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1 A Causal Question

� At age 45, Ms. Smith is diagnosed with stage II
breast cancer.

� Her oncologist discusses with her two possible treat-
ments: (i) lumpectomy alone, or (ii) lumpectomy
plus irradiation. They decide on (ii).

� Ten years later, Ms. Smith is alive and the tumor
has not recurred.

� Her surgeon, Steve, and her radiologist, Rachael de-
bate.

� Rachael says: �The irradiation prevented the recur-
rence � without it, the tumor would have recurred.�

� Steve says: �You can�t know that. It�s a fantasy �
you�re making it up. We�ll never know.�



2 Many Causal Questions

� Steve and Rachael have this debate all the time.
About Ms. Jones, who had lumpectomy alone. About
Ms. Davis, whose tumor recurred after a year.

� Whenever a patient treated with irradiation remains
disease free, Rachael says: �It was the irradiation.�
Steve says: �You can�t know that. It�s a fantasy.
We�ll never know.�

� Rachael says: �Let�s keep score, add �em up.� Steve
says: �You don�t know what would have happened
to Ms. Smith, or Ms. Jones, or Ms Davis � you
just made it all up, it�s all fantasy. Common sense
says: �A sum of fantasies is total fantasy.� Common
sense says: �You can�t add fantasies and get facts.�
Common sense says: �You can�t prove causality with
statistics.��



3 Fred Mosteller�s Comment

� Mosteller like to say: �You can only prove causality
with statistics.�

� He was thinking about a particular statistical method
and a particular statistician.

� Not Gauss and least squares, or Yule and Yule�s Q
(a function of the odds ratio), or Wright and path
analysis, or Student and the t-test.

� Rather, Sir Ronald Fisher and randomized experi-
ments.



4 15 Pages

� Fisher�s clearest and most forceful discussion of ran-
domization as �the reasoned basis for inference� in
experiments came in his book of 1935, Design of
Experiments.

� In particular, the 15 pages of Chapter 2 discuss what
came to be known as Fisher�s exact test for a 2� 2
table. The hypergeometric distribution is dispatched
in half a paragraph, and Fisher hammers away in
English for 1412 pages about something else.

� Of Fisher�s method of randomization and randomiza-
tion, Yule would write: �I simply cannot make head
or tail of what the man is doing.� (Box 1978, p.
150). But Neyman (1942, p. 311) would describe
it as �a very brilliant method.�



5 Lumpectomy and Irradiation

� Actually, Rachael was right, Steve was wrong. Per-
haps not in every case, but in many cases. The
addition of irradiation to lumpectomy causes there
to be fewer recurrences of breast cancer.

� On 17 October 2002, the New England Journal of
Medicine published a paper by Bernard Fisher, et al.
describing 20 year follow-up of a randomized trial
comparing lumpectomy alone and lumpectomy plus
irradiation.

� There were 634 women randomly assigned to lumpec-
tomy, 628 to lumpectomy plus irradiation.

� Over 20 years of follow-up, 39% of those who had
lumpectomy alone had a recurrence of cancer, as
opposed to 14% of those who had lumpectomy plus
irradiation (P<0.001).



6 Outline: Causal Inference

. . . in randomized experiments.

� Causal e¤ects. � Randomization tests of no e¤ect.
� Inference about magnitudes of e¤ect.

. . . in observational studies.

� What happens when randomized experiments are not
possible? � Adjustments for overt biases: How to do
it. When does it work or fail. � Sensitivity to hidden
bias.



7 Finite Population

� In Fisher�s formulation, randomization inference con-
cerns a �nite population of n subjects, the n subjects
actually included in the experiment, i = 1; : : : ; n.

� Say n = 1; 262, in the randomized experiment com-
paring lumpectomy (634) vs lumpectomy plus irra-
diation (628).

� The inference is not to some other population. The
inference is to how these n people would have re-
sponded under treatments they did not receive.

� We are not sampling people. We are sampling pos-
sible futures for n �xed people.

� Donald Campbell would emphasize the distinction
between internal and external validity.



8 Causal E¤ects: Potential Out-

comes

� Key references: Neyman (1923), Rubin (1974).

