level test
is the 95% con�dence interval, and the value b� that
equates t (Z;R� b� Z) to its null expectation is the
Hodges-Lehmann point estimate.



8.9 Review: Sensitivity Analysis - Corn-

�eld Inequality

� In an observational study, treatments are not ran-
domly assigned, so Pr (Z = z) may not equal 1K for
each z 2 
, and the previous argument breaks down.

� First sensitivity analysis by Corn�eld, et al. (1959)
in the Journal of the National Cancer Institute, con-
cerned smoking as a cause of lung cancer. The treat-
ment, smoking, is not randomly assigned to people.
However, they found the departure from random as-
signment would need to be enormous to alter the
conclusion that heavy smoking causes lung cancer.

� �association does not imply causation�V �to ex-
plain away the observed association, hidden biases
would have to be this magnitude.�



8.10 Review: Sensitivity Analysis Model

� Model for sensitivity analysis: Zsi initially indepen-
dent, and two subjects i; j in the same stratum s

di¤er in odds of treatment by at most � � 1

1

�
� Pr (Zsi = 1) =Pr (Zsi = 0)

Pr
�
Zsj = 1

�
=Pr

�
Zsj = 0

� � � for all s; i

� Condition on ms =
Pns
i=1Zsi returns the distribu-

tion to 
. With � = e; equivalent to

Pr (Z = z) =
exp

�
zTu

�
P
b2
 exp

�
bTu

�
for a u with 0 � usi � 1, 8 s; i; (Rosenbaum 1995,
2002, §4). � = 1 =) Pr (Z = z) = 1=K.



8.11 Review: Sensitivity Bounds

� Each e = � � 1 produces a set of possible treat-
ment assignment distributions,

Pr (Z = z) = exp
�
zTu

�
=
X
b2


exp
�
bTu

�
and each of these distributions yields a inference
quantity, say a signi�cance level, a point estimate,
or the endpoint of a con�dence interval.

� For several values of �, the sensitivity analysis com-
putes the max and min of the inference quantity, say
the signi�cance level.

� How large must � be before the range of, say, signif-
icance levels includes values that leave qualitatively
di¤erent impressions?

� For the 2 � 2 table, bound from the extended hy-
pergeometric distribution with parameter �. Other
bounds for Wilcoxon rank sum, etc. (Rosenbaum
2002, §4).



9 Attributable E¤ects

� When the model of an additive treatment e¤ect is
inappropriate, as for binary responses, we would like
to use a similar argument to obtain randomization
inferences and sensitivity analyses.

� Suppose �rst there is one stratum, S = 1, dropping
the s, and the responses are binary, rTi = 1 or 0,
rCi = 1 or 0.

� Assume nonnegative e¤ect, rTi � rCi, so (rTi; rCi)
is (1; 1), (1; 0), or (0; 0). Write �i = rTi � rCi
which is 0 or 1. Observe Ri = rCi + Zi �i.

� Can�t use an additive model. Common to drop the
logic of Fisher�s exact test and introduce an in�nite
population model. Must we do this?



9.1 Attributable E¤ects: Small Example

� In the London Underground, some stations have a
�pit� about a meter deep. If a passenger waiting
for a train falls, or is pushed or jumps onto the tracks
� what the British Railway Regulations Act of 1893
calls an �incident�� then the pit is a place to avoid
a train. Act requires �incidents� to be recorded.
Coats & Walter (Brit Med J 1999) looked at 53
�incidents�:

No Pit Pit
Dead 16 14
Alive 5 18

� Test no e¤ect using Fisher�s exact test, the one-sided
P-value is 0.0193, and the upper bound on the P-
value is 0.0885 for � = 1:5.

� Can we obtain an estimate of e¤ect without intro-
ducing random sampling from an in�nite population
of incidents?



9.2 Attributable E¤ects: The Non-null 2�
2 Table.

� Observed 2� 2 table is Ri = rCi + Zi �i by Zi
Response Treated Control

1
P
Zi rTi

P
(1� Zi) rCi

0
P
Zi (1� rTi)

P
(1� Zi) (1� rCi)

Total m n�m
which does not generally have a hypergeometric or
extended hypergeometric distribution, even in a ran-
domized experiment.

� Unobserved table of potential responses to control

Response Treated Control
1

P
Zi rCi

P
(1� Zi) rCi

0
P
Zi (1� rCi)

P
(1� Zi) (1� rCi)

Total m n�m
is hypergeometric in a randomized experiment.



9.3 Attributable E¤ects: Compatible Hy-

potheses.

� Suppose we had a hypothesis, H0 : �1 = 1; �2 =

0; : : : ; �n = 0, say, or H0 : � = �0, where � =
(�1; : : : ; �n)

T . Some hypotheses are clearly wrong,
that is, logically impossible given what we assumed.

� If we observe a control subject, Zi = 0, with Ri =
rCi + Zi �i = rCi = 1, then a hypothesis which
asserts �i = 1 is clearly false.

