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Claims and counterclaims

A type of reasoning that occurs in science, in mathematics, in
law, and in philosophy, but not statistics (except in certain
proofs).

My goal is to exhibit a statistical version of this type of
reasoning, in particular in observational studies.

This reasoning tries to advance a claim that a theory T is
true by showing that various alternatives to T (counterclaims)
are implausible or unpalatable.

If I am prosecuting A for murder, I might observe that the
victim encountered only A, B and C on the day of his death,
and it is not plausible that B or C murdered the victim.

Proof by contradiction: I argue for T by showing that ∼ T
leads to a contradiction. The supposition that ∼ T
undermines itself.
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Claims and counterclaims: some remarks

Typically, consideration of counterclaims falls well short of a
proof by contradiction.

Rather, a successful analysis may show that the most plausible
alternatives to T run into diffi culties of one kind or another.
A claim T and counterclaims to T may be offered by different
people, say an investigator and a critic.

Or an investigator may anticipate certain counterclaims to T
and try to strengthen the case for T by refuting or rendering
implausible various counterclaims to T .
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Claims and counterclaims in observational studies

Typically, in observational studies an investigator puts forth a
claim that a certain difference in outcomes in treated and
control groups is an effect caused by the treatment.

A typical counterclaim explains the difference in outcomes not
as an effect of the treatment but as some way nonrandom
treatment assignment has created a biased comparison.

The typical counterclaim says that

1 treated and control subjects look comparable after matching
(or other adjustments),

2 but appearances deceive, and the groups differed prior to
treatment to a suffi cient degree and in such a way as to create
the false appearance of an effect.

Could empirical evaluation of such a counterclaim show that it
fails as a counterclaim? That it does not make the original
claim less plausible.
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General structure

An observational study is conducted.

The investigator adjusts for observed covariates, then
performs a sensitivity analysis and acknowledges that the
observed difference in outcomes could be explained by a bias
in treatment assignment of a certain magnitude, Γ.
A critic (or the investigator anticipating a critic) raises a
specific counterclaim.

The investigator shows that, if one were to suppose the
counterclaim to be true, it would be appropriate to perform an
additional, otherwise inappropriate analysis, with the finding
the results are insensitive to a bias of magnitude Γ′ > Γ.
In this sense, the counterclaim undermines itself. It fails in its
role as a counterclaim.
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Outline of talk

A preliminary fact: In most circumstances, you should adjust
for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes
a review of sensitivity analysis.)

A counterclaim: “Seatbelts have no effect on what happens
during a crash – rather, the pattern we see is entirely created
by frail individuals declining to wear seatbelts.”

The counterclaim denies that certain aspects of the crash are
affected outcomes, hence licenses their use as covariates.

Licenses focusing on a segment of the data defined, in a
certain way, by outcomes.

Is what we saw in the example expected under simple models
for treatment effects? (Design sensitivity and power of a
sensitivity analysis.)
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A preliminary fact: adjustments for outcomes

A well-known and uncontroversial fact about adjustments in
observational studies. The talk could seem puzzling to
someone encountering the fact for the first time.

A covariate is a variable describing a person prior to treatment
assignment, hence a variable unaffected by the treatment the
person later receives.

In most contexts, age is a covariate.

If you were studying the effects an antihypertensive drug on
the risk of stroke:

1 pretreatment blood pressure is a covariate, but
2 posttreatment blood pressure is not (it’s an outcome).

The preliminary fact: adjusting for an outcome can bias an
otherwise unbiased estimate of a treatment effect.
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Continued: We do not typically adjust for outcomes when
estimating treatment effects

If you were studying the effects an antihypertensive drug on
the risk of stroke:

1 pretreatment blood pressure is a covariate, but
2 posttreatment blood pressure is not (it’s an outcome)

It would be reasonable to want to compare treated and
control individuals with the same blood pressure prior to
treatment in studying the risk of stroke.

If you adjusted for posttreatment blood pressure, then you
might remove the genuine effect of the antihypertensive drug.

If the drug worked by lowering your blood pressure so that you
had the same low risk of stroke as a person with naturally low
blood pressure, that might be a large effect, and you might
mistakenly remove it.
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Running example: Safety belts in motor vehicle accidents

Do do safety belts reduce injuries and deaths?

