Statistics 430
 HW \#11 Solutions

Emil Pitkin

December 8, 2010

1 General principle

This homework relies heavily on indicator functions. To remove clutter, I'll present here a simple calculation that recurs often, but just here, once, and not again.

Whenever we define indicator functions ($X_{i}=1$ if some condition is met, 0 otherwise), we are usually interested in $E\left[\sum_{i=1}^{n} X_{i}\right]$. This equals $\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} P\left(X_{i}\right)$. After defining the indicator functions, we will proceed directly to calculating $P\left(X_{i}\right)$.

2 Ch 7 Problem 21

a

For each of the 365 days in the year, define

$$
X_{i}= \begin{cases}1 & 3 \text { people have birthdays on day } i \\ 0 & \text { otherwise }\end{cases}
$$

The number of birthdays on a given day is a binomial random variable, with $n=100$ and $p=\frac{1}{365}$.

$$
\begin{aligned}
P\left(X_{i}=1\right) & =\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{96} \\
365 *\binom{100}{3}\left(\frac{1}{365}\right)^{3}\left(\frac{364}{365}\right)^{96} & =.9301
\end{aligned}
$$

b

For each of the 365 days in the year, define

$$
X_{i}= \begin{cases}1 & \text { at least one person has a birthday on day } i \\ 0 & \text { otherwise }\end{cases}
$$

The probability that at least one birthday falls on day i is 1 minus the probability that no birthdays fall on day i, i.e., 1 minus the probability that all 100 birthdays fall on the other 364 days. If you like, the number of birthdays on a given day is a binomial random variable, with $n=100$ and $p=\frac{1}{365}$, and we want $1-\mathrm{P}(\mathrm{X}=0)$.

$$
\begin{aligned}
P\left(X_{i}=1\right) & =1-P\left(X_{i}=0\right) \\
& =1-\binom{100}{0}\left(\frac{1}{365}\right)^{0}\left(\frac{364}{365}\right)^{100} \\
365 *\left(1-\left(\frac{364}{365}\right)^{100}\right) & =87.58
\end{aligned}
$$

3 Ch 7 Problem 22

This is a thinly veiled version of example $2 i$, the coupon collecting problem. We need two facts:

- After we've rolled i distinct numbers, the number of rolls needed to roll a new number is a $\operatorname{Geo}\left(\frac{6-i}{6}\right)$ random variable. The probability of a "success" - rolling a new number - is $\frac{6-i}{6}$, since any of the $6-i$ previously unseen numbers, if rolled, will qualify as a new number. The search for the next new number terminates as soon as we see one. Hence the distribution is geometric with the aforementioned parameter.
- The expectation of a $\operatorname{Geo}(p)$ random variable is $\frac{1}{p}$

Answer: $\frac{6}{6}+\frac{6}{5}+\frac{6}{4}+\frac{6}{3}+\frac{6}{2}+\frac{6}{1}=14.7$

4 Ch 7 Problem 23

Take the hint. With X_{i} and Y_{i} defined as in the hint, the number of white balls seen is $\sum_{i=1}^{5} X_{i}+\sum_{i=1}^{8} Y_{i}$. When it comes time to withdraw the balls, we have 20 balls to withdraw (the original $18+$ the 2 which migrated). We withdraw 3 balls, so $P\left(Y_{i}=\right.$ $1)=\frac{3}{20} . \quad P\left(X_{i}=1\right)=P\left(X_{i}=1 \mid\right.$ ball i is transferred $) P($ ball i is transferred $)+P\left(X_{i}=\right.$ $1 \mid$ ball i is not transferred $) P$ (ball i is not transferred) $=\frac{2}{11} * \frac{3}{20}+0=\frac{3}{110}$. Hence the expected number of white balls withdrawn is

$$
\begin{aligned}
5 * P\left(X_{i}=1\right)+8 * P\left(Y_{i}=1\right) & =5 * \frac{3}{110}+8 * \frac{3}{20} \\
& =\frac{147}{110}=1.336
\end{aligned}
$$

