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OTHELLO: O monstrous! monstrous!

IAGO: Nay, this was but his dream.

OTHELLO: But this denoted a foregone conclusion:

�Tis a shrewd doubt, though it be but a dream.

IAGO: And this may help to thicken other proofs

That do demonstrate thinly.

William Shakespeare,

Othello, Act III.



1 Two methodological topics

Matching with �ne balance: A transparent method
of adjusting for observed covariates. Typically used
in conjunction with propensity scores, optimal match-
ing, and a distance such as the Mahalanobis dis-
tance. Can perfectly balance the marginal distribu-
tions of a nominal variable without constraining who
is matched to whom.

Uncommon but dramatic treatment e¤ects: When
both present and noticed, these may be less sensitive
to unobserved biases than are smaller typical e¤ects.



2 A �natural experiment� in health care
outcomes research

A natural experiment is a type of observational study
in which some stable, perhaps even rational, process
for allocating treatments is disrupted in an ostensibly
aimless or haphazard way. It is a �wild experiment,�
not a �wholesome experiment.� Haphazard is not
random.

Outcomes research examines the delivery and outcomes
of health care as it actually occurs.

A key di¢ culty: most of the variation in treatment and
in outcome re�ects the health of the patient, not
activities of the health care providers.

There is a curious spot where there is variation in treat-
ment that is, to a large extent, not a response to the
health of the patient.



3 Two specialties provide chemotherapy for
ovarian cancer

Medical oncologists (MO�s) are specialists in the pro-
vision of chemotherapy, but treat cancers of varied
types.

Gynecologic oncologists (GO�s) are gynecologists with
additional training in oncology. They treat a small
group of gynecologic cancers, including ovarian can-
cer.

As gynecologists, GOs are surgeons, and they typically
perform the surgery needed for ovarian cancer. They
may also provide chemotherapy.

MOs are, almost invariably, not surgeons. They may
provide chemotherapy after a GO, a gynecologist, or
a general surgeon has performed surgery.



4 How might the specialties di¤er?

Chemotherapy often has toxic side e¤ects. The alterna-
tive to toxic side e¤ects might be metastatic cancer
and death. A delicate balance. Possibly, MOs are
more aggressive in the initial use of chemotherapy.
If so, is more aggressive treatment of bene�t to pa-
tients?

When cancer spreads, it may involve organ systems re-
mote from the site of origin. Possibly, MOs are
more aggressive in treating metastatic cancer. If so,
is more aggressive treatment of bene�t to patients?

GOs are compensated for surgery and chemotherapy,
whereas MOs do not perform surgery.



5 Data from SEER and Medicare

Data were from a �le that linked the Surveillance, Epi-
demiology and End Results (SEER) program of the
National Cancer Institute with claims from Medicare.

In addition to survival, SEER provides clinical infor-
mation, such clinical stage and tumor grade, while
Medicare provides information about treatment, in-
cluding surgeon type, and comorbid conditions.

SEER sites: some are cities, others are states. Exam-
ples: Connecticut and San Francisco are both SEER
sites.

Years: Patients diagnosed with ovarian cancer between
1991 and 1999 at SEER sites.

Outcomes: survival, amount of chemotherapy, chemother-
apy associated side e¤ects.



6 Matching in the clinical paper

We took all 344 patients treated by a GO and matched
each one to a similar patient treated by an MO, cre-
ating 344 pairs of two patients.

In the clinical paper, we matched on 36 patient variables,
plus some interactions. (In the statistical paper,
there were 61 variables.)

In the clinical paper, we brie�y described the matching
procedure, and showed in detail that the procedure
had produced groups with similar distributions of co-
variates.

Will look at it clinically �rst, then look under the hood
at the details of the matching.



7 Covariate imbalances: part 1

Values are percents. Abbreviations: GO=gynecological
oncologist, MO=medical oncologist, Gyn=gynecologist,
General=general surgeon. Odds ratio before matching,
GO/General with GO/MO is about 8.