Patterned after a clever study by Evans (1986), but using
more recent data (2010-2011).

The US Fatality Analysis Reporting System (FARS) records
information about vehicle accidents with at least one fatality.

The system records information about injuries and deaths,
safety belt use, direction of impact, ejection from vehicle, and
is connected to detailed information about vehicles.

The system has little information about events leading up to
the crash: speeds, distances between vehicles, road traction,
driver performance, condition of brakes, etc, all of which
affect the forces involved in the crash.
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Basic problem: Cautious drivers wear safety belts

Wearing safety belts is a precaution.

Does a person take a single precaution?

If people who wear safety belts drive more slowly, at a greater
distance from the car ahead, etc, then people who wear safety
belts may be involved in less severe crashes.

If there are fewer deaths and less severe injuries when people
wear safety belts, part of this may not be an effect caused by
the belts, but rather the aggregate effect of a cautious
manner of driving.

What can be done?
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If there are fewer deaths and less severe injuries when people
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Some visible biases in the portion of the data we will
examine

The make of the car predicts belt use.

1 6522 people in a Ford, 29.0% of whom are unbelted.
2 2852 people in a Toyota, 20% of whom are unbelted.
3 People in Volvos and Mercedes are more likely to be belted
than people in Fords.

People aged 18—30 are twice as likely as older individuals to
be unbelted (odds ratio 2.1). Unbelted individuals were on
average 9 years younger than belted individuals.
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Evan’s solution

Evans (1986) compared two people in the same crash, driver
and passenger, seated in the front seat of the same car.

The key comparison, one belted, the other unbelted, is a sliver
of the FARS system, because it is atypical for driver and
passenger to differ in their belt use.

In Evan’s comparison, many unmeasured factors are
controlled: same vehicle in same crash, driver and passenger
traveled at the same speed, at the same distance from the car
ahead, with the same road traction.

The risks in the driver’s seat may differ from those in the
passenger’s seat, but we see both cases.
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A modern version of Evan’s comparison

Data from FARS 2010 and 2011.

Pairs of adults, ≥ 18 years old, one in the driver’s seat, one in
the right front passenger seat.

Each individual was either unbelted (n) or a lap-shoulder belt
(ls). Other situations are excluded.

All data refer to (driver, passenger). So (n, ls) means the
driver was unbelted, the passenger was belted.

There are really 4 parallel studies, one of (ls, ls), one of (n,
ls), one of (ls, n) and one of (n, n).

Notation will describe any one of the 4 studies, so the
notation is recycled.
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Injury scores

Each person has an injury score.

0 = no injury
1 = possible injury
2 = nonincapacitating injury
3 = incapacitating injury
4 = death

Yi = driver - minus - passenger difference in injury scores, −4
to 4. So a −4 means the driver was not injured but the
passenger died.
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Figure 1: Pair differences in injury scores, driver‐minus‐passenger, for a driver and a passenger in the 

same car in FARS 2010‐2011, by restraint use.  A positive difference indicates the driver suffered more 

severe injuries than the passenger. 
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Summary so far:

In the same car in the same crash, injury scores Yi are not very
different for diver and passenger when belt status is the same.

However, injury scores are lower for belted individuals when
only one person is belted.

Can’t explain this pattern with the vehicle, its speed, brake
quality, driver caution, etc.

What about age? In the front seat of the same car, the mean
age (driver-minus-passenger) differences are small:

1 (ls, ls) is 0.36 years
2 (n, n) is 0.59 years
3 (ls, n) is −0.98 years
4 (n, ls) is 1.34 years.
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Notation for any one of our 4 studies (e.g., (ls, n), etc.)

I matched sets, i ∈ {1, . . . , I} = I , where set i ∈ I contains
subjects Ji = {1, . . . , Ji}, so ij is a person. (In the example,
Ji = 2 and Ji = {1, 2} for all i .)

Set i contains one treated with Zij = 1, the rest untreated
controls with Zij = 0, so 1 = ∑j∈Ji Zij for each i .

