Statistics 430
 HW \#10 Solutions

Emil Pitkin

December 1, 2010

1 Ch 7 Problem 1

Let W denote winnings, H heads, and T tails.

$$
\begin{aligned}
E[W] & =E[W \mid H] P(H)+E[W \mid T] P(T) \\
& =2 * 3.5 * .5+.5 * 3.5 * .5 \\
& =4.375
\end{aligned}
$$

2 Ch 7 Problem 5

Let X be the horizontal distance traveled by the ambulance, and Y the vertical distance. We know that $X \sim \operatorname{Unif}(-1.5,1.5)$, and likewise Y. Both $|X|$ and $|Y|$ are distributed as $\operatorname{Unif}(0,1.5)$, so each has expectation 1.5.

$$
\begin{aligned}
E[|X|+|Y|] & =E[|X|]+E[|Y|] \\
& =.75+.75=1.5
\end{aligned}
$$

3 Ch 7 Problem 8

Let X be the number of occupied tables. Let

$$
X_{i}= \begin{cases}1 & \text { the ith arrival sits at a previously unoccupied table } \\ 0 & \text { otherwise }\end{cases}
$$

If a friendless person arrives, then he sits at previously unoccupied table, raising the count of occupied tables by 1 . So $X=\sum_{i=1}^{N} X_{i}$.

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left(X_{i}=1\right) \text { because } X_{i} \text { is an indicator variable } \\
& =(1-p)^{i-1} \quad \text { since he is not friends with any of the } i-1 \text { previous arrivals } \\
E[X] & =E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} E\left[X_{i}\right] \\
& =\sum_{i=1}^{N}(1-p)^{i-1} \\
& =\sum_{j=0}^{N-1}(1-p)^{j} \quad \text { reindexing } \\
& =\frac{1-(1-p)^{N}}{1-(1-p)}=\frac{1-(1-p)^{N}}{p} \quad \text { sum of a geometric series }
\end{aligned}
$$

4 Ch 7 Problem 11

Let X be the number of changeovers.

$$
X_{i}= \begin{cases}1 & \text { flip } i \text { differs from flip } i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Notice that $X=\sum_{i=2}^{n} X_{i}$, where the count begins at $i=2$ since the first flip does not represent a changeover.

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left(X_{i}=1\right)=P\left(X_{i} \text { Heads } \mid X_{i-1} \text { Tails }\right) P\left(X_{i-1} \text { Tails }\right)+P\left(X_{i} \text { Tails } \mid X_{i-1} \text { Heads }\right) P\left(X_{i-1} \text { Heads }\right) \\
& =p(1-p)+(1-p) p=2 p(1-p) \\
E[X] & =E\left[\sum_{i=2}^{n} X_{i}\right]=\sum_{i=2}^{n} E\left[X_{i}\right] \\
= & 2(n-1) p(1-p)
\end{aligned}
$$

5 Ch 7 Problem 12

a

$$
X_{i}= \begin{cases}1 & \text { the ith man is sitting next to a woman } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
E\left[X_{i}\right] & =E\left[X_{i} \mid \text { ith man sits on the end }\right] P(\text { ithman sits on the end }) \\
& +E\left[X_{i} \mid \text { ith man sits in the middle }\right] P(\text { ithman sits in the middle }) \\
& =\frac{n}{2 n-1} * \frac{2}{2 n}+\left(\frac{3 n}{4 n-2}\right)\left(\frac{2 n-2}{2 n}\right) \text { Note: the } \frac{3 n}{4 n-2} \text { term is calculated in part } \mathrm{b} \\
& =\frac{1}{2 n-1}+\frac{3 n-3}{4 n-2} \\
& =\frac{3 n-1}{4 n-2} \\
E[X] & =n * \frac{3 n-1}{4 n-2}=\frac{3 n^{2}-n}{4 n-2}
\end{aligned}
$$

b

$$
\begin{aligned}
X_{i}= & \begin{cases}1 & \text { the ith man is sitting next to a woman } \\
0 & \text { otherwise }\end{cases} \\
P\left(X_{i}=1\right) & =1-P\left(X_{i}=0\right) \\
& =1-\frac{\left(\begin{array}{c}
n-1 \\
2 n-1
\end{array}\right.}{\left(\begin{array}{c}
2
\end{array}\right)} \\
& =1-\frac{(n-1)(n-2)}{(2 n-1)(2 n-2)}=1-\frac{(n-1)(n-2)}{(4 n-2)(n-2)} \\
& =\frac{3 n}{4 n-2} \\
E[X] & =n * \frac{3 n}{4 n-2}=\frac{3 n^{2}}{4 n-2}
\end{aligned}
$$