GO matched-MO all-MO
n = 344 n = 344 n = 2; 011

Surgeon GO 76 75 33
Type Gyn 15 16 39

General 8 8 28
Stage I 9 9 9

II 11 9 9
III 51 53 47
IV 26 26 31

Missing 3 2 3
Tumor 1 5 4 4
Grade 2 16 13 17

3 52 55 47
4 9 8 11

Missing 18 20 21



8 Covariate imbalances: part 2

Values are percents, except as noted.

GO matched-MO all-MO
n = 344 n = 344 n = 2; 011

White 91 94 94
Black 8 5 3
COPD 15 12 13

Hypertension 48 46 42
Diabetes 11 8 8

CHF 2 2 4
Age, mean 72.2 72.2 72.8be (x), mean 0.23 0.21 0.14

Propensity score be (x) included: SEER sites; year of di-
agnosis; stage; grade; race; age; and the comorbidities
of anemia, angina, arrhythmia, asthma, chronic obstruc-
tive pulmonary disease, coagulation disorder, diabetes,
electrolyte abnormality, hepatic dysfunction, hyperten-
sion, hyperthyroidism, peripheral vascular disease, and
rheumatoid arthritis.



9 Covariate imbalances: part 3

SEER site GO matched-MO all-MO
or year n = 344 n = 344 n = 2; 011

Connecticut 18 18 15
Detroit 26 26 12
Iowa 17 17 17

New Mexico 7 7 3
Seattle 9 9 16
Atlanta 9 9 7

Los Angeles 12 12 19
San Francisco 1 1 9

1991 4 4 9
1992 7 7 14
1993 10 9 14
1994 11 11 12
1995 11 13 12
1996 10 9 12
1997 16 15 10
1998 13 15 9
1999 18 17 9

Sites &1991-1992, 1993-1996, 1997-1999 balanced.
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Figure 1:  Plots of Imbalance in 61 Covariates, Before and After Matching.  Values are 
differences in covariate means, GO vs MO, before and after matching, divided by the 
average within group standard deviation before matching.  Six covariates with large 
initial biases are identified by name. 



Q-Q Plot of 61 P-values
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Figure 2:  Comparing the Balance on 61 Covariates to the Balance Expected in a 
Completely Randomized Experiment: 61 P-values From Two-Sample Tests Compared to 
the Uniform Distribution.  The diagonal line is y=x. 



10 Matching method

Minimum distance: The optimal assignment algorithm
was used with Mahalanobis distances and penalties
for mismatches on surgeon type, clinical stage, tumor
grade, year of diagnosis, race, congestive heart fail-
ure, diabetes, weight loss, and the propensity score.

Within propensity score calipers: Penalty for a large
discrepancy on the propensity score based on: SEER
sites; year of diagnosis; stage; grade; race; age; and
the comorbidities of anemia, angina, arrhythmia, asthma,
chronic obstructive pulmonary disease, coagulation
disorder, diabetes, electrolyte abnormality, hepatic
dysfunction, hypertension, hyperthyroidism, periph-
eral vascular disease, and rheumatoid arthritis.

With �ne balance constraints: The marginal distri-
butions were constrained to agree on the interac-
tion of the 8 SEER sites and the three time intervals
(1991� 1992), (1993� 1996), (1997� 1999) or
24 = 8� 3 levels.



11 Older ideas: Propensity scores, minimum
distance

Notation: Covariates xi for person i, estimated propen-
sity score be (xi), estimated covariance matrix b�.

Propensity score calipers: If
���be (xi)� be �xj���� > �

do not permit i and j to be matched; set the distance
to1. A typical value of � is 0:2�st:dev

nbe �xj�o.
Implement using a penalty, that is, a very large dis-
tance, not in�nite, distance between i and j.

Other penalties: For example, we penalized mismatch
on type of surgeon.

