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1 Some terms

Observational studies: (Cochran 1965) Studies of the
e¤ects caused by a treatment when ethical or prac-
tical issues prevent random assignment of units to
treatment or control, as would be done in a random-
ized experiment.

Unit heterogeneity: More or less, for units with the
same observed covariates, the dispersion of the re-
sponses units would exhibit if the units received the
control.

Causality: (Neyman 1923 / Rubin 1974) The causal
e¤ect of a treatment on a unit compares the response
the unit would exhibit under treatment to the re-
sponse the unit would exhibit under control.



Sensitivity to unobserved bias: Absent random as-
signment, treated and control groups may look sim-
ilar in terms of observed covariates, but may dif-
fer in terms of unobserved covariates. The degree
to which causal conclusions change as assumptions
about unobserved covariates are changed is the sen-
sitivity of those conclusions to unobserved bias. Less
sensitivity is better.

Design sensitivity: The e¤ect of research design on
sensitivity to unobserved bias.



2 Outline of Talk

Introduction: Mostly motivation.

Review: Notation, role of randomization in experiments,
sensitivity analysis in observational studies.

Theoretical point demonstrated: Done three ways:
(i) one simulated data set, (ii) statistical power of
competing designs, (iii) theorem about the limiting
case.

Practical point illustrated: Some actual studies which
seem to have done a good job with issue.



3 A Distinction

LM versus SL

� An easy distinction to make.

� Some theory might be interpreted to suggest the dis-
tinction is not extremely interesting.

� In the simplest, stylized illustrations of this distinc-
tion (Gaussian distributions with errors having known
constant variance), the mle�s have the same distri-
butions, as do con�dence intervals and signi�cance
levels; hence also power.

� So the distinction is starting to look like a yawn.

� And yet, the distinction is enormously important.



4 A Distinction, continued

LM versus SL

� The little bit of theory, that might be interpreted as
suggesting the yawn, more or less assumes a ran-
domized experiment, more or less assumes no unob-
served biases, no biases of O (1). (Why �more or
less�? The assumption is not explicit; rather, the
possibility that the assumption isn�t true isn�t men-
tioned.)

� And yet, LM and SL di¤er dramatically in their sen-
sitivity to unobserved biases. SL is much better.

� Worse yet, unaided by statistical theory, the gut in-
stinct is to go for LM.



5 Simplest Situation: Matched Pairs

� I pairs, i = 1; : : : ; I, of two units, j = 1; 2, one
treated, one control, matched for observed covari-
ates, yielding I treated-minus-control di¤erences in
responses, Di, i = 1; : : : ; I.

� In a randomized experiment, there is a sense (for-
malized soon) that the Di estimate the e¤ect of the
treatment. Also, they form the basis for random-
ization inferences about treatment e¤ect in Fisher�s
(1935) sense.

� In an observational study, units might, for instance,
decide for themselves whether to take the treatment.
Because of this, the Di�s might tend to be positive
even if the treatment had no e¤ect.

� In one example later, the pairs are people with dif-
fering education, and Di measures the di¤erence in
their earnings. Worry that people who get more
education are di¤erent.



6 Simplest Situation, with Good Fortune

� Imagine that we were very lucky: our observational
study was free of unobserved biases, and control-
ling for observed covariates was enough to estimate
treatment e¤ect, speci�cally a positive constant ef-
fect, say � > 0.

� We would not know this from data. Many Di�s
would be positive, but that could be a positive e¤ect
or a positive bias.

� The best we could hope for would be that the sen-
sitivity analysis would report back that the results
were insensitive to small and moderate biases.



7 What is the distinction?

� LM (larger sample size, more heterogeneous): Di �
iid

N
�
�; �2

�
with sample size 4I pairs.

� SL (smaller sample size, less heterogeneous): Di �
iid

N
�
�; �2

�
with sample size I pairs with � = �=2.

� Then the sample mean is D � N
�
�; �2=4I

�
in

both LM and SL.

� If we were not worried about unobserved biases, the
distinction would not matter much.



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.

LM SL
HL estimates b� 0:50 0:52

Wilcoxon 95% CI [b�L; b�H] [:40; :60] [:43; :62]



8 Notation 1

Covariates: Observed covariate x. Unobserved co-
variate u.