� We assumed rTi � rCi. If we observe a treated
subject, Zi = 1, with Ri = rCi+Zi �i = rTi = 0,
then a hypothesis which asserts �i = 1 is clearly
false.

� Call a hypothesis compatible if it is logically possible,
and incompatible if logically impossible. A logically
impossible hypothesis can be rejected with type 1
error rate of zero.



9.4 Attributable E¤ects: A Pivot

A =
nX
i=1

Zi �i =
nX
i=1

Zi (rTi � rCi)

is the number of events among treated subjects that were
caused by the treatment. (Eg, the number of deaths in
stations without a pit that were caused by the absence of
a pit.)

� A is a random variable, not a parameter, but one we
can never observe.

� We observe the number of events among treated sub-
jects, T =

Pn
i=1ZiRi =

Pn
i=1Zi rTi.

� Notice that T�A = Pn
i=1Zi rTi�

Pn
i=1Zi (rTi � rCi) =Pn

i=1Zi rCi, the corner cell in the table with no
treatment e¤ect. A pivot!



9.5 Attributable E¤ects: The Adjusted 2�
2 Table

Because
Pn
i=1Zi rTi � A =

Pn
i=1Zi rCi, the adjusted

table

Response Treated Control
1

P
Zi rTi �A

P
(1� Zi) rCi

0
P
Zi (1� rTi) +A

P
(1� Zi) (1� rCi)

Total m n�m
equals the table for potential responses to control,

Response Treated Control
1

P
Zi rCi

P
(1� Zi) rCi

0
P
Zi (1� rCi)

P
(1� Zi) (1� rCi)

Total m n�m
which has a hypergeometric distribution in a randomized
experiment.



9.6 Attributable E¤ects: Testing a Hy-

pothesis About �

� If H0 : � = �0, is incompatible, reject it with cer-
tainty, that is, with type 1 error rate of zero.

� Otherwise, compute A0 =
P
Zi �0i, which equals

A if H0 is true. Then compute the adjusted 2� 2
table,

Response Treated Control
1

P
Zi rTi �A0

P
(1� Zi) rCi

0
P
Zi (1� rTi) +A0

P
(1� Zi) (1� rCi)

Total m n�m
which has a hypergeometric distribution when the
null hypothesis is true. Perform a one-or-two tailed
test using the corner cell.

� Invert the test to get a con�dence set C for �. Easy
to describe the con�dence set, because whether a �0
is in C depends solely on the value of A0 =

P
Zi �0i.



9.7 Attributable E¤ects: Example

No Pit Pit
Dead 16 14
Alive 5 18

A0 = 0
P � value = :0193

No Pit Pit
Dead 15 14
Alive 6 18

A0 = 1
P � value = :0439

No Pit Pit
Dead 14 14
Alive 7 18

A0 = 2
P � value = :0875

Con�dence set C for � includes all compatible �0 with
A0 � 2 deaths attributable to the absence of a pit, that
is, � 2=30 of the deaths.

� Sensitive to hidden bias: For � = 1:5, A0 = 0

has upper bound on the P � value of 0:0885, and
A0 = 1 has upper bound 0:16.



9.8 Attributable E¤ects: Other Situations

� Other cases with exact, non-null, design based ran-
domization inferences and sensitivity analyses.

� Can look at McNemar�s test and the Mantel-Haenszel
test in matching with one or more controls. Re-
quires asymptotic separability a la Gastwirth, Krieger
& Rosenbaum (2000).

� A quantity related to Mann-Whitney statistic, pro-
portion of treated responses above control responses
attributable to treatment.

� Number of treated subjects caused to have responses
above a certain quantile of the potential control re-
sponses, somewhat analogous to control median pro-
cedure of Gart (1963) and Gastwirth (1968).

� Can do something similar for matched pairs, and will
illustrate this.



9.9 Attributable E¤ects: Continuous Re-

sponse

Thun et al (1989) compared male workers at a cadmium
recovery plant to unexposed male workers at a local hos-
pital in term of kidney function, matching for age. �-
2-microglobulin in micrograms per gram of creatine. 23
Pairs Matched for Age.

Kidney Function of Cadmium Workers and Unexposed
Controls.

From Thun, et al. (1989).

Pair Cadmium Worker Hospital Control
1 107,143 311

...
8 211 242

...
23 941 247



9.10 Attributable E¤ects: Order Statis-

tics

� S strata/matched sets, ns in stratum s, N =
P
ns.

Here, S = 23, ns = 2, N = 46.

� Let (yTsi; yCsi) be the potential responses under
treatment, yTsi, and control, yCsi. See yTsi if
Zsi = 1, yCsi if Zsi = 0. The (yTsi; yCsi) are
�xed features of the �nite population of N subjects.
Will assume yTsi � yCsi:

� Let yT (1) < : : : < yT (N) be the 46 order statistics
of potential responses to treatment, and yC(1) <
: : : < yC(N) be the 46 order statistics of potential
responses to control. Also �xed. (Easy to allow for
ties.)