$5 \quad$ Ch 7 Problem 35

In each of the following problems, let X denote the number of cards that need to be flipped over in order for r cards of a particular type to have been seen. X follows a negative hypergeometric distribution (example $3 e$), with parameters n ($=$ number of special cards, i.e., spades) and $\mathrm{m}(=52-n)$. We know that $E[X]=\frac{r(n+m+1)}{n+1}$. Since $n+m=52$, $E[X]=\frac{r * 53}{n+1}$

a

Here, $r=2, n=4$. So $E[X]=\frac{2 *(53)}{5}=21.2$
b
Here, $r=5, n=13$. So $E[X]=\frac{5 *(53)}{14}=18.929$

C
Here, $r=13, n=13$. So $E[X]=\frac{13 *(53)}{14}=49.214$

6 Ch 7 Problem 36

Let

$$
\begin{aligned}
& X_{i}= \begin{cases}1 & \text { the ith roll is a } 1 \\
0 & \text { otherwise }\end{cases} \\
& Y_{i}= \begin{cases}1 & \text { the ith roll is a } 2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Notice that X, the number of 1's, is equal to $\sum_{i=1}^{n} X_{i}$, with Y represented similarly. We are interested in $\operatorname{Cov}[X, Y]=E[X Y]-E[X] E[Y] . E[X]=E[Y]=\frac{n}{6}$,

$$
\begin{aligned}
E[X Y] & =E\left[\sum_{i=1}^{n} X_{i} * \sum_{i=1}^{n} Y_{i}\right] \\
& =E\left[\sum_{i=1}^{n} X_{i} Y_{i}\right]+E\left[\sum_{i=1}^{n} \sum_{i \neq j} X_{i} Y_{j}\right] \\
& =0+\frac{n(n-1)}{36}=\frac{n^{2}}{36}-\frac{n}{36}
\end{aligned}
$$

So

$$
\begin{aligned}
E[X Y]-E[X] E[Y] & =\frac{n^{2}}{36}-\frac{n}{36}-\frac{n}{36} \frac{n}{36} \\
& =-\frac{n}{36}
\end{aligned}
$$

7 Ch 7 Problem 37

Define F to be the outcome of the first roll, and S to be the outcome of the second roll. Since $\mathrm{X}=\mathrm{F}+\mathrm{S}$ and $\mathrm{Y}=\mathrm{F}-\mathrm{S}$, we are asked for $\operatorname{Cov}[F+S, F-S]$. Keep in mind that $E[F-S]=$ $E[F]-E[S]=3.5-3.5=0$, and that $E\left[F^{2}-S^{2}\right]=E\left[F^{2}\right]-E\left[S^{2}\right]=0$, since the rolls are identically distributed.

$$
\begin{aligned}
\operatorname{Cov}[F+S, F-S] & =E[(F+S)(F-S)]-E[F+S] E[F-S] \\
& =E\left[F^{2}-S^{2}\right]-E[F+S] E[F-S] \\
& =0-0=0
\end{aligned}
$$

This is a classic problem which I had when I took probability. The answer would be the same if we were asked for the covariance between the sum and difference of the two rolls.

8 Ch 7 Problem 42

a

$$
\begin{aligned}
X_{i} & = \begin{cases}1 & \text { the ith pair consists of a man and a woman } \\
0 & \text { otherwise }\end{cases} \\
P\left(X_{i}=1\right) & =\frac{\binom{10}{1}\binom{10}{1}}{\binom{20}{2}} \\
10 * \frac{\binom{10}{1}\binom{10}{1}}{\binom{20}{2}} & =\frac{100}{19}=5.26
\end{aligned}
$$

Variance time.

$$
\begin{aligned}
& \operatorname{Var}[X]=\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i=1}^{n} \sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
& \operatorname{Var}\left[X_{i}\right]=E\left[X_{i}\right]\left(1-E\left[X_{i}\right]\right)=\frac{10}{19} * \frac{9}{19} \\
& \operatorname{Cov}\left[X_{i}, X_{j}\right]=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=E\left[X_{i} X_{j}\right]-\left(\frac{10}{19}\right)^{2} \\
& E\left[X_{i} X_{j}\right]=P\left(X_{i}=1, X_{j}=1\right)=\frac{\binom{10}{1}\binom{10}{1}\binom{9}{1}\binom{9}{1}}{\binom{20}{2}\binom{18}{2}}=\frac{90}{19 * 17} \\
& \operatorname{Var}[X]=10 *\left[\frac{10}{19} \frac{9}{19}\right]+90\left[\frac{90}{19 * 17}-\frac{100}{361}\right] \\
& =2.6397
\end{aligned}
$$

b

$$
\begin{aligned}
X_{i} & = \begin{cases}1 & \text { the ith pair consists of a man and his wife } \\
0 & \text { otherwise }\end{cases} \\
P\left(X_{i}=1\right) & =\frac{10}{\binom{20}{2}} \\
10 * \frac{10}{\binom{20}{2}} & =\frac{10}{19}=.526
\end{aligned}
$$