Mahalanobis distances: If i may be matched to j, then
the distance between them is the Mahalanobis dis-
tance,

�
xi � xj

�T b��1 �xi � xj�.
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--Drawn for two uncorrelated standard Normal variables, but imagine
instead K possibly dependent, possibly non-Normal variables. 
--If you placed coordinate axis at the K-dimensional median, th
would be 2K quadrants.  2K is about a billion for K=30 variables. 
--If e(X) = Pr(Z=1|X) then Pr{X|Z=1, e(X)=a} = Pr{X|Z=0, e(X
--For Normal X, e(X) is a function of the linear discriminant. 
1)  Failures to match on e(X) tend to accumulate, while failur
match on X at the same e(X) tend to balance out. 
2)  Once you have a good match on e(X), you migh
get a close match on the most important coordinates of X. 
3)  Balance from matching on e(X) is stochastic.  It won’t w
data are thinly spread through many levels of a nominal variable.  For 
this, use “fine balance” to constrain the marginal distributions to 
agree exactly on the nominal variable. 
a) minimum distance matching,  
b) within calipers on estimated e(
c) subject to the fine balance constrain



12 Older ideas: tips on implementation

Penalties: It is best to use a large �nite number for a

penalty, and to add
�
xi � xj

�T b��1 �xi � xj� to
the penalty. Then, if all the constraints implied by
the penalties cannot be respected, the optimal as-
signment algorithm will not crash. Rather, it will
respect as many penalties as possible, and then min-
imize the total distance subject to respecting that
number of penalties.

Varied penalties: With several matching constraints,
use penalties of varied sizes to prioritize them.

Distances: The software uses a modi�ed Mahalanobis
distance. Uses ranks rather than responses, with
average ranks for ties. However, uses the variance
associated with untied ranks.

Optimal matching: Pick the matched set to minimize
the total distance within pairs. O

�
n3
�



13 Newer idea: �ne balance

What is �ne balance? Fine balance imposes a constraint
on the previously described match. The constraint is
that the marginal distributions of a nominal variable,
perhaps with many levels, will be exactly balanced.

How is �ne balance di¤erent? Fine balance imposes
no constraint on who is matched to whom. It is
about the marginal distributions only.

Possible uses: (i) A variable with many categories,
perhaps growing with the sample size. (ii) A vari-
able formed as the interaction (i.e., direct product)
of several key binary variables.

In ovarian study, the nominal variable was SEER site
� year of diagnosis category, 24 levels. (Remember,
odds ratio of 19.5 for Detroit vs SF.)



14 Toy Example: the data

In this tiny data set, there are three treated subjects (Z =
1), two male, one female, and seven potential controls
(Z = 0), three male and four female. We want to match
closely for X1, X2, X3 and their X+ = X1 + X2 +

X3, while balancing gender. In typical practice, the
propensity score replaces X+.

> data

Name Gender X1 X2 X3 X+ Z
Harry M 0 0 1 1 1
David M 1 0 1 2 1
Susan F 1 0 1 2 1
Mark M 0 0 0 0 0

Horatio M 1 0 0 1 0
Tim M 1 0 1 2 0
Janet F 1 1 0 2 0
Diane F 1 1 1 3 0
Debbie F 1 1 0 2 0
Sally F 1 0 1 2 0



15 Toy Example: calipers and distances

A caliper of 1 onX+ introduces three1�s, and elsewhere
there is a variant of the Mahalanobis distance. Example:
Harry has X+ = 1 Diane has X+ = 3, and j1� 3j > 1.

Mark Hor. Tim Janet Diane Deb. Sally
Harry 3.3 8.2 3.3 6.3 1 6.3 3.3
David 1 3.3 0.0 4.1 3.7 4.1 0.0
Susan 1 3.3 0.0 4.1 3.7 4.1 0.0



16 Toy example: �ne balance

Mark Hor. Tim Janet Diane Deb. Sally
Harry 3.3 8.2 3.3 6.3 1 6.3 3.3
David 1 3.3 0.0 4.1 3.7 4.1 0.0
Susan 1 3.3 0.0 4.1 3.7 4.1 0.0
�1 1 1 1 0 0 0 0
�2 1 1 1 0 0 0 0
�3 1 1 1 0 0 0 0
�4 0 0 0 1 1 1 1

�Not di¢ cult to show that the minimum cost assignment
for this array is the optimal balanced match.