� Each person i has two potential responses, a re-
sponse that would be observed under the �treatment�
condition T and a response that would be observed
under the �control�condition C.

rTi =

26664
1 if woman i would have cancer
recurrence with lumpectomy alone
0 if woman i would not have cancer
recurrence with lumpectomy alone

rCi =

26664
1 if woman i would have cancer
recurrence with lumpectomy+irradiation
0 if woman i would not have cancer
recurrence with lumpectomy+irradiation

� We see rTi or rCi, but never both. For Ms. Smith,
we saw rCi.



9 Comparing Potential Outcomes

� rTi is the response observed from i under lumpec-
tomy alone, and rCi is observed from i under lumpec-
tomy plus irradiation.

� The e¤ect of the treatment is a comparisons of rTi
and rCi, such as �i = rTi � rCi. Possibilities:

rTi rCi �i
1 1 0 cancer recurrence either way
1 0 1 irradiation prevents recurrence
0 1 �1 irradiation causes recurrence
0 0 0 no recurrence either way

� If someone gave us (rTi; rCi), i = 1; : : : ; n, causal
inference would be arithmetic, not inference. But
we never see �i for any i. We don�t know �i for
i =Ms: Smith:



10 Recap

� A �nite population of n = 1; 262 women.

� Each woman has two potential responses, (rTi; rCi),
but we see only one of them. Never see �i =
rTi � rCi, i = 1; : : : ; n.

� Is it plausible that irradiation does nothing? Null
hypothesis of no e¤ect. H0 : �i = 0, i = 1; : : : ; n:

� Estimate the average treatment e¤ect: 1n
Pn
i=1 �i.

� How many more women had a recurrence of cancer
because they did not receive irradiation? (Attribut-
able e¤ect)

� The (rTi; rCi) are 2n �xed numbers describing the
�nite population. Nothing is random.



11 Fisher�s Idea: Randomization

� Randomization converts impossible arithmetic into
feasible statistical inference.

� Pick m of the n people at random and give them
treatment condition T . In the experiment, m =
634, n = 1; 262. That is, assign treatments

�in a random order, that is in an order not deter-
mined arbitrarily by human choice, but by the
actual manipulation of the physical apparatus
used in games of chance, cards, dice, roulettes,
etc., or, more expeditiously, from a published
collections of random sampling numbers. . . �(Fisher,
1935, Chapter 2)

� This means that each of the
�
n
m

�
=
�
1;262
634

�
treat-

ment assignments has the same probability,
�
1;262
634

��1
.

The only probabilities that enter Fisher�s randomiza-
tion inference are created by randomization.



12 Observable Quantities

� Write Zi = 1 if i is assigned to T and Zi = 0 if i is
assigned to C. Then m =

Pn
i=1Zi.

� Write Ri for the observed response from i. Then:

Ri =

26664
rTi if Zi = 1 (randomly assigned to

lumpectomy)
rCi if Zi = 0 (randomly assigned to

lumpectomy+irradiation)

or formally

Ri = Zi rTi + (1� Zi) rCi = rCi + Zi �i:

� Unlike the causal e¤ect, �i; which are �xed but un-
observable features of the �nite population, the Zi
and Ri are observable random variables.



13 The Observable 2� 2 Table

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

P
ZiRi

P
Zi (1�Ri) m

Rads
Zi = 0

P
(1� Zi) Ri

P
(1� Zi) (1�Ri) n-m

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

220 414 634

Rads
Zi = 0

78 550 628

Total 298 964 1; 262



14 Testing No E¤ect

� If the treatment has no e¤ect, H0 : �i = 0 for
i = 1; : : : ; n, then

0 = �i = rTi � rCi
or rTi = rCi; i = 1; : : : ; n:

� The observed response is then

Ri = rCi + Zi �i = rCi

is just rCi, which is �xed, not varying with the treat-
ment assignment Zi.

� If the null hypothesis were true, then irradiation doesn�t
a¤ect whether cancer recurs � we observeRi = rCi
with or without irradiation.

If the null hypothesis were true, the responses in the
lumpectomy-alone group are just a simple random sample
(without replacement) of sizem from a �nite populations
of size n consisting of the n binary rCi�s.



