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Abstract. Before R. A. Fisher introduced randomization, the literature on empirical
methods emphasized reducing heterogeneity of experimental units as key to inference
about the e¤ects of treatments. To what extent is heterogeneity relevant to causal
inference when ethical or practical constraints make random assignment infeasible?

1. Notation and Review

1.1. Review: Randomization Inference in a Paired Experiment. Observed covari-
ate x and an unobserved covariate u. I pairs, i = 1; : : : ; I, of two subjects, j = 1; 2,
one treated, one control, matched for x, so xi1 = xi2, but not matched for u, so typically
ui1 6= ui2. Zij = 1 if j received the treatment in pair i, and Zij = 0 if j received the
control, so Zi1 + Zi2 = 1: Subject (i; j) has two potential responses, (rTij ; rCij), rTij ob-
served under treatment, Zij = 1, rCij observed under control, Zij = 0, so the e¤ect of the
treatment is rTij � rCij ; Neyman [16] and Rubin [25]. Write F for f(rTij ; rCij ;xij ; uij),
i = 1; : : : ; I, j = 1; 2g and Z for the event fZi1 + Zi2 = 1; i = 1; : : : ; Ig; then F and Z are
�xed by conditioning in Fisher�s [5] theory of randomization inference. Randomization
within pairs ensures Pr (Zi1 = 1 j Z; F) = 1

2 , i = 1; : : : ; I, with independent assignments in
distinct pairs. Observed response is Rij = Zij rTij + (1� Zij) rCij . If treatment e¤ect is
constant, � = rTij � rCij , then Rij = rCij +Zij � , and the treated-minus-control di¤erence
is Di = (2Zi1 � 1) (Ri1 �Ri2) = � + �i where �i = (2Zi1 � 1) (rCi1 � rCi2).
Test H0 : � = �0 by ranking jDi � �0j from 1 to I; then Wilcoxon�s signed rank statistic,

W�0 , is the sum of the ranks for which Di � �0 > 0, where ties are assumed absent. If
H0 : � = �0 is true, randomization ensures that Di � �0 = �i is rCi1 � rCi2 or rCi2 � rCi1,
each with probability 1

2 , independently in di¤erent pairs. Given Z; F , if H0 : � = �0 is
true, then the jDi � �0j are �xed, the Di � �0 are independent, Pr (Di � �0 > 0) = 1

2 , and
each Di is symmetric about �0, soW�0 is the sum of I independent random variables taking
values i or 0 each with probability 1

2 , i = 1; : : : ; I. A con�dence interval for � is obtained
by inverting the test, and the Hodges-Lehmann [8] estimate b� of � is (essentially) the
solution to Wb� = I (I + 1) =4 = 1

2 (1 + 2 + : : :+ I). Null distribution of W�0 is the same
for all (untied) F , but the nonnull distribution depends on F or a model that generates
F . A common model has (rCi1 � rCi2) =� �iid F (�) were � > 0 and F (�) is continuous
and symmetric about zero, so randomization ensures �i=� �iid F (�).
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1.2. Review: Sensitivity to Departures from Random Assignment in Observa-
tional Studies. (i) In population, before matching, treatment assignments were indepen-
dent, with unknown probabilities �ij = Pr (Zij = 1 j F), (ii) subjects with same observed
xij may di¤er in unobserved uij and hence in odds of treatment by factor of � � 1,

(1.1)
1

�
� �ij (1� �ik)
�ik (1� �ij)

� �, 8 i; j; k

and (iii) the distribution of treatments within treated/control matched pairs Pr (Zi1 = 1 j Z; F)
is then obtained by conditioning on Zi1 + Zi2 = 1. Here, �ij = Pr (Zij = 1 j F). If
� = 1, then xij = xik ensures �ij = �ik, i = 1; : : : ; I, whereupon Pr (Zi1 = 1 j Z; F) =
�i1= (�i1 + �i2) =

1
2 , and the distribution of treatment assignments is again the random-

ization distribution: bias solely due to observed x can be eliminated by matching on x. If
� > 1 in (1.1), then matching on x may fail to equalize the �ij in pair i. � is unknown.
A sensitivity analysis calculates, for several values of �, the range of possible inferences.
How large must � be before qualitatively di¤erent causal interpretations are possible?