Write Z = (Z11,Z12, . . .ZIJI )
T for the vector of dimension

n = ∑i∈I Ji
Let Z be the set containing the ∏i∈I Ji possible values of Z,
so z ∈ Z if z is of dimension n with zij = 0 or zij = 1 and
1 = ∑j∈Ji zij for each i . Conditioning on Z ∈ Z is
abbreviated as conditioning on Z .
Denote by |A| the number of elements in a finite set A so
that, for instance, |Ji | = Ji and |Z| = ∏i∈I Ji .
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Covariates

Each subject is described by a measured covariate xij and
there is concern about an unmeasured covariate uij .

Matching has controlled the measured covariate, so that
xij = xik = xi , say, for each i , j , k.
In the example, xi describes the vehicle and the crash.
Quite possibly uij 6= uik for many i , j , k.
Example: uij is a measure of the frailty of individual ij , and
there is concern that frail individuals are less likely to wear
safety belts and more likely to be suffer severe injuries or
death.
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Outcomes (in each of our 4 parallel studies, e.g., (ls, n).)

Subject ij has two potential injury scores, rTij if assigned to
treatment or rCij if assigned to control, so the observed
response of ij is Rij = Zij rTij + (1− Zij ) rCij , and the effect
of the treatment on ij , namely rTij − rCij is not observed; see
Neyman (1923) and Rubin (1974).

Fisher’s (1935) sharp null hypothesis of no treatment effect
asserts H0 : rTij = rCij for all ij .
Write R, rC , rT , and u for the n dimensional vectors.
Each subject has a K -dimensional row vector of secondary
outcomes, sTij or sCij , with observed value
Sij = Zij sTij + (1− Zij ) sCij , and associated n×K matrices
S, sC and sT .
Treated-minus-control pair difference
Yi = (Zi1 − Zi2) (Ri1 − Ri2) in outcomes.
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of the treatment on ij , namely rTij − rCij is not observed; see
Neyman (1923) and Rubin (1974).

Fisher’s (1935) sharp null hypothesis of no treatment effect
asserts H0 : rTij = rCij for all ij .
Write R, rC , rT , and u for the n dimensional vectors.
Each subject has a K -dimensional row vector of secondary
outcomes, sTij or sCij , with observed value
Sij = Zij sTij + (1− Zij ) sCij , and associated n×K matrices
S, sC and sT .
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Notation, continued.

Write
F = {(rTij , rCij , sTij , sCij , xij , uij ) , i = 1, . . . , I , j = 1, . . . , Ji}.

The subscripts ij are unique but noninformative identifiers,
perhaps randomly assigned, and all information about
individual ij is in observed or unobserved variables that
describe ij .
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Randomization inference (in each of our 4 parallel studies,
e.g., (ls, n).)

If this were a randomized experiment, then we would,
independently, assign treatment at random to one person in
each matched set, so

Pr (Z = z | F , Z) = ∏i∈I J
−1
i = |Z|−1 for each z ∈ Z .

A test statistic t (Z,R).
In a randomized experiment, under Fisher’s hypothesis of no
effect, H0 : rTij = rCij for all ij , the distribution of t (Z,R) is
its permutation

Pr {t (Z, rC ) ≥ k | F , Z} =
|{z ∈ Z : t (z, rC ) ≥ k}|

|Z| , because

1 R = rC when H0 is true,
2 rC is fixed by conditioning on F , and
3 Z is uniform on Z in a randomized experiment.
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Test statistics

Huber-Maritz M-tests t (Z,R) = ∑I
i=1 ψ (Yi/s) where s is

the 95% quantile of |Yi |, and ψ (·) is an odd function,
ψ (y) = −ψ (−y).

1 ψt (y) = y yields the permutational t-test
2 ψhu (y) = sign (y)min (|y | , 1) (Huber’s scores, similar to a
trimmed mean).

3 ψin (y) = sign (y)max
{
0, min (|y | , 1)− 1

4

}
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Randomization distribution of Huber-Maritz M-tests

Huber-Maritz M-tests t (Z,R) = ∑I
i=1 ψ (Yi/s) where s is

the 95% quantile of |Yi |, and ψ (·) is an odd function,
ψ (y) = −ψ (−y).

