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Abstract. A recent observational study is used to illustrate two recent methodolog-
ical proposals, namely optimal matching with fine balance and sensitivity analysis for
uncommon but dramatic responses to treatment.

1. Matching with Fine Balance

1.1. What is fine balance? Fine balance constrains an optimal match to exactly balance
the marginal distributions of a nominal variable, perhaps one with many levels, placing
no restrictions on who is matched to whom. The nominal variable might have many
categories, like zip code, or the direct product of several nominal variables. Propensity
scores balance covariates stochastically, but this may be inadequate for a nominal variable
with many levels. Use in conjunction with calipers on the propensity score, a version of a
Mahalanobis distance, possibly penalties for additional constraints.

1.2. How do you construct an optimal finely balanced match? The assignment
algorithm [1] takes a matrix of distances and finds the pairing of rows and columns that
minimizes the total distance within pairs. The problem is not trivial because two rows may
want the same column. For an n×n matrix, it is possible to solve the optimal assignment
problem in O

(
n3
)
arithmetic operations, which is the same order as for multiplying two

n × n matrices in the conventional way. In R, the pairmatch function in Ben Hanson’s
[4] optmatch package solves the assignment problem. In SAS OR, proc assign solves the
assignment problem. Hansen’s optmatch package calls Bertsekas [1] Fortran code.
To construct a finely balanced match, the distance matrix is patterned in such a way that

the proper numbers of controls are deleted. Proposition 1 in [12] shows that this procedure
produces a minimum distance match subject to the constraint that fine balance is achieved.
A toy example is given in the other handout. Software in R: The balmatch function in
the other handout creates the distance matrix, calls Hansen’s pairmatch function, outputs
the match. It is at: http://www-stat.wharton.upenn.edu/~rosenbap/index.html

2. Sensitivity Analysis For Uncommon But Dramatic Treatment Effects

2.1. Randomization Inference in a Paired Experiment. Observed covariate x and
an unobserved covariate u. I pairs, i = 1, . . . , I, of two subjects, j = 1, 2, one treated, one
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control, matched for x, so xi1 = xi2, but not matched for u, so typically ui1 6= ui2. Zij = 1
if j received the treatment in pair i, and Zij = 0 if j received the control, so Zi1 + Zi2 =
1. Subject (i, j) has two potential responses, (rT ij , rCij), rT ij observed under treatment,
Zij = 1, rCij observed under control, Zij = 0, so the effect of the treatment is rT ij − rCij ;
Neyman [7] and Rubin [17]. Write F for {(rT ij , rCij ,xij , uij), i = 1, . . . , I, j = 1, 2}
and Z for the event {Zi1 + Zi2 = 1, i = 1, . . . , I}; then F and Z are fixed by conditioning
in Fisher’s [3] theory of randomization inference. Randomization within pairs ensures
Pr (Zi1 = 1 | Z, F) = 1

2 , i = 1, . . . , I, with independent assignments in distinct pairs.
Fisher’s sharp null hypothesis of no treatment effect is H0 : rT ij = rCij , ∀i, j. Observed
response is Rij = Zij rT ij + (1− Zij) rCij , and the treated-minus-control difference in
responses in pair i is Di = (2Zi1 − 1) (Ri1 −Ri2), so that Di = (2Zi1 − 1) (rCi1 − rCi2) if
H0 is true. To test H0 rank |Di| from 1 to I; then Wilcoxon’s signed rank statistic, W , is
the sum of the ranks for which Di > 0. If qi is the rank of |Di|, Stephenson’s [21] signed
rank statistic S uses

(
qi−1
m−1

)
as a rank score in place of qi for fixed integer m ≥ 2, where

(
a
b

)
is defined to be zero if a < b, so S =

∑I
i=1 χ (Di > 0) ·

(
qi−1
m−1

)
, where χ (a) = 1 if a is true,

= 0 otherwise. S is virtually the same as Wilcoxon’s W for m = 2.
Conover and Salsburg [2] found the locally most powerful rank test for comparing

rCij ∼iid F to rT ij ∼iid (1− p)F + pFm as I → ∞ and p → 0, so that only a small
fraction p of treated subjects are affected by the treatment. Here, Fm = F ×· · ·×F is the
distribution of the maximum ofm iid observations from F , so of course Fm is stochastically
larger than F . See also [6] and [18]. The Conover-Salsburg ranks are a polynomial in
qi of order m − 1, are not easy to interpret, but for large I behave in a manner similar
to Stephenson’s [21] ranks. The advantage of Stephenson’s ranks is that they permit the
rank test to be inverted to give confidence statements for the number or proportion of
extreme responses caused by the treatment [13]. (For matched pair data, as here, take
rCij − αi ∼iid F to rT ij − αi ∼iid (1− p)F + pFm where αi is a pair parameter.)