1.3. Review: Sensitivity Analysis with the Signed Rank Statistic. If (1.1) and
H0 : � = �0 are true, then the null distribution of W�0 is unknown but is bounded by
two known distributions. Write � = �= (1 + �) so � � 1

2 because � � 1. Write W for
the sum of I independent random variables taking value i with probability � and value 0
with probability 1 � �, i = 1; : : : ; I; also, write W for the sum of I independent random
variables taking value i with probability 1� � and value 0 with probability �. Then (1.1)
and H0 : � = �0 imply the sharp bounds

(1.2) Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�
; 8w;

e.g., [18]. If � = 1, then equality in (1.2); otherwise bounds (1.2) widen as � increases.
For H0 : � = �0 vs HA : � > �0, the upper bound on the one-sided signi�cance level is at

most 0.05 for all �ij satisfying (1.1) if W�0 � ew where 0:05 = Pr�W � ew�.
For each � = (�11; : : : ; �I2), there is an HL estimate b�� (essentially) solving Wb� = ��

where the expectation �� = E� (W� j Z;F) is computed using �. Then (1.1) implies
(1� �) I (I + 1) =2 � �� � � I (I + 1) =2, yielding an interval of HL point estimates,
[b�min; b�max]. With � = 1, �� = I (I + 1) =4, and b�min = b�max is the usual HL estimate.

2. Heterogeneity and Sensitivity to Unobserved Bias

2.1. Question. In the fortunate situation, biases are con�ned to observed covariates, and
adjustments remove these biases, yielding unbiased or consistent estimates of treatment
e¤ects. In an observational study, even if the fortunate situation arose, we would not know
this from the data. In the fortunate situation, we hope to report insensitivity to small or
moderate unobserved biases. In the fortunate situation, how does unit heterogeneity a¤ect
the degree of sensitivity to unobserved bias? That is, if the treatment actually worked,
and there was no unobserved bias, would we be in a position to assert that there is fairly
strong evidence that the treatment worked?
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Table 1. Power of the Sensitivity Analysis Under Various Assumptions.

Errors
I Matched
Pairs

� � �2

I

Power
� = 1

Power
� = 1:5

Power
� = 2

Normal 120 1
2 1 1=120 1.00 0.96 0.60

Normal 30 1
2

1
2 1=120 1.00 1.00 0.96

Logistic 120 1
2 1 1=120 0.93 0.31 0.04

Logistic 30 1
2

1
2 1=120 0.93 0.61 0.32

Cauchy 200 1
2 1 1=200 0.98 0.32 0.02

Cauchy 50 1
2

1
2 1=200 0.95 0.60 0.28

2.2. Power of a sensitivity analysis. For a �xed � � 1, the power of the sensitivity
analysis is the probability that the upper bound on the signi�cance level from (1.2) is less

than, say, 0.05. Determine ew so 0:05 = Pr�W � ew� in (1.2); then calculate the probability
that W�0 � ew under some speci�c alternative hypothesis. For � = 1, this is the usual
concept of power. The alternatives considered here assume the fortunate situation: the
treatment worked, with additive e¤ect � (but of course we don�t know this), with errors
�i=� �iid F (�) that are Normal or logistic or Cauchy (but of course we don�t know this),
and there actually is no unobserved bias (but of course we don�t know this either).

2.3. Limit as I ! 1. Whether or not (1.1) is true, for each �xed � � 1, as I ! 1,
the range of possible HL estimates, [b�min; b�max], converges in probability to a interval,
[�min; �max], with �max = �min if � = 1 and �max > �min if � > 1. If (1.1) were true with
� = 1, then � = �max = �min; that is, the HL estimate b� = b�min = b�max is consistent for �
in a randomized experiment. If (1.1) were true with a speci�c � > 1, then � 2 [�min; �max],
but the uncertainty about � prevents a more precise statement even as I !1.
Let � (�) and �(�) be, respectively, the standard Normal and standard Cauchy cumula-

tive distributions. Proposition 1 indicates what a sensitivity analysis yields, as I ! 1,
when, unknown to us, there actually is no unobserved bias: the length of the limiting
interval [�min; �max] is strongly a¤ected by the heterogeneity of the experimental units �.

Proposition 1. [23] If (Di � �) =� �iid � (�) then [�min; �max] is � ����1 (�) =
p
2, where

� = �= (1 + �). If (Di � �) =� �iid �(�) then [�min; �max] is � � ���1 (�).

3. Annotated Bibliography

Key to annotation: DS = design sensitivity, the two papers most closely related to
the talk [23], [22]. SEN = methods of sensitivity analysis used in the talk [18], [19], [20],
[21]. AS = alternative methods of sensitivity analysis [4], [24], [6], [13], [3], [10]. EG =
illustrative examples with tactics to reduce heterogeneity [26], [2], [1], [17]. CE = causal
e¤ects [16], [25]. RI = randomization inference [5], [12], [20]. WSR = Wilcoxon�s signed
rank statistic [12], [21]. HL = Hodges-Lehmann estimate [8], [12], [19]. HIS = history of
role of heterogeneity in causality: John Stuart Mill thought it important [15], [9], Fisher
vehemently disagreed [5]. MISC = miscellaneous references [7], [14], [11].
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