Matching: I pairs, i = 1; : : : ; I, of two subjects, j =
1; 2, matched for x, so xi1 = xi2 for each i, but
not for u, so typically ui1 6= ui2.

Treatment indicator: Zij = 1 if j received treat-
ment, Zij = 0 if j received control, so Zi1+Zi2 = 1
for i = 1; : : : ; I.

Responses: Two potential responses,
�
rTij; rCij

�
, rTij

under treatment, Zij = 1, rCij under control, Zij =
0, so e¤ect is rTij�rCij; Neyman (1935) and Rubin
(1974).



9 Paired Randomized Experiment

Conditioning: Write

F = f
�
rTij; rCij;xij; uij

�
; i = 1; : : : ; I; j = 1; 2g

Z = fZi1 + Zi2 = 1; i = 1; : : : ; Ig ;
then F and Z are �xed by conditioning in Fisher�s
theory of randomization inference.

Randomization: Pr (Zi1 = 1 j Z; F) = 1
2, i = 1; : : : ; I,

with independent assignments in distinct pairs.

Observed responses, di¤erences: Rij observed isRij =
Zij rTij +

�
1� Zij

�
rCij, and the treated-minus-

control di¤erence in responses in pair i is Di =
(2Zi1 � 1) (Ri1 �Ri2).

Constant e¤ect: If the treatment e¤ect is constant,
� = rTij � rCij, then Rij = rCij + Zij � , and
Di = (2Zi1 � 1) (Ri1 �Ri2) = � + �i where �i =
(2Zi1 � 1) (rCi1 � rCi2).



10 Wilcoxon�s Signed Rank Statistic

Wilcoxon�s Signed Rank Statistic: To testH0 : � =
�0 rank jDi � �0j from 1 to I; thenW�0, is the sum
of the ranks for which Di � �0 > 0, where ties are
assumed absent.

As a randomization test: If H0 : � = �0 is true,
randomization ensuresDi��0 = �i is rCi1�rCi2 or
rCi2� rCi1, each with probability 12, independently
in di¤erent pairs. Given Z; F , if H0 : � = �0 is
true, then W�0 is the sum of I independent random
variables taking values i or 0 each with probability
1
2, i = 1; : : : ; I.

Con�dence interval: A con�dence interval for � is
obtained by inverting the test

HL estimate: Hodges-Lehmann (1963) or HL estimate
of � is (essentially) the value b� such that Wb� is as
close as possible to its null expectation, I (I + 1) =4.



11 Models and Power

So far, just randomization inference: The null dis-
tribution of W�0 is the same for all (untied) F . All
that was used for test, CI and estimate.

Power: The nonnull distribution of W�0 depends on
F or a model that generates F .

Common model for power: (rCi1 � rCi2) =� �iid F (�)
were � > 0 and F (�) is a continuous distribution
symmetric about zero, so that randomization ensures
�i=� �iid F (�).

Reference: Lehmann (1998, §3-§4).



12 Departures from Random Assignment

� 1. In the population prior to matching, treatment
assignments were independent, with unknown prob-
abilities �ij = Pr

�
Zij = 1

��� F�
2. Two subjects with the same observed xij may
di¤er in unobserved uij and hence in their odds
of receiving treatment by a factor of � � 1,

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k (1)

3. Distribution of treatments within treated/control
matched pairs Pr (Zi1 = 1 j Z; F) is then ob-
tained by conditioning on Zi1 + Zi2 = 1.



13 Departures, continued

1=� �
n
�ij (1� �ik)

o
=
n
�ik

�
1� �ij

�o
� �, xij = xik

No unobserved bias: If � = 1, then xij = xik en-
sures �ij = �ik, i = 1; : : : ; I, whereupon

Pr (Zi1 = 1 j Z; F) = �i1= (�i1 + �i2) =
1

2
:

Uncertainty from unobserved bias: If � > 1 in (1),
then matching on x may fail to equalize the �ij in
pair i, and Pr (Zi1 = 1 j Z; F) is unknown.