16.1 Toy example: �ne balance, actual coding &
match

Mark Hor. Tim Janet Diane Deb. Sally
Harry 3.3 8.2 3.3 6.3 925:5 6.3 3.3
David 926:2 3.3 0.0 4.1 3.7 4.1 0.0
Susan 926:2 3.3 0.0 4.1 3.7 4.1 0.0
�1 104 104 104 0 0 0 0
�2 104 104 104 0 0 0 0
�3 104 104 104 0 0 0 0
�4 0 0 0 104 104 104 104

�Two male controls, one female, balanced but not matched
for gender.

�R function balmatch will do all the work.



17 R software

http://www-stat.wharton.upenn.edu/~rosenbap/index.html

Name Gender X1 X2 X3 X+ Z
Harry M 0 0 1 1 1
David M 1 0 1 2 1
Susan F 1 0 1 2 1
Mark M 0 0 0 0 0

Horatio M 1 0 0 1 0
Tim M 1 0 1 2 0
Janet F 1 1 0 2 0
Diane F 1 1 1 3 0
Debbie F 1 1 0 2 0
Sally F 1 0 1 2 0

> balmatch(gender,Z,X+,X,caliper=1.1)

1 3 2 1 NA 2 NA NA NA 3



18 Outcomes

344 matched pairs, GO vs MO.

Outcomes are (i) survival, (ii) intensity of chemotherapy,
and (iii) chemotherapy related toxicity.

Weeks of chemotherapy, weeks with toxicity.

Year 1 is initial treatment. Later years are likely to be
chemotherapy for recurrence of cancer.



 
 
 
 
Kaplan-Meier survival plot comparing 344 patients administered postoperative 
chemotherapy for ovarian cancer by a gynecologic oncologist (GO) and a matched set of 
344 patients administered postoperative chemotherapy for ovarian cancer by a medical 
oncologist (MO).  (Figure from JCO 2007) 
 

 
 
 
 
P-value based on: 
O'Brien, P. C. and Fleming, T. R. (1987), “A paired Prentice-Wilcoxon test for censored 
paired data,” Biometrics, 43, 169-180. 



Survival  (Table from JCO 2007) 

Survival, years  GO Group  MO Group P-value   

    Median 3.04 2.98 
 

   

    95% CI 2.50 to 3.40 2.69 to 3.67 
 

   

1-year survival, %     .57   

    Point Estimate 86.6% 87.5% 
 

   

    95% CI 83.0 to 90.2 84.0 to 90.1 
 

   

2-year survival, %     .57   

    Point Estimate 64.8% 66.9% 
 

   

    95% CI 59.8 to 69.9 61.9 to 71.8 
 

   

5-year survival, %     .81   

    Point Estimate 35.1 34.2 
 

   

    95% CI 30.0 to 40.2 29.2 to 39.3 
 

   

Abbreviations: GO, gynecologic oncologist; MO, medical oncologist. 



Coding Definitions of Chemotherapy and Chemotherapy Associated Adverse Events 
(from inpatient and outpatient bills)  (Table from JCO 2007) 

Coding Definitions 

 
Chemotherapy administration 

    ICD-9 procedure codes 

        99.25: Injection or infusion of cancer chemotherapeutic substance 

    HCPCS codes 

        964.xx: intravenous chemotherapy administration 

        965.xx: intravenous chemotherapy administration 

    CPT codes 

        36640: insertion catheter, artery 

        36260 insertion of infusion pump 

    Codes for ovarian cancer drugs 

        J8999-J9999; Q0163-Q0185 

Chemotherapy-associated adverse events: ICD-9 diagnosis codes 

    Anemia 

        280.x; 281.x; 283.x; 284.8; 284.9; 285.xx 

    Neutropenia 

        288.0 

    Thrombocytopenia 

        287.5 

    Mucositis 

        528 

    Dehydration, dehydration, nausea, diarrhea 

        276.5; 787.01; 787.02; 787.91 

    Neuropathy (drug associated) 

        357.6 
 

Abbreviations: ICD, International Classification of Diseases; HCPCS, Healthcare 
Common Procedure Coding System; CPT, Current Procedural Terminology.