15 2 � 2 Table Under No e¤ect:

Fisher�s Exact Test

� If the treatment has no e¤ect, H0 : �i = 0 for
i = 1; : : : ; n, then Ri = rCi + Zi �i = rCi, and
the observable table of Zi by Ri equals the table of
Zi by rCi:

Recurrence
rCi = 1

No recurrence
rCi = 0

No rads
Zi = 1

P
Zi rCi

P
Zi (1� rCi)

Rads
Zi = 0

P
(1� Zi) rCi

P
(1� Zi) (1� rCi)

which has the hypergeometric distribution from the
randomization.

� That is, under the null hypothesis, Pni=1Zi rCi is
the total in a simple random sample without replace-
ment of size m from a population of size n contain-
ing

Pn
i=1 rCi 1�s and

Pn
i=1 (1� rCi) 0�s.



16 Fisher�s Exact Test

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

220 414 634

Rads
Zi = 0

78 550 628

Total 298 964 1; 262

� If the null hypothesis were true, so the corner cell had
the hypergeometric distribution, then Pr (T � 220) =
2:7� 10�21.

� That is, if irradiation changed nothing, then the ex-
periment randomly split 1,262 people into 634 and
628.

� A random split would produce the 220/78 split (or
larger) of recurrences by chance with probability 2:7�
10�21.



17 How far have we come?

� We never see any causal e¤ects, �i.

� Yet we are 100
�
1� 2:7� 10�21

�
% con�dent that

some �i > 0.

� Causal inference is impossible at the level of an in-
dividual, i, but it is straightforward for a population
of n individuals if treatments are randomly assigned.

� Mosteller�s comment: �You can only prove causality
with statistics.�



18 Testing other hypotheses

� Recall that �i = rTi � rCi, and Fisher�s exact test
rejected H0 : �i = 0, i = 1; : : : ; n = 1262.

� Consider testing insteadH0 : �i = �0i, i = 1; : : : ; n =
1262 with the �0i as possible speci�ed values of �i.

� Since Ri = rCi + Zi �i, if the hypothesis H0 were
true, then Ri � Zi �0i would equal rCi.

� But Ri and Zi are observed and �0i is speci�ed by
the hypothesis, so if the hypothesis were true, we
could calculate the rCi.

� Under the null hypothesis, the 2 � 2 table record-
ing rCi by Zi has the hypergeometric distribution,
yielding a test.



19 Procedure

� If H0 : �i = �0i, i = 1; : : : ; n = 1262 were true,
then rCi = Ri � Zi �0i, so the the 2 � 2 table
recording rCi by Zi would be:

Recurrence
Ri = 1

No recurrence
Ri = 0

No Rads
Zi = 1

P
Zi (Ri � Zi �0i)

P
Zi (1�Ri + Zi �0i)

Rads
Zi = 0

P
(1� Zi) Ri

P
(1� Zi) (1�Ri)

Recurrence
rCi = 1

No recurrence
rCi = 0

No Rads
Zi = 1

P
Zi rCi

P
Zi (1� rCi)

Rads
Zi = 0

P
(1� Zi) rCi

P
(1� Zi) (1� rCi)

which would have the hypergeometric distribution.



20 Attributable e¤ect

� The procedure shifts a count of A0 =
P
Zi �0i,

which, if the null hypothesis is true, equals

A =
X
Zi �i =

X
Zi (rTi � rCi) ;

that is the net number of additional women caused
to have a recurrence by the use of lumpectomy alone
rather than lumpectomy plus irradiation.

� Although I can calculate A0 =
P
Zi �0i from the

hypothesis and the data, the true A =
P
Zi �i is an

unobservable random variable.



21 Example

� If a possible hypothesisH0 : �i = �0i, i = 1; : : : ; n =
1262 yields A0 =

P
Zi �0i = 119, compute:

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

220� 119 414 + 119 634

Rads
Zi = 0

78 550 628

Total 179 1; 083 1; 262

and the hypergeometric tail probability Pr (T � 220� 119)
= Pr (T � 101) = 0:0438, so H0 is not quite plau-
sible. If we do the same for a possible hypothesis
H0 : �i = �0i, i = 1; : : : ; n = 1262 yielded
A0 =

P
Zi �0i = 120, then the tail probability is

0:0514, and so barely plausible.

� That is, we are 95% con�dent that, net, at least 120
more of the 634 women treated with lumpectomy
alone had recurrence of cancer caused by the failure
to combine lumpectomy with irradiation.