Question answered by a sensitivity analysis: Bounds
on signi�cance levels, point estimates, con�dence in-
tervals for several values of �. How large must
� be before qualitatively di¤erent causal interpreta-
tions are possible?



14 Sensitivity Analysis Procedure

Two known distributions: For �xed � � 1, letW be
the sum of I independent random variables taking
value i with probability � = �= (1 + �) and value
0 with probability 1 � �, i = 1; : : : ; I; and let W
for the sum of I independent random variables tak-
ing value i with probability 1 � � and value 0 with
probability �.

Bounds: If

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k
andH0 : � = �0 are true, then the following bounds
are sharp for each � � 1:

Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�

Cases: If � = 1, then equality; otherwise the bounds
become wider as � increases.



15 Procedure, continued

For each � � 1

Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�

Tests: For each � � 1, test H0 : � = �0 versus
HA : � > �0; then the upper bound on the one-
sided signi�cance level is at most 0.05 for all �ij if
W�0 � ew where 0:05 = Pr �W � ew�.

Estimates: Recall that � = �= (1 + �). Bounds on
the expectation of W�

(1� �) I (I + 1)
2

� E (W� j Z;F) �
� I (I + 1)

2

yield an interval of HL point estimates, [b�min; b�max].
With no unobserved bias, � = 1, �� = I (I + 1) =4,
and b�min = b�max is the usual HL estimate.



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.

LM SL
HL estimates b� 0:50 0:52

Wilcoxon 95% CI [b�L; b�H] [:40; :60] [:43; :62]



Sensitivity Analysis for Testing

H0 : � = 0 vs HA : � > 0

Values are upper bounds on one-sided signi�cance levels.

LM SL
� = 1 10�14 10�14

� = 2 0:00037 0:00000032
� = 3 0:37 0:000088
� = 5 1:00 0:0078

HL Estimates

LM SL
� = 1 b� = b�min = b�max 0:50 0:52
� = 2 [b�min; b�max] [:19; :81] [:37; :67]



16 Power of a sensitivity analysis

� The sensitivity analysis reported a sharp upper bound
on the one-sided p � value testing H0 : � = 0 vs
HA : � > 0.

� The power of a sensitivity analysis is the probability,
under some alternative, that this upper bound is less
than 0.05.

� The alternative considered here is:

1. The treatment worked, with constant e¤ect � = 1
2.

(But of course, we don�t know this.)

2. We were fortunate, and there was no unobserved
bias, � = 1. (But of course, we don�t know this.)

3. Errors are Normal, Logistic or Cauchy. (But of
course, we don�t know this.)



Power of the Sensitivity Analysis: Normal Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 120 30
� 1 1

2
� = 1 1.00 1.00
� = 1:5 0.96 1.00
� = 2 0.60 0.96

Power of the Sensitivity Analysis: Logistic Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 120 30
� 1 1

2
� = 1 0.93 0.93
� = 1:5 0.31 0.61
� = 2 0.04 0.32



Power of the Sensitivity Analysis: Cauchy Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 200 50
� 1 1

2
� = 1 0.98 0.95
� = 1:5 0.32 0.60
� = 2 0.02 0.28



17 Limiting case, I !1

� As the number of pairs I !1, the only uncertainty
that remains is due to unobserved bias.

� In particular, for each � � 1, as I ! 1, the (ran-
dom) interval of HL estimates, [b�min; b�max] con-
verges in probability to a �xed interval [�min; �max].

� If � = 1, then �min = �max = � .

� If � > 1, then �min < �max, with � 2 [�min; �max].



18 Limiting case, I !1

Notation: �(�) and �(�) are standard Normal and
Cauchy cumulative distributions. Also, � = �= (1 + �).

Situation: Unknown to us, there actually is no unob-
served bias.

Question: For �xed � in the sensitivity analysis, how
does unit heterogeneity � a¤ect the limiting interval
[�min; �max]?

Proposition: If (Di � �) =�
iid� �(�) then

[�min; �max] = � �
���1 (�)p

2

If (Di � �) =�
iid� �(�) then

[�min; �max] = � � ���1 (�) :



19 Theoretical Point

LM:
Di � �
�

iid� F (�) ; i = 1; : : : ; 4I

SL:
Di � �
�=2

iid� F (�) ; i = 1; : : : ; I

In a randomized experiment: Not a big di¤erence.