2.2. Sensitivity to Departures from Random Assignment in Observational Stud-
ies. (i) In the population, before matching, treatment assignments were independent, with
unknown probabilities πij = Pr (Zij = 1 | F), (ii) subjects with same observed xij may dif-
fer in unobserved uij and hence in odds of treatment by factor of Γ ≥ 1,

(2.1)
1

Γ
≤ πij (1− πik)
πik (1− πij)

≤ Γ, ∀ i, j, k

and (iii) the distribution of treatments within treated/control matched pairs Pr (Zi1 = 1 | Z, F)
is then obtained by conditioning on Zi1 + Zi2 = 1. If Γ = 1, then xij = xik ensures
πij = πik, i = 1, . . . , I, whereupon Pr (Zi1 = 1 | Z, F) = πi1/ (πi1 + πi2) = 1

2 , and the
distribution of treatment assignments is again the randomization distribution: bias solely
due to observed x can be eliminated by matching on x. If Γ > 1 in (2.1), then matching
on x may fail to equalize the πij in pair i. Γ is unknown. A sensitivity analysis calcu-
lates, for several values of Γ, the range of possible inferences. How large must Γ be before
qualitatively different causal interpretations are possible?
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2.3. Sensitivity Analysis. If (2.1) and H0 : τ = τ0 are true, then the null distribution
of S is unknown but is bounded by two known distributions. Write θ = Γ/ (1 + Γ) so
θ ≥ 1

2 because Γ ≥ 1. Write S for the sum of I independent random variables taking value(
i−1
m−1

)
with probability θ and value 0 with probability 1− θ, i = 1, . . . , I; also, write S for

the sum of I independent random variables taking value
(
i−1
m−1

)
with probability 1− θ and

value 0 with probability θ. Then (2.1) and H0 : τ = τ0 imply the sharp bounds

(2.2) Pr
(
S ≥ s

)
≤ Pr (S ≥ s | Z,F) ≤ Pr

(
S ≥ s

)
, ∀s;

e.g., [8, 9, §4]. If Γ = 1, then equality in (2.2); otherwise bounds (2.2) widen as Γ increases.
For testing H0, the upper bound on the one-sided significance level is at most 0.05 for all

πij satisfying (2.1) if S ≥ s̃ where 0.05 = Pr
(
S ≥ s̃

)
.

In the example, it appears that only some MO’s treated very intensively. Presumably
because of this, the results are less sensitive to unobserved biases when S is computed with
m = 5 or m = 10 rather than m = 2 for Wilcoxon’s test.
If unobserved bias led to a ∆-fold increase in the odds of a positive response, Di > 0,

and a Λ-fold increase in the odds of treatment, Zi1 − Zi2 = 1, then this is the same as a
bias of Γ = (∆Λ + 1) / (∆ + Λ); see [14]. For instance, Γ = 1.5 corresponds with ∆ = 4,
Λ = 2; Γ = 3 corresponds with ∆ = 7, Λ = 5; Γ = 1.2 with ∆ = 2, Λ = 1.75.

2.4. Design Sensitivity. The design sensitivity [5, 10, 11, 15, 16] refers to the limiting
case, as the number of pairs increases, I → ∞. Add a subscript I to denote quantities,
say SI , computed from a sample of size I. Then, for a given Γ, the maximum significance

level for a sample of size I is ≤ 0.05 if SI ≥ s̃I where 0.05 = Pr
(
SI ≥ s̃I

)
.

Suppose the treatment had an effect and there was no bias from the unobserved covariate
u; call this the favorable situation. We would not be able to know that we are in the
favorable situation from the observable data. The best we could hope to say is that the
results are insensitive to bias, that is, for some large Γ we have SI ≥ s̃I . Consider a specific
model that generated the I observations in the favorable situation. Then Pr (SI ≥ s̃I) tends
to 0 or 1 as I →∞ depending upon the value of Γ. More precisely, there is a number, Γ̃,
called the design sensitivity, such that Pr (SI ≥ s̃I) → 1 for Γ < Γ̃ and Pr (SI ≥ s̃I) → 0

for Γ > Γ̃ as I → ∞; i.e., Γ̃ is the limiting sensitivity to unobserved bias in a favorable
situation in which it would be desirable to report that the results are insensitive.
What makes a study design insensitive to unobserved biases? The answer is provided

by comparing Γ̃ for different designs. See [10, 11, 15, 16] for some comparisons.
Under the Conover-Salsburg [2] model, rCij−αi ∼iid F to rT ij−αi ∼iid (1− p)F+pFm,

with F standard Normal, the design sensitivity Γ̃ is larger, sometimes much larger, when
the analysis recognizes that only a fraction p of treated subjects respond to treatment by
taking m > 2 in SI .
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