Under H0 : rTij = rCij ∀ ij , the difference in injury scores is
Yi = (Zi1 − Zi2) (Ri1 − Ri2) = (Zi1 − Zi2) (rCi1 − rCi2) =
± (rCi1 − rCi2).
So under H0, |Yi | = |rCi1 − rCi2| is fixed by conditioning on
F , so s is also fixed.
Hence, in a randomized experiment under H0,
t (Z,R) = ∑I

i=1 ψ (Yi/s) is the sum of I independent random
variables taking the values
±ψ (|Yi | /s) = ±ψ (|rCi1 − rCi2| /s) with equal probabilities
1/2.
I.e., the null distribution of ∑I

i=1 ψ (Yi/s) has a simple form.
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Descriptive statistics and randomization tests

Table: Randomization tests of no effect in 4 comparisons. n = no
restraint. ls = lap-shoulder belt.

Restraint Use: (driver.passenger)
Same Use Different Use

Restraint Group ls.ls n.n ls.n n.ls
Number of Pairs 10996 3274 1412 1198

Mean Yi -0.059 0.061 -1.076 1.000
Standard error of mean 0.013 0.027 0.042 0.044
Standard deviation of Yi 1.335 1.571 1.565 1.513

Randomization tests
Huber Scores

P-values 0.0000 0.0241 0.0000 0.0000
Inner Trimmed Scores

P-values 0.0000 0.0374 0.0000 0.0000
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Sensitivity to nonrandomized treatment assignment

Model says that, in the population prior to matching,
treatment assignments are independent and two subjects with
the same observed covariates may differ in their odds of
treatment, Zij = 1, by at most a factor of Γ; then, the
distribution of Z is returned to Z by conditioning on Z ∈ Z .

Equivalent to assuming that there is an unobserved covariate
uij with 0 ≤ uij ≤ 1 such that

Pr (Z = z | F , Z) = ∏
i∈I

exp
(
γ ∑j∈Ji zij uij

)
∑j∈Ji exp (γ uij )

=
exp

(
γzT u

)
∑b∈Z exp (γbT u)

, u ∈ [0, 1]n

for each z ∈ Z , where γ = log (Γ) ≥ 0; see Rosenbaum
(2002, §4.2). For Γ = 1, γ = log (Γ) = 0, this is the
randomization distribution.
Distribution of t (Z,R) under H0 is unknown for Γ > 1 but
the degree of departure from random assignment is controlled
by the value of Γ.
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Sensitivity analysis, continued

Sensitivity analysis computes bounds on inference quantities
for several values of Γ, for instance, bounds on P-values, point
estimates, confidence intervals.

In the paired case under H0, the upper bounds on the
distribution of t (Z,R) = ∑I

i=1 ψ (Yi/s) is the sum of I
independent random variables taking the value ψ (|Yi | /s)
with probability Γ/ (1+ Γ), and value −ψ (|Yi | /s) with
probability 1/ (1+ Γ).
Similar for the lower bound, but with the two probabilities
interchanged.

Implementation for M-statistics in the senm and senmCI
functions of the R package sensitivitymult.
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Sensitivity analysis for Evan’s comparison

Table: Upper bounds on P-values testing H0.

Same Use Different Use
Restraint Group ls.ls n.n ls.n n.ls

Γ Huber Scores without Inner Trimming
1 0.0000 0.0241 0.0000 0.0000
1.2 1.0000 1.0000 0.0000 0.0000
4 0.0000 0.0027
5 0.0211 0.4673
5.5 0.1808 1.0000
Γ Inner Trimmed Scores
1 0.0000 0.0374 0.0000 0.0000
1.2 1.0000 1.0000 0.0000 0.0000
5 0.0000 0.0125
6 0.0031 0.2219
6.5 0.0160 0.5058
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A counterclaim

Seatbelts have no safety related effects, no effect on what
happens during the accident. All we are seeing is a pattern
produced by the type of person who wears safety belts.

We will see that this counterclaim undermines itself.

If this counterclaim were true, it would justify an analysis that
is more insensitive to unmeasured bias than the analysis just
performed.
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A counterclaim analysis

Suppose it were true that: Seatbelts have no safety related
effects, no effect on what happens during the accident. All
we are seeing is a pattern produced by the type of person who
wears safety belts.

Were this true, it would justify an analysis confined to a
segment of the data, not all of the pairs but just some of
them.