Round two of variance time.

$$
\begin{aligned}
\operatorname{Var}[X] & =\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i=1}^{n} \sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
\operatorname{Var}\left[X_{i}\right] & =E\left[X_{i}\right]\left(1-E\left[X_{i}\right]\right)=\frac{1}{19} \frac{18}{19} \\
\operatorname{Cov}\left[X_{i}, X_{j}\right] & =E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right]=E\left[X_{i} X_{j}\right]-\left(\frac{1}{19}\right)^{2} \\
E\left[X_{i} X_{j}\right] & =P\left(X_{i}=1, X_{j}=1\right)=\frac{\binom{10}{1}\binom{9}{1}}{\binom{20}{2}}=\frac{90}{19 * 17} 2 \\
\operatorname{Var}[X] & =10 *\left[\frac{1}{19} \frac{18}{19}\right]+90\left[\frac{1}{19 * 17}-\frac{1}{361}\right] \\
& =.5279
\end{aligned}
$$

$9 \quad$ Ch 7 Problem 48

a

Since $X \sim \operatorname{Geo}\left(\frac{1}{6}\right), E[X]=6$.

b

If $Y=1$, we know that the first roll was a 5 . Henceforth, the number of rolls until we roll a 6 is a $\operatorname{Geo}\left(\frac{1}{6}\right)$ random variable, with expectation 6 . So $E[X \mid Y=1]=1+6=7$.

C

Since Y, the first instance of a 5 , is equal to 5 in this problem, we know that we could only have rolled $1,2,3,4$ or 6 in the first 4 rolls. If the first 6 appears in the first 4 rolls, X is a $\operatorname{Geo}\left(\frac{1}{5}\right)$ random variable. If the first 6 appears after the 5 th roll, then X is a $\operatorname{Geo}\left(\frac{1}{6}\right)$ random variable, with expectation 6.

$$
\begin{aligned}
E[X \mid Y=5] & =1 * P(X=1 \mid Y=5)+2 * P(X=2 \mid Y=5)+3 * P(X=3 \mid Y=5) \\
& +4 * P(X=4 \mid Y=5)+(5+6) P(X>5 \mid Y=5) \\
& =1 *\left(.2 * .8^{0}\right)+2 *\left(.2 * .8^{1}\right)+3 *\left(.2 * .8^{2}\right) \\
& +4 *\left(.2 * .8^{3}\right)+(5+6)\left(1-.2 * .8^{0}-.2 * .8^{1}-.2 * .8^{2}-.2 * .8^{3}\right) \\
& =5.8192
\end{aligned}
$$

10 Ch 7 Problem 50

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{\infty} \frac{e^{-x / y} e^{-y}}{y} d x \\
& =e^{-y} \\
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{\frac{e^{-x / y} e^{-y}}{y}}{e^{-y}} \\
& =\frac{e^{-x / y}}{y} \\
E\left[X^{2} \mid Y=y\right] & =\int_{0}^{\infty} \frac{x^{2} e^{-x / y}}{y} d x \quad \text { integrate by parts } \\
& =2 y^{2}
\end{aligned}
$$

11 Ch 7 Problem 58

a
Let F be the number of flips. Condition on the outcome of the first flip. If the first flip is heads, then the number of subsequent flips until tails is a Geo(1-p) random variable, with expectation $\frac{1}{1-p}$. So the expected number of total flips until heads and tails are flipped is $1+\frac{1}{1-p}$.

$$
\begin{aligned}
E[F] & =E\left[F \mid H_{1}\right] P\left(H_{1}\right)+E\left[F \mid T_{1}\right] P\left(T_{1}\right) \\
& =\left(1+\frac{1}{1-p}\right) p+\left(1+\frac{1}{p}\right)(1-p) \\
& =\frac{1}{p(1-p)}-1
\end{aligned}
$$

b

The last flip lands on heads if the first flip lands on tails, which occurs with probability $1-p$.