 

Intensity of Treatment (Table from JCO 2007) 

GO Group MO Group 
 

Outcome Measure Mean Median Mean Median P 

 
Weeks with some chemotherapy        

    Over first 5 years 12.1 9.0 16.5 11.0 .0023   

    For year 1 6.6 6.0 7.7 6.0 .0106   

    For years 2 to 5 6.3 2.5 10.0 4.0 .0167   

Weeks with chemotherapy-associated 
adverse events*

       

    Over first 5 years 8.9 5.0 16.2 7.0 .0001   

    For year 1 3.6 2.0 6.6 3.0 .0001   

    For years 2 to 5 6.1 2.0 11.0 4.0 .0001   

Abbreviations: GO, gynecologic oncologist; MO, medical oncologist.   

* Weeks with chemotherapy-associated adverse events was defined as any week that 
included the following diagnoses occurring as an inpatient or outpatient: anemia, 
neutropenia, thrombocytopenia, diarrhea, dehydration or mucositis, and neuropathy. 

 



 
 
 
 

Chemotherapy Intensity and Toxicity for 344 Matched GO and MO patients 
 

 
A    MO patients, year 1.                               B  MO patients, all years 
 
C    GO patients, year 1.                               D  GO patients, all years 
 
 
 
 

 

Silber, J. H. et al. J Clin Oncol; 25:3555-3557 2007



19 Summary

Survival: Survival was virtually identical for GO and
MO patients.

Intensity: MO�s gave more chemotherapy and produced
more toxicity, but in the �rst year and in later years.

Does intensity lengthen survival? No indication that
greater intensity of chemotherapy lengthens survival.



20 An editorial, 5 letters, 2 rejoinders

All of the discussion concerned possible biases from un-
observed covariates.

A partial success: Balanced matching was transpar-
ent. No one doubted that the groups were compa-
rable on variables controlled by matching.

Right orientation: In broad terms, a discussion fo-
cused on unobserved biases is, at least, concerned
with the correct issue.

Content of discussion: Ranged from what might rea-
sonably be described as speculative to what might
charitably be described as speculative. Reasonable
�= a speculative alternative explanation of what was
observed. Charitable �= speculative explanations of
di¤erent parts that don�t form a coherent whole.

Qualitative guesswork: No data, no quanti�cation.



21 Examples

Editorial Stephen Cannistra (an MO) said that a GO
might do the surgery, realize that not all the tu-
mor could be removed, and send the patient to an
MO for intensive chemotherapy, with the GO keep-
ing the healthier patients. That is, MOs take on
the tough patients, prolong their lives with intensive
chemotherapy so they live just as long as healthier
patients treated by a GO.

First of 5 letters: Stephanie Blank and John Curtin
(two GOs in a letter): �Cannistra spins a tale that
GOs . . . �attract less proactive patients� [who . . . ]
are not interested in their own health . . . [quoting
Othello] �But this denoted a foregone conclusion: Tis
a shrewd doubt, though it be but a dream.��

Cannistra replying to Blank and Curtin: �Drs Bland
and Curtin . . . have chosen to twist my editorial into



an attack against GOs . . . I o¤ered critical analysis
. . . which Drs Blank and Curtin called �spinning a
tale�.�



22 What makes observational studies insensitive
to unobserved biases?

What is a sensitivity analysis? Asks: How much un-
observed bias � how large a departure from random
treatment assignment � would need to be present to
alter the qualitative conclusions of the study? An-
swer is a number, for instance, the value of a sensitiv-
ity parameter, say � (to be explained in a moment).

What makes some studies insensitive to biases? Not
a subject that has been extensively studied.

Design sensitivity: A tool for investigating this ques-
tion. Says: imagine the study is actually free of
unobserved bias, and there is a treatment e¤ect. In
very large samples (I !1), how sensitive is a par-
ticular study design/sampling model? Again, the
answer is a number e� such that, as I ! 1, the
power of the sensitivity analysis ! 1 for � < e� and
! 0 for � > e�.



23 Sensitivity Analysis for Matched Pairs

Covariates: Observed covariate x. Unobserved co-
variate u.

Matching: I pairs, i = 1; : : : ; I, of two subjects, j =
1; 2, matched for x, so xi1 = xi2 for each i, but
not for u, so typically ui1 6= ui2.

