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Abstract. If an observational study were free of unobserved bias, we would not know
this from the observed data. The best we could hope to say is that only very large
unobserved biases could alter the conclusions of the study. What features of the design
of an observational study reduce its sensitivity to unobserved biases? How can designs
for observational studies be compared quantitatively in terms of their ability to resist
unobserved biases? The talk is from [30], [31] and [39], the last joint with Dylan Small.

1. Notation and Review

1.1. Review: Notation for a Paired Randomized Experiment[11] [21] [36] [2].
Observed covariate x and an unobserved covariate u. I pairs, i = 1; : : : ; I, of two subjects,
j = 1; 2, one treated, one control, matched for x, so xi1 = xi2, but not matched for
u, so typically ui1 6= ui2. Zij = 1 if j received the treatment in pair i, and Zij = 0 if j
received the control, so Zi1+Zi2 = 1: Subject (i; j) has two potential responses, (rTij ; rCij),
rTij observed under treatment, Zij = 1, rCij observed under control, Zij = 0, so the
e¤ect of the treatment is rTij � rCij ; Neyman [21] and Rubin [36]. Treatments given at
doses (vTij ; vCij), possibly (vTij ; vCij) = (1; 0). Write F for f(rTij ; rCij ; vTij ; vCij ;xij ; uij),
i = 1; : : : ; I, j = 1; 2g and Z for the event fZi1 + Zi2 = 1; i = 1; : : : ; Ig; then F and Z are
�xed by conditioning in Fisher�s [11] theory of randomization inference. Randomization in
pairs ensures Pr (Zi1 = 1 j Z; F) = 1

2 , 8i, with independently in distinct pairs. Observed
response is Rij = Zij rTij + (1� Zij) rCij , observed dose is Vij = Zij vTij + (1� Zij) vCij .

1.2. Review: Randomization inference for constant treatment e¤ect[18] [27]. If
treatment e¤ect is constant, � = rTij�rCij , then Rij = rCij+Zij � , and the treated-minus-
control di¤erence isDi = (2Zi1 � 1) (Ri1 �Ri2) = �+�i where �i = (2Zi1 � 1) (rCi1 � rCi2).
Test H0 : � = �0 by ranking jDi � �0j from 1 to I; then Wilcoxon�s signed rank statistic,
W�0 , is the sum of the ranks for which Di � �0 > 0, where ties are assumed absent. If
H0 : � = �0 is true, randomization ensures that Di � �0 = �i is rCi1 � rCi2 or rCi2 � rCi1,
each with probability 1

2 , independently in di¤erent pairs. Given Z; F , if H0 : � = �0 is
true, then the jDi � �0j are �xed, the Di � �0 are independent, Pr (Di � �0 > 0) = 1

2 , and
each Di is symmetric about �0, soW�0 is the sum of I independent random variables taking
values i or 0 each with probability 1

2 , i = 1; : : : ; I. A con�dence interval for � is obtained
by inverting the test, and the Hodges-Lehmann (HL) estimate b� of � is (essentially) the
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solution to Wb� = I (I + 1) =4 = 1
2 (1 + 2 + : : :+ I). Null distribution of W�0 is the same

for all (untied) F , but the nonnull distribution depends on F or a model that generates F .
A common model for a randomized experiment has (rCi1 � rCi2) =� �iid F (�) were � > 0
and F (�) is continuous and symmetric about zero, so randomization ensures �i=� �iid F (�).

1.3. Review: Randomization inference if randomization is an instrument for
the dose received[13] [17] [25] [28] [27]. Treatment e¤ect is proportional to dose if
rTij � rCij = � (vTij � vCij), which is a constant e¤ect for doses (vTij ; vCij) = (1; 0),
8i; j: If e¤ect is proportional to dose, then Rij � � Vij = rTij � �vTij = rCij � �vCij = aij ,
say, takes the same value aij whether Zij = 1 or Zij = 0, and aij is �xed by conditioning
on F . Test H0 : � = �0 using Rij � �0 Vij = aij + (� � �0) fZijvTij + (1� Zij) vCijg
which is �xed at aij if H0 : � = �0 is true, but otherwise varies with Zij . Write D�0i
for the matched pair di¤erence in Rij � �0 Vij , treated (Zij = 1) minus control (Zij = 0),
so that D�0i = (� � �0) Si + �i where Si = Zi1 (vTi1 � vCi2) + (1� Zi1) (vTi2 � vCi1) and
�i = (2Zi1 � 1) (ai1 � ai2) : In a randomized experiment, if H0 : � = �0 were true, then
Si = � (ai1 � ai2) each with probability Pr (Zi1 = 1) = 1

2 .