22 Wilcoxon�s Signed Rank Statis-

tics

� Partly to illustrate, partly as a transition to observa-
tional studies, will illustrate randomization inference
with Wilcoxon�s signed rank statistic.

� Do with data from an observational study, a nonran-
domized study of treatment e¤ects, at �rst acting as
if it were a randomized experiment, then considering
the absence of randomization.

� Matched pairs: treated, control. Rank the absolute
di¤erences in responses within pairs. Sum ranks of
positive di¤erences.



23 Example: A Matched Obser-

vational Study

� From Morton, et al. (1982) Lead absorption in chil-
dren of employees in a lead-related industry. Amer-
ican Journal of Epidemiology, 115, 549-

� Study of one child of each of 33 workers in a battery
factory in Oklahoma in 1978. Concern was that they
might bring lead home, exposing their children.

� 33 control children were individually selected and
matched to the exposed children. They were matched
for neighborhood and age (�1 year). Neighbor-
hood: (i) if an apartment, then another apartment
from same complex, (ii) if facing a main road, then
a nearby house facing the same road, etc.

� Outcome: child�s blood lead level, �g of lead per dl
blood.



Figure 1: Matched pair di¤erences in lead levels.



24 Notation for a Paired Experi-

ment

Pair s, Subject i: S = 33 pairs, s = 1; : : : ; S = 33,
with 2 subjects in each pair, i = 1; 2.

One treated, one control in each pair: Write Zsi =
1 if the ith subject in pair s is treated, Zsi = 0 if
control, so Zs1 + Zs2 = 1 for every s, or Zs2 =
1� Zs1. For all 2S subjects,

Z = (Z11; Z12; : : : ; ZS1; ZS2)
T :

Random assignment of treatments within pairs: 


is the set of the K = 2S possible values z of Z, and
randomization picks one of these at random,

Pr (Z = z) =
1

K
for each z 2 
:



25 Responses, Causal E¤ects

Potential responses, causal e¤ects, as before. Each
of the 2S subjects (s; i) has two potential responses,
a response rTsi that would be seen under treat-
ment and a response rCsi that would be seen un-
der control. (Neyman 1923, Rubin 1974). Treat-
ment e¤ect is �si = rTsi � rCsi. Additive e¤ect,
rTsi � rCsi = � or �si = � for all s; i.

Finite population, as before. The (rTsi; rCsi) ; s =
1; : : : ; S, i = 1; 2, are again �xed features of the
�nite population of 2S subjects.

Observed responses, as before. Observed response
is Rsi = rTsi if Zsi = 1 or Rsi = rCsi if Zsi = 0,
that is, Rsi = Zsi rTsi+ (1� Zsi) rCsi = rCsi+
Zsi �si. If e¤ect is additive, Rsi = rCsi + Zsi � .

Vectors. 2S�dimensional vectors rT , rC , �, R; e.g.,
R = (R11; : : : ; RS2)

T .



26 Treated-Minus-Control Di¤erences

Who is treated in pair s? If Zs1 = 1, then (s; 1) is
treated and (s; 2) is control, but if Zs2 = 1 then
(s; 2) is treated and (s; 1) is control.

Treated-minus-control di¤erences with additive e¤ects:
If rTsi � rCsi = � , then a little algebra shows
the treated-minus-control di¤erence in observed re-
sponses in pair s is:

Ds = (Zs1 � Zs2) (rCs1 � rCs2) + �:

Signed Rank Test. Wilcoxon�s signed rank statistic W
ranks the jDsj from 1 to S, and sums the ranks of
the positive Ds. (Ties ignored today.)



27 No E¤ect in an Experiment

Null hypothesis. H0 : �si = 0, for s = 1; : : : ; S,
i = 1; 2 where �si = rTsi � rCsi.

Di¤erences. If H0 is true, then the treated-minus-
control di¤erence is:

Ds = (Zs1 � Zs2) (rCs1 � rCs2)
where Zs1�Zs2 is �1 where randomization ensures
Pr (Zs1 � Zs2 = 1) = 1

2, independently in di¤erent
pairs, and rCs1�rCs2 is �xed in Fisher�s �nite pop-
ulation.