Treatment indicator: Zij = 1 if j received treat-
ment, Zij = 0 if j received control, so Zi1+Zi2 = 1
for i = 1; : : : ; I.

Responses: Potential responses,
�
rTij; rCij

�
, rTij un-

der treatment, Zij = 1, rCij under control, Zij =
0, so e¤ect is rTij � rCij; Neyman (1935) & Rubin
(1974).



24 Paired Randomized Experiment

Conditioning: Write

F = f
�
rTij; rCij;xij; uij

�
;

i = 1; : : : ; I; j = 1; 2g

Z = fZi1 + Zi2 = 1; i = 1; : : : ; Ig ;

then F and Z are �xed by conditioning in Fisher�s
theory of randomization inference.

Randomization: Pr (Zi1 = 1 j Z; F) = 1
2, i = 1; : : : ; I,

with independent assignments in distinct pairs.

Observed responses, di¤erences: Rij observed isRij =
Zij rTij +

�
1� Zij

�
rCij, and the treated-minus-

control di¤erence in responses in pair i is Di =
(2Zi1 � 1) (Ri1 �Ri2).



25 Wilcoxon�s Signed Rank Statistic

Fisher�s Sharp Null Hypothesis: The hypothesis of no
treatment e¤ect is H0 : rTij = rCij, 8i; j:

Wilcoxon�s Signed Rank Statistic: To test H0 rank
jDij from 1 to I; then W , is the sum of the ranks
for which Di > 0.

As a randomization test: If H0 is true, randomiza-
tion ensures Di is rCi1� rCi2 or rCi2� rCi1, each
with probability 12, independently in di¤erent pairs.
Given Z; F , if H0 were true in a randomized exper-
iment, then W would be the sum of I independent
random variables taking values i or 0 each with prob-
ability 12, i = 1; : : : ; I.



26 Departures from Random Assignment

1. In the population prior to matching, treatment as-
signments were independent, with unknown proba-
bilities �ij = Pr

�
Zij = 1

��� F�

2. Two subjects with the same observed xij may di¤er
in unobserved uij and hence in their odds of receiv-
ing treatment by a factor of � � 1,

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k (1)

3. Distribution of treatments within treated/control matched
pairs Pr (Zi1 = 1 j Z; F) is then obtained by con-
ditioning on Zi1 + Zi2 = 1.



27 Departures, continued

1=� �
n
�ij (1� �ik)

o
=
n
�ik

�
1� �ij

�o
� �, xij = xik

No unobserved bias: If � = 1, then xij = xik en-
sures �ij = �ik, i = 1; : : : ; I, whereupon

Pr (Zi1 = 1 j Z; F) = �i1= (�i1 + �i2) =
1

2
:

Uncertainty from unobserved bias: If � > 1 in (1),
then matching on x may fail to equalize the �ij in
pair i, and Pr (Zi1 = 1 j Z; F) is unknown.

Question answered by a sensitivity analysis: Bounds
on signi�cance levels, point estimates, con�dence in-
tervals for several values of �. How large must
� be before qualitatively di¤erent causal interpreta-
tions are possible?



28 Sensitivity Analysis Procedure

Two known distributions: For �xed � � 1, letW be
the sum of I independent random variables taking
value i with probability � = �= (1 + �) and value
0 with probability 1 � �, i = 1; : : : ; I; and let W
for the sum of I independent random variables tak-
ing value i with probability 1 � � and value 0 with
probability �.

Bounds: If

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k
andH0 : � = �0 are true, then the following bounds
are sharp for each � � 1:

Pr
�
W � w

�
� Pr (W � w j Z;F) � Pr

�
W � w

�

If � = 1, then equality; otherwise the bounds become
wider as � increases.



29 Sensitivity Analysis Using Wilcoxon Test

Chemo is weeks of chemotherapy in the �rst year. Ad-
verse is weeks with chemotherapy related toxicity in
the �rst year.

Table gives the (attainable) upper bound on the one-
sided signi�cance level for test the null hypothesis
of no treatment e¤ect using Wilcoxon�s signed rank
statistic.