� We do not observe these order statistics. We ob-
serve Ysi = Zsi yTsi + (1� Zsi) yCsi with order
statistics Y(1) � : : : � Y(N). Random variables.



9.11 Attributable E¤ects: Displacements

� Fix a k so yC(k) is the (unobserved) k=N quantile
of potential responses yCsi to control.

� Let � be any (unknown) value between yC(k) and
yC(k+1), so yC(k) < � < yC(k+1).

� Subject (s; i) has a displacement if yTsi > � >

yCsi.

� Write rTsi = 1 if yTsi > �, rTsi = 0 otherwise;
rCsi = 1 if yCsi > �, rCsi = 0 otherwise; so there
is a displacement if �si = rTsi � rCsi = 1. Let
Rsi = Zsi rTsi + (1� Zsi) rCsi , which indicates
whether Ysi > �. Not observed.

� A =
P
s;iZsi �si is displacements attributable to

treatment.



9.12 Attributable Displacements: Key Fact

� Because we don�t see the yC(j)�s, we don�t know �
and can�t compute things.

Lemma: If a =
P
s;iZsi �si, then

Y(k+1�a) > � > Y(k�a):

Proof: N�k subjects have yCsi > �, and since yTsi �
yCsi, these subjects have Ysi > �. Because a =P
s;iZsi �si, there are a other subjects with Ysi =

yTsi > � > yCsi. The remaining k � a subjects
have � > Ysi. So N � k + a of the Ysi > � and
k � a of the Ysi < �, proving the lemma.



9.13 Displacements: Procedure

� Consider displacements about the 80th percentile of
control responses, that is, since 0:8 � 46 = 36:8,
let rC(36) < � < rC(37) and subject (s; i) would

be displaced, �si = 1, about the 80th percentile of
responses to control if yTsi > � > yCsi.

� Consider testing a compatible hypothesis H0 : � =
�0. Compute A0 =

P
s;iZsi �0si. If the hypoth-

esis is true, then Y(k+1�A0) > � > Y(k�A0), so
Rsi = 1 if Ysi � Y(k+1�A0) and Rsi = 0 if
Ysi � Y(k�A0).

� Therefore, the earlier methods for binary responses
can be applied, in this case, for McNemar�s test.



9.14 Attributable Displacements: Exam-

ple

� Test 1 = A0 =
P
s;iZsi �0si about the 80

th per-
centile yC(36). Find Y(k+1�A0) = Y(36+1�1) =
892 and Y(k�A0) = Y(36�1) = 700, determines
Rsi:

Cadmium Worker

Matched
Control

Ysi � 892 Ysi � 700
Ysi � 892 0 0
Ysi � 700 11 12

Remove the 1 displacement:

Cadmium Worker

Matched
Control

Ysi � 892 Ysi � 700
Ysi � 892 0 0
Ysi � 700 10 13

McNemar�s test:
�
10� 10

2

�
=
q
10=4 = 3:16, P �

value = 0:00078.



9.15 Displacement Example, Continued

� In the same way, McNemar�s test rejects hypotheses
H0 : � = �0 with A0 =

P
s;iZsi �0si � 9 and

accepts A0 =
P
s;iZsi �0si � 10.

� So we are 95% con�dent that at least 10/23 cad-
mium workers had displacements above the 80th per-
centile yC(36) that would have been observed had all
subjects been spared cadmium exposure.

� Fairly insensitive to hidden bias:

� 95% con�dent that A � k
1 10
2 7
3 7
4 0

so the null hypothesis of no e¤ect is barely plausible
with � = 4, the upper bound on the P � value for
A0 = 0 being 0.057:



10 Attributable E¤ects for the Mann-

Whitney Test

� The Mann-Whitney U�statistic is the number of
times a treated subject had a higher response than
a control.

� Sometimes this happens by accident, that is, by how
subjects were randomly assigned to treatment or con-
trol.

� Other times it happens because of e¤ects of the
treatment.

� The attributable e¤ect in this case is the number of
times a treated subject had a higher response than
a control because of e¤ects of the treatment.



11 Attributable E¤ects for Wilcoxon�s

Signed Rank Test

� Wilcoxon�s signed rank statistic for matched treated
- control pairs equals the number of positive Walsh
averages.

� Some Walsh averages are positive by accident, by
random assignment of treatment or control within
each pair.

� Other Walsh averages are positive because of e¤ects
of the treatment.

� The attributable e¤ect in this case is the number of
Walsh averages that are positive because of e¤ects
of the treatment.



12 Summary

� The �really modern idea� is that inferences depend
explicitly on the research design.

� View encourages randomized experiments when eth-
ical and feasible, and encourages explicit discussion
of greater uncertainty from nonrandomized studies
via sensitivity analysis.

� Possible to invert more randomization inferences to
obtain con�dence intervals. Illustrated for 2 � 2

tables and quantile displacements, but applicable in
many other situations as well.
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