Signed rank statistic. IfH0 is true,Ds is� (rCs1 � rCs2)
with probability 12, so jDsj = jrCs1 � rCs2j is �xed,
as is its rank, so ranks independently add toW with
probability 12, generating W�s distribution.

Randomization. Uses just fact of randomization and
null hypothesis, so forms the �reasoned basis for in-
ference,� in Fisher�s phrase.



28 Randomization Test for an Ad-

ditive E¤ect

Additive e¤ect. H0 : �si = �0, for s = 1; : : : ; S,
i = 1; 2 where �si = rTsi � rCsi.

Matched pair di¤erences. If H0 were true, then

Ds = (Zs1 � Zs2) (rCs1 � rCs2) + �0
so the adjusted di¤erences

Ds � �0 = (Zs1 � Zs2) (rCs1 � rCs2)

satisfy the hypothesis of no e¤ect, andW computed
from Ds � �0 has the usual null distribution of the
signed rank statistic.

Randomization. Again, the inference uses only the fact
of randomization and the null hypothesis being tested.



29 Con�dence Interval for Additive

E¤ect

Additive e¤ects. �si = � , for all s; i where �si =
rTsi � rCsi

Inverting tests. The 95% interval for � is the set of
all �0 not rejected in a 0.05 level test.

Con�dence intervals. Test every �0 by computing W
from the adjusted di¤erences, Ds � �0, retaining
values �0 not rejected at the 0:05 level.

Hodges-Lehmann estimates. Find b� so thatW com-
puted from Ds � b� equals its null expectation.



30 Example: Lead Exposure

Morton, et al. 33 matched pairs of children, exposed-
control, Ds is the di¤erence in blood lead levels.

Not randomized. First, will perform analysis appro-
priate for a randomized experiment, then return to
the example several times to think about consequences
of nonrandom assignment to treatment.

Test of no e¤ect. Signed rank statistic is W = 527,
with randomization based P � value = 10�5.

Con�dence interval. 95% for an additive e¤ect is [9:5; 20:5]
�g=dl. The two-sided P � value is � 0:05 if W
is computed from Ds� �0 for �0 2 (9:5; 20:5) and
is less than 0:05 for �0 =2 [9:5; 20:5].

HL estimate. b� = 15 �g=dl as Ds � 15 (e¤ectively)
equates W to its null expectation.



31 But the study was not random-

ized . . .

Not randomized. The analysis would have been justi-
�ed by randomization in a randomized experiment.

Unknown assignment probabilities. An observational
study is a study of treatment e¤ects in which each
person has an unknown probability of treatment, typ-
ically di¤erent probabilities for di¤erent people.

Simple model. In some �nite population of people, j =
1; : : : ; J , person j has probability �j = Pr

�
Zj = 1

�
of exposure to treatment, where �j is not known.
Probabilities are always conditional on things we re-
gard as �xed, usually measured and unmeasured co-
variates, potential outcomes,

�
rTj; rCj

�
, etc.



32 Simple model continued . . .

Covariates. The people, j = 1; : : : ; J , in the �nite
population have observed covariates xj and unob-
served covariate uj. In the example, xj describes
child�s age and neighborhood.

Absolutely simplest case: Select S pairs, i = 1; 2,
one treated, one control, from the J people in the
population. Match exactly for x, so that xs1 = xs2
for each s, s = 1; : : : ; S.

Matching algorithm: In this simplest case, the match-
ing algorithm is permitted to use only x and 1 =
Zs1 + Zs2.



33 Free of hidden bias

De�nition. Treatment assignment is free of hidden bias
if �j is a (typically unknown) function of xj � two
people with the same xj have the same �j.

Intuition. A kid j who lives 30 miles from the battery
factory is less likely to have a dad working in factory
than a kid k who lives two miles from the factory,
�j < �k, but two kids of the same age who next
door are equally likely to have a dad in the factory.

But they didn�t match on kid�s gender. If gender were
not recorded, it would violate �free of hidden bias�if
(roughly) boys were more likely (or less likely) than
girls to have a dad working in the battery factor.



34 If free of hidden bias . . .

Problem: Unlike an experiment, �j are unknown.

If free of hidden bias: Two people with the same xj
have the same �j, which is typically unknown.