Specifically, were this true, I would be justified in confining
attention to crashes in which exactly one person was ejected
from the vehicle.

Notice that I have not specified who was ejected, just that
exactly one person was ejected.

Will show the analysis, then explain why this analysis is
licensed by the counterclaim.
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Figure 2:  Pair differences in injury scores, driver‐minus‐passenger, for a driver and a passenger in the 

same car in FARS 2010‐2011, by restraint use, when precisely one individual was ejected from the 

vehicle, either partially ejected or totally ejected.  A positive difference indicates the driver suffered 

more severe injuries than the passenger. 
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Crashes with one ejection: Descriptive statistics

Table: Renalysis using only 2048 pairs in which exactly one person was
ejected from the vehicle.

Restraint Use: (driver.passenger)
Same Use Different Use

Restraint Group ls.ls n.n ls.n n.ls
Number of Pairs 222 782 522 522

Mean -0.023 0.141 -1.540 1.584
Standard error 0.117 0.069 0.064 0.057

Standard deviation 1.748 1.938 1.455 1.291
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Crashes with one ejection: Sensitivity analysis

Table: Values are upper bounds on P-values.

Restraint Use: (driver.passenger)
Same Use Different Use

Restraint Group ls.ls n.n ls.n n.ls
Γ Huber Scores without Inner Trimming
1 0.7436 0.0428 0.0000 0.0000
1.2 1.0000 1.0000 0.0000 0.0000
9 0.0388 0.0009
11 0.2783 0.0149
Γ Inner Trimmed Scores
1 0.9002 0.0764 0.0000 0.0000
1.2 1.0000 0.8737 0.0000 0.0000
9 0.0047 0.0004
11 0.0322 0.0040
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Segments of the data

A segment consists of some of the individuals in the study.

A segment of data {Ji , i ∈ I} is
{
J ′i , i ∈ I

}
where

J ′i ⊆ Ji for each i ∈ I .
Example: if there are n = 9 subjects in matched triples,
J1 = {1, 2, 3}, J2 = {1, 2, 3}, J3 = {1, 2, 3}, then one
segment is J ′1 = {2, 3}, J

′
2 = ∅, J ′3 = {1, 2, 3}.

Let S be the set whose 2n elements are the 2n possible
segments.
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Nondegenerate parts of a segment

For a segment
{
J ′i , i ∈ I

}
, write mi for the random variable

that counts the number of treated subjects in J ′i , so mi = 0
if J ′i = ∅ and otherwise mi = ∑j∈J ′i

Zij , so mi = 0 or

mi = 1. Write m = (m1, . . . ,mI ).

The contribution from J ′i in segment
{
J ′i , i ∈ I

}
will be

degenerate and uninteresting unless mi = 1 <
∣∣∣J ′i ∣∣∣, that is,

unless J ′i contains the treated subject and at least one
control from matched set Ji .
For matched pairs, |Ji | = Ji = 2 for all i , nondegenerate part
of a segment is a subset of the matched pairs.
For matched sets with |Ji | = Ji > 2, a segment

{
J ′i , i ∈ I

}
may have nondegenerate parts J ′i with mi = 1 <

∣∣∣J ′i ∣∣∣ < |Ji |
containing the treated subject from Ji and some but not all
of the controls from Ji .
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Notation for a segment

For a segment
{
J ′i , i ∈ I

}
, add a prime to a quantity to

denote the value of a quantity confined to the segment.

For instance, write Z′ or R′ for the vectors of dimension
n′ = ∑i∈I

∣∣∣J ′i ∣∣∣ containing, in the lexical order, the Zij or Rij
for j ∈ J ′i , i ∈ I .
Write Z ′m for the set of possible values of Z′, that is, the set
of vectors z′ of dimension n′ with 1 or 0 coordinates such that
mi = ∑j∈J ′i

zij .

In parallel, write r
′
C , S

′, etc.

As before, conditioning on the event Z′ ∈ Z ′m is abbreviated
as conditioning on Z ′m, and generally the conditioning will be
on (Z , Z ′m, m) jointly.
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Using a matrix of data to determine a segment

There is a n×M matrix W describing with row wij describing
subject ij . Write W for the set of possible values for W.