1.4. Review: Sensitivity to Departures from Random Assignment in Obser-
vational Studies [10] [33] [23] [24] [12] [16] [19] [1] [9] [27] [32]. (i) In population,
before matching, treatment assignments were independent, with unknown probabilities
�ij = Pr (Zij = 1 j F), (ii) subjects with same observed xij may di¤er in unobserved uij
and hence in odds of treatment by factor of � � 1,

(1.1)
1

�
� �ij (1� �ik)
�ik (1� �ij)

� �, 8 i; j; k

and (iii) the distribution of treatments within treated/control matched pairs Pr (Zi1 = 1 j Z; F)
is then obtained by conditioning on Zi1 + Zi2 = 1. Here, �ij = Pr (Zij = 1 j F). If
� = 1, then xij = xik ensures �ij = �ik, i = 1; : : : ; I, whereupon Pr (Zi1 = 1 j Z; F) =
�i1= (�i1 + �i2) =

1
2 , and the distribution of treatment assignments is again the random-

ization distribution: bias solely due to observed x can be eliminated by matching on x. If
� > 1 in (1.1), then matching on x may fail to equalize the �ij in pair i. � is unknown.
A sensitivity analysis calculates, for several values of �, the range of possible inferences.
How large must � be before qualitatively di¤erent causal interpretations are possible?

1.5. Review: Sensitivity Analysis with the Signed Rank Statistic [23] [24]. If (1.1)
and H0 : � = �0 are true, then the null distribution of W�0 is unknown but is bounded by
two known distributions. Write � = �= (1 + �) so � � 1

2 because � � 1. Write W for
the sum of I independent random variables taking value i with probability � and value 0
with probability 1 � �, i = 1; : : : ; I; also, write W for the sum of I independent random
variables taking value i with probability 1� � and value 0 with probability �. Then (1.1)
and H0 : � = �0 imply the sharp bounds

(1.2) Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�
; 8w;
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Table 1. Power of the Sensitivity Analysis: Heterogenity vs Sample Size.

Errors I Pairs � � �2=I � = 1 � = 1:5 � = 2

Normal 120 1
2 1 1=120 1.00 0.96 0.60

Normal 30 1
2

1
2 1=120 1.00 1.00 0.96

Cauchy 200 1
2 1 1=200 0.98 0.32 0.02

Cauchy 50 1
2

1
2 1=200 0.95 0.60 0.28

e.g., [23][27]. If � = 1, then equality in (1.2); otherwise bounds (1.2) widen as � increases.
For H0 : � = �0 vs HA : � > �0, the upper bound on the one-sided signi�cance level is at

most 0.05 for all �ij satisfying (1.1) if W�0 � ew where 0:05 = Pr�W � ew�.
For each � = (�11; : : : ; �I2), there is an HL estimate b�� (essentially) solving Wb� = ��

where the expectation �� = E� (W� j Z;F) is computed using �. Then (1.1) implies
(1� �) I (I + 1) =2 � �� � � I (I + 1) =2, yielding an interval of HL point estimates,
[b�min; b�max]. With � = 1, �� = I (I + 1) =4, and b�min = b�max is the usual HL estimate.

2. Design Sensitivity

2.1. Question. In the fortunate situation, biases are con�ned to observed covariates, and
adjustments remove these biases, yielding unbiased or consistent estimates of treatment
e¤ects. In an observational study, even if the fortunate situation arose, we would not
know this from the data. In the fortunate situation, we hope to report insensitivity to
small or moderate unobserved biases. How do aspects of study design a¤ect the chance that
this hope will be realized? Does a dose-response relationship strengthen causal claims [15]
[41] [26] [29]? (§2.5) Does multivariate coherence or pattern speci�city strengthen causal
claims [15] [6] [40] [8] [26] [27] [37]? (§2.5) Does reducing heterogeneity strengthen causal
claims? Is reducing heterogeneity any better than increasing the sample size? Or do both
just reduce the standard error of a biased estimate [20] [31]? (§2.2-2.3) Is a weak but
nearly valid instrumental variable better or worse than a stronger but possibly somewhat
biased instrument [34] [4] [39]? (§2.6)

2.2. Heterogeneity: Power of a sensitivity analysis [30] [31]. For a �xed � � 1, the
power of the sensitivity analysis is the probability that the upper bound on the signi�cance

level from (1.2) is less than, say, 0.05. Determine ew so 0:05 = Pr�W � ew� in (1.2); then
calculate the probability that W�0 � ew under some speci�c alternative hypothesis. For
� = 1, this is the usual concept of power. If the treatment has an e¤ect and there is no
hidden bias, we would not know this, but hope to report results that are insensitive to
unobserved bias; the power is the probability this will happen. Therefore, we compute
the power under models in which the treatment has an e¤ect (e.g., additive e¤ect �) and
there is no hidden bias (e.g., random assignment within pairs).