Eliminate unknowns by conditioning: If we match ex-
actly for x, so xs1 = xs2, then

Pr (Zs1 = 1 j Zs1 + Zs2)

=
�s1 (1� �s2)

�s1 (1� �s2) + �s2 (1� �s1)
=
1

2

because �s1 = �s2. A little more work shows that
we get the randomization distribution by condition-
ing.

More generally, This argument is quite general, work-
ing for matched sets, strata, and more complex prob-
lems.



35 Interpretation

If free of hidden bias: Two people with the same xj
have the same �j, which is typically unknown.

When do adjustments work? If a study is free of hid-
den bias, if the only bias is due to observed covari-
ates xj, even if the bias is unknown, the bias can
be removed in various ways, such as matching on
xj, and conventional randomization inferences yield
appropriate inferences about treatment e¤ect.

Key, if problematic, assumption. Identi�es the key
assumption, but of course, doesn�t make it true. Fo-
cuses attention, frames discussion. In contrast, in
an experiment, randomization makes it true.

Divides methods. Methods of adjustment for x should
work when study is free of hidden bias. Need other
methods to address concerns about whether the study
is free of hidden bias.



36 Propensity Scores

Many observed covariates. If x is of high dimension,
it�s hard to match. With just 20 binary covariates,
there are 220 or about a million covariate patterns.

If free of hidden bias: Two people with the same xj
have the same �j, so �j is a function of xj, say
�j = e

�
xj
�
, which is then called the propensity

score. .

Old argument again: Match exactly for x, so xs1 =
xs2, then

Pr (Zs1 = 1 j Zs1 + Zs2)

=
�s1 (1� �s2)

�s1 (1� �s2) + �s2 (1� �s1)
=
1

2

because �s1 = �s2 or e (xs1) = e (xs2)

Key point: Don�t need to match on high dimension x,
just need to match on the scalar e (x).



37 Balancing with Propensity Scores

Whether or not the study is free of hidden bias, match-
ing on propensity scores e = e (x) tends to balance
the observed covariates x used in the score. De�ne
e = e (x) = Pr (Z = 1 jx), so the study is free of
hidden bias if �j = e

�
xj
�
for all j, but e (x) is

de�ned even if �j depends on things besides x.

That is:

Pr (x jZ = 1; e) = Pr (x jZ = 0; e)

or x j j Z j e (x)

Proof: Su¢ ces to show Pr fZ = 1 jx; e (x)g equals
Pr fZ = 1 j e (x)g. But Pr fZ = 1 jx; e (x)g= Pr (Z = 1 jx)
which is just e (x). Also, Pr fZ = 1 j e (x)g equals
E [Pr fZ = 1 jx; e (x)g j e (x)]=E [Pr fZ = 1 jxg j e (x)]
= E [e (x) j e (x)] = e (x).



38 Propensity Scores: Example

Source: From Rosenbaum and Rubin (1984) JASA.

Data: Database describing 1,515 patients with coro-
nary artery disease, treated either with CABG or
drugs. Interest in e¤ects of CABG vs drugs on sur-
vival, pain, etc.

Many covariates: CABG and drug patients di¤ered sig-
ni�cantly on 74 covariates. Drug patients were ei-
ther too sick or too healthy for surgery.

Covariate t-statistic F-statistic
Ejection fraction 4.4 19.4

Poor left ventricle function 7.2 51.8
Left main artery occluded 4.7 22.1
Progressing Chest Pain 6.6 43.6



39 Boxplot Before Strati�cation

Covariate Imbalance. Covariate imbalance for 74 co-
variates before strati�cation on the propensity score.
Display is F = t2 for 74 covariates.



40 Procedure

Propensity score: Estimated using logit regression of
treatment (CABG or drugs) on covariates, some quadrat-
ics, some interactions.

Five strata: Five groups formed at quintiles of the es-
timated propensity score.

Counts of Patients in Strata

Propensity Score Stratum Medical Surgical
1 = lowest = mostmedical 277 26

2 235 68
3 205 98
4 139 164

5 = highest = most surgical 69 234



41 Checking balance

2-Way 5� 2 Anova for Each Covariate

Propensity Score Stratum Medical Surgical
1 = lowest = mostmedical

2
3
4

5 = highest = most surgical

Balance check. Main e¤ect and interaction F�statistics.