Definition

The phrase “W determines the segment”means that there is a
known function S (W) that receives W and returns a segment
from S, that is, S :W → S.

For instance, the values in W might pick out some of the
pairs, or some of the people in matched sets.

Unless W includes Z, a segment determined by W cannot
make use of the identity of the treated subject.
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A basic question about analysis of a segment

When can we select a segment
{
J ′i , i ∈ I

}
using W, yet

appropriately analyze this segment as if were an unselected
data set?

Proposition If the sensitivity model governs treatment
assignment, if a segment S (W) =

{
J ′i , i ∈ I

}
is determined

by W, and if W is fixed by conditioning on F , then

Pr
(
Z′ = z′ | F , Z , Z ′m, m

)
= ∏

i∈I :|J ′i |>0

exp
(

γ ∑j∈J ′i
z
′
ij uij

)
∑j∈J ′i

exp (γ uij )
.
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Counterclaims that deny effects on supplementary
responses

Proposition If the sensitivity model governs treatment
assignment, if a segment S (W) =

{
J ′i , i ∈ I

}
is determined

by W, and if W is fixed by conditioning on F , then

Pr
(
Z′ = z′ | F , Z , Z ′m, m

)
= ∏

i∈I :|J ′i |>0

exp
(

γ ∑j∈J ′i
z
′
ij uij

)
∑j∈J ′i

exp (γ uij )
.

(1)

Corollary: If the sensitivity model governs treatment
assignment, if a segment S (S) =

{
J ′i , i ∈ I

}
is determined

by the observed value of the supplementary responses S, and
if the supplementary responses are unaffected by the
treatment, sTij = sCij for all ij , then the distribution of
treatment assignments in the segment is given by (1).
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Back to the counterclaim analysis involving ejections

Let Sij = 1 if ij is observed in a crash one exactly one
ejection, Sij = 0 otherwise.

Obviously Si1 = Si2 because i1 and i2 are in the same crash.
The counterclaim says: Seatbelts have no safety related
effects, no effect on what happens during the accident. All
we are seeing is a pattern produced by the type of person who
wears safety belts.
In particular, the counterclaim says that changing ij’s
treatment would not change whether ij is ejected, that
Sij = sTij = sCij .
By the corollary, this licenses an analysis focused on the
segment of crashes with one ejection.
Expressed informally, the counterclaim said the unbelted
individual was injured because he was frail, but switching
treatment assignments (i.e., belting him) would have changed
the identity of the belted subject but would have changed no
safety outcomes.
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So a counterclaim undermines itself. What next?

The counterclaim says: Seatbelts have no safety related
effects, no effect on what happens during the accident. All
we are seeing is a pattern produced by the type of person who
wears safety belts.

The counterclaim analysis says this counterclaim is hollow: to
believe it is to justify an analysis that is insensitive to larger
biases than the analysis that did not presume the
counterclaim.

The critic could narrow the counterclaim to say: “yes, yes,
safety belts do prevent people from being ejected from
vehicles, but preventing ejections doesn’t prevent injuries.”

Depending upon the context, this concession acknowledging
that the treatment does cause an effect on (sTij , sCij ) while
denying an effect on (rTij , rCij ) may be a large concession.
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Another counterclaim analysis

The counterclaim says: Seatbelts have no safety related
effects, no effect on what happens during the accident. All
we are seeing is a pattern produced by the type of person who
wears safety belts.

Another supplementary outcome is of direction of initial
impact.

Will look at crashes in which there was one ejection and the
initial impact was not from the side. (That is, the initial
impact was front or rear or unknown.)

Might be the case that an important source of variation in
injury is whether you are seated on the side of the initial
impact.
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Figure 3:  Pair differences in injury scores, driver‐minus‐passenger, for a driver and a passenger in the 

same car in FARS 2010‐2011, by restraint use, for all vehicle pairs, for vehicles not known to have an 

initial collision from the side, for vehicles with exactly one ejection, and for vehicles not know to have an 

initial collision from the side with exactly one ejection.  A positive difference indicates the driver 
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One ejection, not a side hit: Descriptive statistics

Table: Renalysis of differences in injury scores using only 1383 pairs in
which exactly one person was ejected from a vehicle whose initial impact
was not from the side. n = no restraint. ls = lap-shoulder belt.