Chemo is sensitive to biases of magnitude � > 1:2 and
Adverse is sensitive to biases of magnitude � > 1:5.

� Chemo Adverse
1 0.0012 6:3� 10�7
1.1 0.010 1:9� 10�5
1.2 0.048 0.00027
1.3 0.14 0.0021
1.5 0.50 0.036
1.7 0.83 0.19



 
 
 
 

Chemotherapy Intensity and Toxicity for 344 Matched GO and MO patients 
 

 
A    MO patients, year 1.                               B  MO patients, all years 
 
C    GO patients, year 1.                               D  GO patients, all years 
 
 
 
 

 

Silber, J. H. et al. J Clin Oncol; 25:3555-3557 2007



30 Uncommon but dramatic responses to
treatment 1

Additive e¤ects: rTij = rCij + � . Doesn�t look
correct here.

Wilcoxon�s rank sum: Known to be the locally most
powerful rank test in a randomized experiment for an
additive e¤ect when rCij has the logistic distribution
and � ! 0 as I !1.

Lehmann�s result: Lehmann (1952) showed that the
rank sum in a randomized experiment is also locally
most powerful for testing

rCij � F (�) and rTij � (1� p)F (�) + pF 2 (�)

with p ! 0 as I ! 1, where F 2 (�) is the dis-
tribution of the maximum of two observations from
F (�).



31 Uncommon but dramatic responses to
treatment 2

Conover and Salsburg (1988) determined the rank score
with is locally most powerful for

rCij � F (�) and rTij � (1� p)F (�)+pFm (�)

with p ! 0 as I ! 1, which are fairly unintuitive
in form, but are a polynomial in ordinary ranks whose
highest power is m � 1, consistent with Lehmann�s
result. Here, Fm (�) is the distribution of the max-
imum of m independent observations from F (�).
They like m = 5.

Let�s look at 1000 treated- minus-control di¤erences
sampled from rCij � �(�) and rTij � (1� p) � (�)+
p�m (�) where �(�) is the standard Normal cumu-
lative distribution.
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Densities: Now let�s look at the densities of treated-
minus-control di¤erences sampled from rCij � �(�)
and rTij � (1� p)� (�)+ p�m (�) compared, not
to the standard Normal, but to a Normal with the
same expectation and variance.
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32 Ranks

Wilcoxon�s ranks: Ordinary 1, 2, 3, . . . , n ranks can
be assigned by comparing all

�
n
2

�
pairs of two people

and adding 1. 1 wins against no one else and gets a
0+1. 2 wins against 1, and gets a 1+1=2. 3 wins
against 1 and 2, and gets a 1+1+1=3, etc.

Stephenson�s ranks: Motivated by very di¤erent con-
siderations, Stephenson (1981) proposed comparing
people not 2 at a time butm at a time. Form = 3:
both 1 and 2 never win in a group of 3, and get rank
0, but 3 wins in the group (1,2,3) and gets rank 1,
while 4 wins in (1,2,4), (1,3,4), (2,3,4) and gets rank
3.

j = 1; 2; : : : ; n are assigned ranks
�
j�1
m�1

�
, de�ned to

be zero for j < m, because j wins in all
�
j�1
m�1

�
subsets

consisting of j andm�1 elements picked from 1; : : : ; j�
1.



33 Ranks, continued

Stephenson�s ranks: j = 1; 2; : : : ; n are assigned ranks�
j�1
m�1

�
are also a polynomial in j whose highest

power is m � 1. For large n, aside from loca-
tion/scale, they are virtually the same as Conover
and Salsburg (1988) locally most powerful ranks.

Relationship to Wilcoxon ranks: Form = 2, Stephen-
son�s ranks are

�
j�1
m�1

�
=
�
j�1
2�1

�
= j � 1, so they

are essentially conventional ranks, again consistent
with Lehmann�s result.