42 F-statistics Before and After Strat-

i�cation

Covariate Before
After

Main E¤ect
After

Interaction
Ejection fraction 19.4 0.0 0.3
Poor LV function 51.8 0.4 0.9
Left main occluded 22.1 0.3 0.2
Progressing Pain 43.6 0.1 1.4



43 Is there covariate balance within

strata?



44 Covariate balance: Alternative

view



45 Last words about propensity scores

Balancing. Stratifying or matching on a scalar propen-
sity score tends to balance many observed covariates.

E¤ects of estimating the score. Examples, simulations,
limited theory suggest estimated scores provide slightly
more than true propensity scores.

Other methods. Various methods permit explicit ac-
knowledgement of use of estimated scores.

Key limitation. Propensity scores balance only observed
covariates, whereas randomization also balances un-
observed covariates.



46 Addressing hidden bias

If free of hidden bias: Two people with the same ob-
served xj have the same �j, which is typically un-
known. Can remove the overt biases due to xj.

Common objection: Critic says: �Adjusting for xj is
not su¢ cient, because there is an unobserved uj,
and adjustments for

�
xj; uj

�
were needed.�

That is, the objection asserts that, or raises the possi-
bility that, the observed association between treat-
ment Zj and response Rj is not an e¤ect caused by
the treatment, but rather due to hidden bias from
their shared relationship with uj.

Formally, treatment assignment Zj and response Rj =
rCj + Zj

�
rTj � rCj

�
may be associated because

rTj�rCj 6= 0 (a treatment e¤ect) or because rTj�
rCj = 0 but �j and rCj both vary with uj (a hidden
bias due to uj).



47 Sensitivity analysis

Question answered by a sensitivity analysis: If the
objection were true, if the association between treat-
ment Zj and response Rj were due to hidden bias
from uj, then what would uj have to be like?

What does the counter-claim actually claim? A sen-
sitivity analysis looks at the observed data and uses
it to clarify what the critic�s counter claim is actually
claiming.

Sensitivity varies. Studies vary markedly in how sen-
sitive they are to hidden bias.



48 First Sensitivity Analysis

Corn�eld, et al. (1959): they write:

�If an agent, A, with no causal e¤ect upon the risk of
a disease, nevertheless, because of a positive correlation
with some other causal agent, B, shows an apparent risk,
r, for those exposed to A, relative to those not so ex-
posed, then the prevalence of B, among those exposed to
A, relative to the prevalence among those not so exposed,
must be greater than r.

Thus, if cigarette smokers have 9 times the risk of non-
smokers for developing lung cancer, and this is not be-
cause cigarette smoke is a causal agent, but only because
cigarette smokers produce hormone X, then the propor-
tion of hormone X-producers among cigarette smokers
must be at least 9 times greater than that of nonsmok-
ers. If the relative prevalence of hormone X-producers is
considerably less than ninefold, then hormone X cannot
account for the magnitude of the apparent e¤ect.�



49 The Corn�eld, et al Inequality

The Corn�eld, et al sensitivity analysis is an important
conceptual advance:

�Association does not imply causation

� hidden bias can produce associations,�

is replaced by

�To explain away the association actually seen,

hidden biases would have to be of such and

such a magnitude.�

Provides a quantitative measure of uncertainty in light
of data.

As a con�dence interval measures sampling uncertainty
without making it go away, a sensitivity analysis mea-
sure uncertainty due to hidden bias without making
the uncertainty go away.



50 Alternative sensitivity analysis

Limitations. Corn�eld�s inequality concerns binary re-
sponses only and ignores sampling variability. Not
explicit about observed covariates.

Alternative formulation. Two subjects, j and k, with
the same observed covariates, xj = xk, may di¤er
in terms of uj and uk so that their odds of exposure
to treatment di¤er by a factor of � � 1,

1

�
�
�j (1� �k)
�k

�
1� �j

� � �.

Free of hidden bias is then � = 1.

When bias is present, when � > 1, the unknown �j
cannot be eliminated, as before, by matching on xj,
so the randomization distribution is no longer justi-
�ed.