In an observational study: SL much better � less
sensitive to unobserved biases.



20 Practical Illustrations

� In practice, can�t know for certain about unobserved
biases, but can use tactics that are likely to reduce
heterogeneity, perhaps at the expense of sample size.

� Tactics that attempt to reduce unobserved bias may
reduce heterogeneity.

� In both cases, we are trying to arrange things to
compare units that are similar in relevant ways we
have not observed.

� Can recognize and employ tactics aimed at this goal,
but can�t be certain whether they reduced unob-
served bias, heterogeneity, both or neither.



21 Returns to Education

� Economic returns to additional education.

� Can�t just compare high school dropouts and college
graduates. They di¤ered in terms of parents wealth
and education, possibly genetic endowment.

� Would like to compare children of the same parents,
growing up at the same time in the same home with
the same genes.

� Ashenfelter & Rouse (1998) compared identical twins
with di¤ering educations, estimating a 9% increase
in earnings per year of additional education.



22 Road Hazards

� What permanent road hazards increase risk of fatal
collisions with roadside objects? Road hazards are
a small part of the total picture. Also important:

Driver: Driver�s skill, aggressiveness, risk tolerance, so-
briety.

Weather: Ice, snow, rain, fog, ambient light.

Safety equipment: Brakes, tires, traction control, sta-
bility control, air bags, use of seat belts.

Related: Sobriety more common at noon than mid-
night, so sobriety and ambient light related. In rain
or snow, drive on highway to work, but not on dirt
road to picnic area or hiking trail, so weather and
roadside hazards vary together.



23 Road Hazards: a case-crossover study

� Would like to compare di¤erent road hazards with
the same driver, in the same state of sobriety, in
the same car, in the same weather, with the same
ambient light, with seat belts in the same state of
use. Is this possible?

� Wright and Robertson (1976) examined 300 fatal
accidents involving a collision with a roadside object
(trees, embankments, ditches, etc.) in Georgia 1974-
1975.

� Compared these to 300 non-accidents involving the
same driver, car, weather, light, etc. There were 1
mile back along the road, a location passed by the
driver minutes before the crash.

� Crash sites had a substantial excess of roads curving
more than six degrees with downhill gradients greater
than 2%.



24 Minimum Wage Laws

� Do minimum wage laws reduce employment?

� Traditional to study this using states and/or time-
periods with di¤erent minimum wage laws. But
businesses vary between states, and business condi-
tions vary with time.

� Would like to compare nearly identical businesses in
states with di¤erent minimum wage laws. How does
one �nd nearly identical businesses?

� Card and Krueger (1994) looked at changes, after-
minus-before, in employment in NJ and PA when NJ
increased its minimum wage by 19% in 1992. They
looked at fast food restaurants, comparing Burger
Kings to Burger Kings, Wendy�s to Wendy�s, etc.
Found no sign of reduced employment..



25 Motorcycle helmets

� To what extent do helmets reduce risk of death in
motorcycle crashes?

� Crashes vary: speeds, forces, tra¢ c density, other
vehicles, etc.

� Would like to compare two people, on the same type
of motorcycle, riding at the same speed, on the same
road, in the same tra¢ c, crashing into the same ob-
ject. Is this possible?

� It is when two people ride the same motorcycle, one
with, the other without a helmet. Norvell and Cum-
mings (2002) looked at such crashes, estimating a
40% reduction in fatality risk associated with helmet
use.



26 Summary

� If treatments are randomly assigned, unbiased es-
timates of e¤ects are available. Increasing sample
size and reducing unit heterogeneity reduce standard
errors of unbiased estimates.

� Without randomization, unobserved biases are pos-
sible, perhaps likely. Reducing heterogeneity in re-
sponses, even purely random heterogeneity, confers
bene�ts that cannot be had by increasing the sample
size.

� Speci�cally, reducing heterogeneity reduces sensitiv-
ity to unobserved bias.

� Examples illustrated tactics that have been used that
are likely to reduce heterogeneity.