Con�dence intervals: Stephenson�s ranks can be used
to invert a rank test to obtain con�dence statements.
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Sensitivity Analysis: Chemotherapy Weeks (year 1)

(Chemo1) Wilcoxon Stephenson Stephenson
� (m = 2) (m = 5) (m = 10)
1 0.0012 0.00044 0.00080
1.2 0.048 0.0086 0.0066
1.4 0.31 0.055 0.027
1.5 0.50 0.11 0.046

Sensitivity Analysis for Toxicity Weeks (year 1)

(Adv1) Wilcoxon Stephenson Stephenson
� (m = 2) (m = 5) (m = 10)
1 6:3� 10�7 5:0� 10�9 1:8� 10�8
1.5 0.036 0.00013 2:7� 10�5
2 0.62 0.011 0.00099
3 1.00 0.34 0.031
3.2 1.00 0.45 0.046

Summary: In this data set, less sensitivity to unob-
served bias when the analysis looks for dramatic re-
sponses from a subset of treated subjects (m > 2).



34 Is this pattern true in general?

Design sensitivity: Limiting sensitivity to unobserved
bias, as I ! 1, when in fact, unknown to us, the
treatment actually had an e¤ect and there is no un-
observed bias.

Model: I treated- minus-control di¤erences Di sam-
pled from rCij � �(�) and rTij � (1� p) � (�) +
p�m (�) with p = :25

Compare: design sensitivity, e�, for Wilcoxon�s signed
rank test (m = 2) and for Stephenson�s test with
m = 5 or m = 10. Notice that m may or may not
equal m.



−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

y−x

de
ns

ity

p = 0.25
m = 5

Mixture
Normal

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

y−x

de
ns

ity

p = 0.25
m = 10

Mixture
Normal

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

y−x

de
ns

ity

p = 0.25
m = 100

Mixture
Normal

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

y−x

de
ns

ity

p = 0.25
m = 500

Mixture
Normal



35 Table of design sensitivities

Model: I treated- minus-control di¤erences Di sam-
pled from rCij � �(�) and rTij � (1� p) � (�) +
p�m (�) with p = :25

Wilcoxon Stephenson Stephenson
(m = 2) (m = 5) (m = 10)

m = 5 1.6 1.8 2.0
m = 10 1.8 2.2 2.5
m = 100 2.2 3.6 5.5
m = 500 2.4 4.7 8.9

Summary: If only 25% respond to treatment, use of
ranks that target responders yields higher values of
the design sensitivity, e�.



36 Summary

Re Ovarian Cancer: There was no sign that greater
intensity of chemotherapy improved survival, although
it did increase serious toxicity.

Re Matching: �Fine balance�constrains an optimal match
to perfectly balance a nominal variable, without con-
straining who is matched to whom. The nominal
variable may have many levels. Easy to do in R.

Re Concerns about this observational study: All of
the discussion was about unobserved covariates. Right
orientation, but lacking data and quanti�cation.

What makes studies insensitive to unobserved biases?
Varied answers, some familiar, others surprising (at
least to me). Here, uncommon but dramatic re-
sponses to treatment can be quite insensitive to un-
observed biases if this pattern targeted in the analy-
sis.



Formula for design sensitivity. Stephenson�s ranks
are qi =

�
i�1
m�1

�
with qi = 0 for i < m. Also,PI

i=1 qi =
PI
i=m

�
i�1
m�1

�
=

�
I
m

�
. In Stephenson�s

signed rank statistic, say S, qi is the �rank�of the jDij,
and qi enters the statistic if Di > 0, where m = 2 is
(essentially) Wilcoxon�s signed rank statistic.

In a randomized experiment under the null hypothesis of
no e¤ect, qj is added to S with probability 1

2. With
�i1= (�i1 + �i2) bounded by �= (1 + �), qi is added
to S with probability at most �= (1 + �), so the max-
imum expectation of S is equal to �= (1 + �)�P

qi or
�
�
I
m

�
= (1 + �).

If no bias from unobserved covariates (randomization, iid
di¤erences), with a treatment e¤ect, then S has expec-
tation

�
I
m

�
p where p is the probability that the largest of

m absolute di¤erences, jD1j ; : : : ; jDmj is positive.

Design sensitivity e� solves �
1+�

�
I
m

�
=

�
I
m

�
p, so it ise� = p= (1� p).