Restraint Use: (driver.passenger)
Same Use Different Use

Restraint Group ls.ls n.n ls.n n.ls
Number of Pairs 153 510 363 357

Mean -0.072 0.133 -1.628 1.588
Standard error 0.145 0.087 0.071 0.067

Standard deviation 1.789 1.961 1.345 1.259
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One ejection, not a side hit: Sensitivity analysis

Table: Upper bounds on P-values.

Restraint Group ls.ls n.n ls.n n.ls
Number of Pairs 153 510 363 357

Γ Huber Scores without Inner Trimming
1 0.6182 0.1251 0.0000 0.0000
1.2 1.0000 1.0000 0.0000 0.0000
11 0.0291 0.0291
12 0.0610 0.0614
15 0.2722 0.2774
Γ Inner Trimmed Scores
1 0.8788 0.1729 0.0000 0.0000
1.2 1.0000 0.9732 0.0000 0.0000
15 0.0129 0.0439
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Design sensitivities under a simple model

Design sensitivity Γ̃ is the limiting sensitivity to unmeasured
bias as the sample size I → ∞.

Design sensitivity Γ̃ depends on the process that generated
the data (sampling model) and on the methods of analysis.

Design sensitivity Γ̃ is computed under a simple model with a
treatment effect and no unmeasured bias.

Design sensitivity Γ̃ is a measure of our ability to distinguish
two sharply distinct situations: (i) biased treatment
assignment with no treatment effect, H0, and (ii) a genuine
treatment effect (H0 is false) and no unmeasured bias
(random assignment of treatments).
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Simple model for injury and ejection, part 1

(sTij , sCij ) denotes ejection outcome in each of the four
parallel studies (e.g., (n, ls)).

(sTij , sCij ) = (1, 1) means ejected under both conditions,
(sTij , sCij ) = (1, 0) means ejected only if Treated (say
unbelted), (sTij , sCij ) = (0, 0) means not ejected in both
conditions, which occur with probabilities π11, π10, π00,
respectively, 1 = π11 + π10 + π00 and (sTij , sCij ) = (0, 1)
does not occur.

Injury model

rTij = rCij + τ + β (sTij − sCij )

so rTij − rCij = τ if the treatment does not affect whether you
are ejected, or rTij − rCij = τ + β if the treatment (e.g., being
unbelted) causes you to be ejected, (sTij , sCij ) = (1, 0).
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Simple model for injury and ejection, part 2

Injury model

rTij = rCij + τ + β (sTij − sCij )

so rTij − rCij = τ if the treatment does not affect whether you
are ejected, or rTij − rCij = τ + β if the treatment (e.g., being
unbelted) causes you to be ejected, (sTij , sCij ) = (1, 0).

Then

Yi = τ+ βδi + εi , where δi = Zi1 (sTi1 − sCi1)+Zi2 (sTi2 − sCi2)

εi = (Zi1 − Zi2) (rCi1 − rCi1)
Will look at this for εi ∼ N (0, 1), and randomized treatment
assignment, Pr (Z = z | F , Z) = 2−I for each z ∈ Z .
Results are similar with logistic errors.

Will set β =
( 1
2 − τ

)
/π10 so that E (Yi ) = 1

2 in all cases.
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Design sensitivities under the simple Normal model

Table: Design sensitivities using all pairs (All), the segment (Seg), and its
complement (Comp), without or with inner trimming. The largest design
sensitivities in each row are in bold.

No inner trim, ψhu With inner trim, ψin
(π11,π10,π00) = (1/3, 1/3, 1/3)

τ All Seg Comp All Seg Comp
0 2.7 3.3 2.2 3.8 4.9 2.8
1/4 3.2 3.6 2.8 4.4 5.1 3.7
1/2 3.4 3.4 3.4 4.7 4.7 4.7

(π11,π10,π00) = (1/4, 1/2, 1/4)
τ All Seg Comp All Seg Comp
0 3.0 3.8 2.1 4.0 5.3 2.5
1/4 3.3 3.8 2.7 4.5 5.3 3.5
1/2 3.5 3.5 3.5 4.8 4.8 4.8
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Combining the segment and its complement

Could test in the segment and its complement, obtaining two
bounds on P-values.