2.3. Heterogeneity: Limiting Uncertainty [31]. Whether or not (1.1) is true, for each
�xed � � 1, as I ! 1, the range of HL estimates, [b�min; b�max], converges in probability
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Table 2. Dose Response and Coherence. Left: Power at � = 2, I = 200,
k = 3. Right: Design Sensitivity k = 5. k controls per matched set, p
outcomes with correlation �. Strati�ed rank sum statistic.

I = 200 Power at � = 2 I !1 e� =Design Sensitivity

k = 3 � = 0 � = 1
2 k = 5 � = 0 � = 1

2
Doses p Doses p�
1
2 ; 1;

3
2

�
1 0.54 0.54

�
1
2 ; 1;

3
2

�
1 3.0 3.0

3 1.00 0.92 3 6.4 3.8
(1; 1; 1) 1 0.28 0.28 (1; 1; 1) 1 2.6 2.6

3 1.00 0.73 3 5.1 3.2�
3
2 ;
3
2 ;
3
2

�
1 0.98 0.98

�
3
2 ;
3
2 ;
3
2

�
1 4.1 4.1

3 1.00 1.00 3 11.7 5.6

to [�min; �max], with �max = �min if � = 1 and �max > �min if � > 1. If (1.1) were
true with � = 1, then � = �max = �min; that is, the HL estimate b� = b�min = b�max is
consistent for � in a randomized experiment. If (1.1) were true with a speci�c � > 1, then
� 2 [�min; �max], but the uncertainty about � prevents a more precise statement even as
I ! 1. Let � (�) and �(�) be, respectively, the standard Normal and standard Cauchy
cumulative distributions. Proposition 1 indicates what a sensitivity analysis yields, as
I ! 1, when, unknown to us, there actually is no unobserved bias: the length of the
limiting interval [�min; �max] is strongly a¤ected by the heterogeneity of the experimental
units �.

Proposition 1. [31] If (Di � �) =� �iid � (�) then [�min; �max] is � ����1 (�) =
p
2, where

� = �= (1 + �). If (Di � �) =� �iid �(�) then [�min; �max] is � � ���1 (�).

2.4. Design sensitivity [30]. There is a value e� of � such that the power of the sensitivity
analysis tends to 1 for � < e� and to 0 for � > e�; this value, e�, is called the design sensitivity.
No matter how large the sample size becomes, the design will always be sensitive to biases
larger than e�. Akin to Pitman e¢ ciency � competing designs or methods compared for
same task in large samples.

2.5. Design sensitivity: dose-response and coherence [30]. I matched sets, each
with one treated person with dose vi matched to k untreated controls with dose zero. Will
consider power for � = 2, k = 3, I = 200, and design sensitivity for k = 5, I !1, and will
use the strati�ed Wilcoxon rank sum, with dose weights and coherence among outcomes;
details in [30]. Power evaluated with p = 1 or p = 3 outcomes, linearly related to dose with
slope � = 1

2 , symmetrically correlated multivariate Normal errors, with variances 1 and
intercorrelations �. Consider three possible patterns:

�
1
2 ; 1;

3
2

�
, (1; 1; 1),

�
3
2 ;
3
2 ;
3
2

�
, where�

1
2 ; 1;

3
2

�
yields dose-response, (1; 1; 1) has the same average dose without dose-response,

and
�
3
2 ;
3
2 ;
3
2

�
has larger doses without dose response.
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2.6. Design sensitivity: instrument strength and validity [39]. Instrument strength
characterized by compliance probabilities: �A, �C ; �N for, respectively, the proportion of
�always takers� (vTij ; vCij) = (1; 1), �compliers� (vTij ; vCij) = (1; 0), and �never takers�
(vTij ; vCij) = (0; 0), with no de�ers (vTij ; vCij) = (0; 1).

Design Sensitivity e� For Instruments with Varying Strength. E¤ect size � = (�0 � �) =�.
(vTij ; vCij) = (1; 0)

Compliance 100% 50% 20% 10%
�A; �C ; �N 0; 1; 0 1

4 ;
1
2 ;
1
4

2
5 ;
1
5 ;
2
5

9
20 ;

2
20 ;

9
20

�i �
Normal 1 11.7 2.7 1.5 1.2
Normal 1

2 3.2 1.7 1.2 1.1
Cauchy 1 3.0 1.7 1.2 1.1
Cauchy 1

2 1.8 1.4 1.1 1.1
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