51 Alternative sensitivity analysis,
continued

Model. Two subjects, j and k, with xj = xk, may
di¤er their odds of exposure to treatment di¤er by a
factor of � � 1,

1

�
�
�j (1� �k)
�k

�
1� �j

� � � (1)

so � provides measured departure from �no hidden
bias.�

Intuition: If � = 1:001, the �j are unknown, but al-
most the same. If � = 5, �j are unknown and could
be very di¤erent.

Plan. For each � � 1, �nd upper and lower bounds
on inference quantities, like P-values (or endpoints of
con�dence intervals), for �j�s satisfying (1). Report
these for several �. When do conclusions begin to
change?



52 Signed Rank Statistic

Model. If xj = xk, then

1

�
�
�j (1� �k)
�k

�
1� �j

� � �. (2)

Structure: As before, match on observed covariates x,
to form S pairs, s = 1; : : : ; S, i = 1; 2, with xs1 =
xs2, one treated, one control, Zs1 + Zs2 = 1.

Free of hidden bias: If � = 1, obtained the random-
ization distribution of Wilcoxon�s signed rank statis-
tic W , as Pr (Zs1 = 1 j Zs1 + Zs2) = 1

2:

Fact: Then (2) implies:

1

1 + �
� Pr (Zs1 = 1 j Zs1 + Zs2) �

�

1 + �

which places sharp upper and lower bounds on the
distribution of W and resulting inferences.



53 Lead Exposure: Signi�cance Lev-

els

Data: S = 33 pairs of children matched for age and
neighborhood, one having a parent exposed to lead,
the other a control. Measured lead levels in the chil-
dren�s blood. Used Wilcoxon�s signed rank test,W .

Sensitivity analysis. One sided signi�cance levels for
testing no e¤ect.

� min max
1 <0.0001 <0.0001
2 <0.0001 0.0018
3 <0.0001 0.0136
4 <0.0001 0.0388

4.25 <0.0001 0.0468
5 <0.0001 0.0740



54 One Sided Con�dence Intervals

95% CI. For an additive e¤ect, rTsi = rCsi + � , the
signed rank test may be inverted to yield a one-sided
95% con�dence interval.

Range of values: For � > 1, the endpoint b� low of the
one-sided 95% interval [b� low; 1) for � has a range
of values. Table gives the smallest value in the range
� the smallest plausible e¤ect for the given quantity
of hidden bias.

Sensitivity analysis.

� min b� low
1 10:5
2 5:5
3 2:5
4 0:5

4:25 0:0
5 �1:0



55 Comparing Di¤erent Studies

Studies vary markedly in their sensitivity to hidden bias.

Treatment � = 1 (�; maxP � value)
Smoking/Lung Cancer
Hammond 1964

<0.0001 (5; 0:03)

DES/vaginal cancer
Herbst, et al. 1976

< 0:0001 (7; 0:054)

Lead/Blood lead
Morton, et al.1982

< 0:0001 (4:25; 0:047)

Co¤ee/MI
Jick, et al. 1973

0.0038 (1:3; 0:056)

Small biases could explain Co¤ee/MI association. Very
large biases would be needed to explain DES/vaginal
cancer association.



56 Sensitivity Analysis: Interpreta-

tion

Uses data, says something tangible. Replaces qual-
itative �association does not imply causation,� by a
quantitative statement based on observed data, �to
explain away observed associations as noncausal, hid-
den biases would have to be of such and such a mag-
nitude.�

Measures uncertainty. Measures uncertainty due to
hidden bias, but does not dispel it. (As a con�dence
interval measures sampling uncertainty but does not
dispel it.)

Fact of the matter. Your opinion about how much hid-
den bias is present is your opinion. But the degree
of sensitivity to hidden bias is a fact of the matter,
something visible in observed data.



57 Summary

Causal e¤ects. Comparison of potential outcomes un-
der competing treatments � not jointly observable
(Neyman 1923, Rubin 1974). .

Randomized experiments. Permit inference about the
e¤ects caused by treatments (Fisher 1935).

Observational studies: Adjustments. Without ran-
domization, adjustments are required. Straightfor-
ward for observed covariates, but there might be im-
portant covariates that you did not observe.

Observational studies: Sensitivity analysis. What would
unobserved covariates have to be like to alter con-
clusions? (Corn�eld, et al.)