Truncated product of P-values is the product of those
P-values ≤ κ; see Zaykin et al. (2002).

Becomes Fisher’s method for combining P-values when κ = 1.

Hsu et al. (2013) evaluate the truncated product in sensitivity
analyses, finding κ = 0.2 is better than κ = 1.

Rosenbaum Counterclaims



Combining the segment and its complement

Could test in the segment and its complement, obtaining two
bounds on P-values.

Truncated product of P-values is the product of those
P-values ≤ κ; see Zaykin et al. (2002).

Becomes Fisher’s method for combining P-values when κ = 1.

Hsu et al. (2013) evaluate the truncated product in sensitivity
analyses, finding κ = 0.2 is better than κ = 1.

Rosenbaum Counterclaims



Combining the segment and its complement

Could test in the segment and its complement, obtaining two
bounds on P-values.

Truncated product of P-values is the product of those
P-values ≤ κ; see Zaykin et al. (2002).

Becomes Fisher’s method for combining P-values when κ = 1.

Hsu et al. (2013) evaluate the truncated product in sensitivity
analyses, finding κ = 0.2 is better than κ = 1.

Rosenbaum Counterclaims



Combining the segment and its complement

Could test in the segment and its complement, obtaining two
bounds on P-values.

Truncated product of P-values is the product of those
P-values ≤ κ; see Zaykin et al. (2002).

Becomes Fisher’s method for combining P-values when κ = 1.

Hsu et al. (2013) evaluate the truncated product in sensitivity
analyses, finding κ = 0.2 is better than κ = 1.

Rosenbaum Counterclaims



Simulated power of a 0.05-level sensitivity analysis

Table: Power of a 0.05-level sensitivity analysis at Γ = 4, using all
I = 2000 pairs (All), the segment (Seg), its complement (Comp), and
the truncated product (Tprod), κ = 0.2, based on both the segment and
its complement, using inner trimming. ISeg is the expected number of
pairs in the segment.

Distribution τ ISeg All Seg Comp Tprod
(π11,π10,π00) = (1/3, 1/3, 1/3)

Normal 0 1111 0.01 0.48 0.00 0.22
Normal 1/4 1111 0.24 0.62 0.01 0.38
Normal 1/2 1111 0.61 0.40 0.33 0.55

(π11,π10,π00) = (1/4, 1/2, 1/4)
Normal 0 1250 0.04 0.82 0.00 0.60
Normal 1/4 1250 0.39 0.80 0.00 0.60
Normal 1/2 1250 0.60 0.43 0.29 0.54
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Summary

A counterclaim undermines itself if supposing the
counterclaim to be true licenses an additional analysis that
results in greater insensitivity to unmeasured biases than the
analysis that does not suppose the counterclaim to be true.

Such a counterclaim fails in its role as a counterclaim.
Supposing it to be true would only strengthen the evidence in
support of the original claim.

An investigator may examine potential counterclaims before
they are raised by critics.

Design sensitivities and simulated powers of sensitivity
analyses suggest that what occurred in the example is
expected under certain simple models for an effect without
bias.
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Proof of the proposition

The segment
{
J ′i , i ∈ I

}
is fixed by conditioning on F ;

moreover, the set Z ′m is a fixed set as a consequence of
conditioning on Z and m. It suffi ces to consider a single set i . If
J ′i is degenerate, then it contributes a 1 factor to distribution in
the segment. Otherwise, for

∣∣∣J ′i ∣∣∣ ≥ 2 and mi = 1, the conditional
probability that Zij = z ′ij for j ∈ J

′
i given F , Z , Z ′m, m is the

ratio of exp
(

γ ∑j∈Ji z
′
ij uij

)
/ ∑j∈Ji exp (γ uij ) to the sum of

similar terms over j ∈ J ′i , namely

exp
(

γ ∑j∈Ji z
′
ij uij

)
/ ∑j∈Ji exp (γ uij )

∑j∈J ′i

{
exp (γ uij ) / ∑j∈Ji exp (γ uij )

} = exp
(

γ ∑j∈J ′i
z
′
ij uij

)
∑j∈J ′i

exp (γ uij )

as in the statement of the proposition.
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