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Abstract. An unmeasured general disposition or an unmeasured generic bias is an unmeasured
covariate that promotes several different treatments in an analogous way. Unmeasured generic
biases may invalidate treatment-versus-control comparisons, without invalidating the differential
comparison of two treatments. This possibility is explored in theory, in several models, in several
examples, and in a sensitivity analysis that examines the possibility that the unmeasured bias is
not, in fact, generic.

1. Notation

Observed covariate x and unobserved covariate u. There are S strata or matched sets
defined by observed covariates, s = 1, . . . , S. There are ns people in stratum s, i = 1, . . . , ns.
xsi = xsj for all strata and people, but possibly usi 6= usj .
There are two treatments, each of which may be given or withheld, making a 2 × 2 factorial

design. Treatment 1: Zsi = 1 if the ith person in stratum s received the first treatment, Zsi = 0
otherwise. Treatment 2: Z

′

si = 1 if the ith person in stratum s received the second treatment,

Z
′

si = 0 otherwise. Four possible combinations:
(
Zsi, Z

′

si

)
= (1, 1) or (1, 0) or (0, 1) or (0, 0).

Main effect of first treatment compares Zsi = 1 to Zsi = 0, ignoring Z
′

si. Adjusting the
main effect of the first treatment for the second treatment means comparing Zsi = 1 to Zsi = 0
adjusting for Z

′

si, but this adjusts for the treatment Z
′

si as if it were a covariate, not for usi. The

differential comparison is the comparison of one treatment in lieu of the other,
(
Zsi, Z

′

si

)
= (1, 0)

to
(
Zsi, Z

′

si

)
= (0, 1).

Each person si has four potential outcomes for the four potential treatment combinations,(
Zsi, Z

′

si

)
= (1, 1) or (1, 0) or (0, 1) or (0, 0), namely (r11si, r10si, r01si, r00si), and we observe one

of these; see Neyman (1923) and Rubin (1974). The differential effect is r10si − r01si. It requires
care and thought in picking Z ′ so that r10si − r01si is of interest.
Treatment assignment probabilities: πabsi = Pr

(
Zsi = a, Z

′

si = b
∣∣∣ r11si, r10si, r01si, r00si, xsi, usi)

for a = 0, 1 and b = 0, 1 with 1 = π11si+π10si+π01si+π00si. For distinct people in the population,
treatment assignments are conditionally independent given (r11si, r10si, r01si, r00si, xsi, usi).
Treatment assignment is ignorable given the strata s if 0 < πabsi = ζabs < 1 varies with

s but not with i for a = 0, 1 and b = 0, 1. (Recall xsi = xsj for all s, i, j.) Equivalently,
treatment assignment is ignorable given the observed covariates xsi if πabsi varies with xsi but not
with (r11si, r10si, r01si, r00si, usi). If treatment assignment were ignorable given observed covariates
xsi or the strata, then appropriate adjustments for xsi or the strata would yield correct causal
inferences for all of the factorial effects (Rosenbaum and Rubin 1983).
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2. Key definition

Let ρsi = π10si/π01si.

Definition 1. There are only generic unobserved biases if ρsi varies with s but not with i, that is,
if

(2.1) ρsi =
π10si
π01si

= λs with 0 < λs < 1

for all s, i.

Note carefully that (2.1) may be true when π10si and π01si each vary with i while their ratio
does not. There are differential biases if (2.1) is false.
Basic fact. If there are only generic unobserved biases, so ρsi = π10si/π01si = λs does not

depend upon i, then Pr
(
Zsi = 1 | Zsi + Z

′

si = Lsi, r11si, r10si, r01si, r00si, xsi, usi

)
= 0 if Lsi = 0,

or = 1 if Lsi = 2, or = π10si/ (π10si + π01si) = λs/ (1 + λs) if Lsi = 1. That is, if there are

only generic unobserved biases, then a differential comparison of
(
Zsi, Z

′

si

)
= (1, 0) or (0, 1) has

treatment assignment probabilities that depends only on xsi or the strata. Here, λs/ (1 + λs) is
the differential propensity score.
Equivalently, if there are only generic unobserved biases, then(

Zsi, Z
′

si

)
| | (r11si, r10si, r01si, r00si, usi)

∣∣∣ (xsi, Zsi + Z
′

si

)
even when treatment assignment is not ignorable given observed covariates.
If there are only generic unobserved biases, so ρsi = π10si/π01si = λs does not depend upon i,

then the conditional distribution of (Zs1, . . . , Zs,ns) given Zs+ =
∑ns

i=1 Zsi, Z
′

s+ =
∑ns

i=1 Z
′

si and(
Zsi + Z

′

si, r11si, r10si, r01si, r00si, xsi, usi

)
, i = 1, . . . , ns is a known permutation/randomization

distribution. Conditioning also on Zs+ and Z
′

s+ eliminates the unknown nuisance parameter λs.

3. Many treatments, some unobserved

Suppose I have not 2 but K treatments, Zksi, k = 1, . . . ,K, where Zksi, k = 3, . . . ,K, are not
be observed, but they are all promoted by the same generic bias usi. Write Psi for all the 2K

potential outcomes. Model for treatment assignment is a latent variable model with unmeasured
usi:

Pr (Zksi = zksi, k = 1, . . . ,K|Psi, xsi, usi) =
∏K

k=1
ψks (usi)

zksi {1− ψks (usi)}1−zksi

ψ1s (usi)

1− ψ1s (usi)
= λs

ψ2s (usi)

1− ψ2s (usi)

or an IRT model where the first two treatments, Z1si and Z2si, have proportional odds. Then

(Z1si, Z2si) | | (Psi, usi, Z3si, . . . , ZKsi)
∣∣∣ (xsi, Z1si + Z2si)

so that, by overadjusting for Z2si you have adequately adjusted for the disposition usi.
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4. Differential biases

There are differential biases if (2.1) is false because ρsi = π10si/π01si does depend upon i.
A model for sensitivity analysis limits the degree to which ρsi = π10si/π01si varies from person to
person within the same stratum: for a specific Γ ≥ 1

1

Γ
≤ ρsi
ρsi′

=
π10si π01si′

π10si′ π01si
≤ Γ for all s, i, i′.

With a little work, one finds that the sensitivity analyses I have proposed for treatment-control
comparisons (Rosenbaum 2002, §4) now govern the differential comparison, (Z1si, Z2si) = (1, 0)
versus (0, 1). The analysis is parallel, but the interpretation has changed.

5. Time dependent generic biases

Based on Zubizarreta, Small and Rosenbaum (2014), whose example came from Angrist and
Evans (1998). Treatments are assigned by a marked point process. Marks indicate the specific
treatment received. Timing of treatments is biased by unobservables, but conditionally given
that a treatment is received at time t, the assignment of one treatment rather than the other is
not biased by unobservables. There are only time-dependent generic biases if the hazard of at
least one treatment at time t is biased by unobservables, but the ratio of hazards for two different
treatments is not biased by unobservables. Angrist and Evans (1998) asked: Does having twins
rather than a single child affect workforce participation? There are only generic unobserved biases
if: unobserved biases may affect the timing of pregnancies, but not the twin-versus-single-child
treatment conditionally given a pregnancy.
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