Statistics 430
 HW \#3 Solutions

Thanks to Emil Pitkin

October 5, 2011

1 Ch 3 Problem 45

Denote the ith coin by C_{i}. Because the coins are randomly selected, $P\left(C_{i}\right)=\frac{1}{10}$, and because the coin is fair, $P(H)=P(T)=\frac{1}{2}$. We further assume that $P\left(H \mid C_{i}\right)=\frac{i}{10}$. Let i range from 1 to 10 .

$$
\begin{aligned}
P\left(C_{5} \mid H\right) & =\frac{P\left(H \mid C_{5}\right) P\left(C_{5}\right)}{\sum_{i=1}^{10} P\left(H \mid C_{i}\right) P\left(C_{i}\right)} \\
& =\frac{\frac{5}{10} * \frac{1}{10}}{\sum_{i=1}^{10} \frac{i}{10} * \frac{1}{10}} \\
& =\frac{5 / 10}{55 / 10} \\
& =\frac{1}{11}=.091
\end{aligned}
$$

2 Ch 3 Problem 55

By the definition on page 71, we know that events A and B are independent if $P(A \cap B)=$ $P(A) P(B)$. Denote membership in the male tribe by M and in the freshman class by Fr. We want $P(M \cap F r)=P(M) P(F r)$. Let $S G$ be the number of sophomore girls. For independence, SG must satisfy

$$
\begin{aligned}
P(M \cap F r) & =P(M) P(F r) \\
\frac{4}{4+6+6+S G} & =\frac{4+6}{16+S G} \frac{4+6}{16+S G} \\
\text { rearranging terms } 4(16+S G) & =100 \\
\boxed{S G} & =9
\end{aligned}
$$

3 Ch 3 Problem 48

Denote the event "opened drawer reveals silver coin" by S, and the event "both drawers contains silver coins" by B. Note that $B \cap S=B$, since if the opened drawer and both drawers have silver coins, then both drawers have silver coins. We are asked for the probability $P(B \mid S)$.

$$
\begin{aligned}
P(B \mid S) & =\frac{P(B \cap S)}{P(S)} \\
& =\frac{P(B)}{P(S)} \\
& =\frac{1 / 2}{3 / 4} \\
& =\frac{2}{3}
\end{aligned}
$$

4 Ch 3 Problem 60

a

Denote brown by B and blue by b. Because Smith's sister is blue-eyed, she inherited a blue gene from each parent. Since they are both brown-eyed, each must have a Bb pair. Of the brown-eyed offspring, BB, Bb, and bB are equally likely. Since Smith is brown-eyed, his probability of having a blue-eyed gene is $\frac{2}{3}$.

b

Smith's child will have blue eyes if it inherits a blue gene from both parents. Smith's wife will donate her blue gene with probability 1 . Brown-eyed Smith will donate a blue gene if his pair is Bb , and then with probability $\frac{1}{2}$. So $P($ child is blue-eyed $)=\mathrm{P}($ Smith is Bb$) \times$ $\mathrm{P}($ the b is donated Smith is Bb$)=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$.

C

Let us update our probabilities of Smith's genes. Denote by BB the event "Smith ahas two brown genes," and by K_{B} the event "Smith's first kid has brown eyes". Then

$$
\begin{aligned}
P\left(B B \mid K_{B}\right) & =\frac{P\left(K_{B} \mid B B\right) P(B B)}{P\left(K_{B} \mid B B\right) P(B B)+P\left(K_{B} \mid B b\right) P(B b)} \\
& =\frac{1 \times \frac{1}{3}}{1 \times \frac{1}{3}+\frac{1}{2} \times \frac{2}{3}} \\
& =\frac{1}{2}
\end{aligned}
$$

Denote the event "the second kid will also have brown eyes" by $K_{2 B}$. With our updated probabilities of Smith's genes,

$$
\begin{aligned}
P\left(K_{2 B}\right) & =P\left(K_{2 B} \mid B B\right) P(B B)+P\left(K_{2 B} \mid B b\right) P(B b) \\
& =1 \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

5 Ch 3 Problem 73

The denominator for each probability will be 2^{5}, since a child of either gender can be born for each of the 5 births.
a
Either all boys or all girls. $\frac{1+1}{2^{5}}=\frac{1}{16}=.0625$
b
The genders are entirely specified: GGBBB. $\frac{1}{2^{5}}=\frac{1}{32}=.03625$
c
$\frac{\binom{5}{3}}{2^{5}}=\frac{5}{16}=.3125$
d
Only the younger 3 children's genders are unspecified. $\frac{2^{3}}{2^{5}}=\frac{1}{4}=.25$
e
The complement of "at least 1 girl" is "all boys." $1-\frac{1}{2^{5}}=\frac{31}{32}=.96875$

6 Ch 4 Problem 1

Table 1: Probability distribution of winnings

Balls	Winnings(\$)	Probability (expression)	Probability (value)
2 white	-2	$\frac{\binom{8}{2}}{\binom{14}{2}}$	$\frac{28}{91}=.3077$
1 white 1 orange	-1	$\frac{\binom{8}{1}\binom{2}{1}}{\binom{14}{2}}$	$\frac{16}{91}=.1758$
2 orange	0	$\frac{\binom{2}{2}}{\binom{14}{2}}$	$\frac{1}{91}=.0110$
1 white 1 black	1	$\frac{\binom{8}{1}\binom{4}{1}}{\binom{14}{2}}$	$\frac{32}{91}=.3516$
1 black 1 orange	2	$\frac{\binom{4}{1}\binom{2}{1}}{\binom{14}{2}}$	$\frac{8}{91}=.0879$
2 black	4	$\frac{\binom{4}{2}}{\binom{14}{2}}$	$\frac{6}{91}=.0659$

7 Ch 4 Problem 4

The 5 men and 5 women can be ranked in $\binom{10}{5}$ possible ways. If the highest achieving woman attains the ith rank, then no woman occupies the top $i-1$ positions; the 4 remaining women hold 4 of the bottom $10-i$ positions. There are $\binom{10-i}{4}$ ways of selecting 4 rankings for 4 women in the bottom $10-i$ positions. Hence $P(X=i)=\frac{\binom{10-i}{4}}{\binom{10}{5}}$. The following table enumerates the possible values and associated probabilities explicitly.

i	$P(X=i)$
1	$\frac{\binom{9}{4}}{\binom{10}{5}}=\frac{1}{2}=.5$
2	$\frac{\binom{8}{4}}{\binom{10}{5}}=\frac{5}{18}=.278$
3	$\frac{\binom{7}{4}}{\binom{10}{5}}=\frac{5}{36}=.1389$
4	$\frac{\binom{6}{4}}{\binom{10}{5}}=\frac{5}{84}=.0595$
5	$\frac{\binom{5}{4}}{\binom{10}{5}}=\frac{5}{252}=.0198$
6	$\frac{\binom{4}{4}}{\binom{10}{5}}=\frac{1}{252}=.0040$
$7-10$	0

8 Ch 4 Problem 22

The Red Sox are playing the Yankees Y. Let p denote the probability that the Red Sox win a given game - p could be .6 , or .7 , or 1 , for example. Let N denote the number of games in a series.
a

$$
\begin{aligned}
& P(N=2)=p^{2}+(1-p)^{2} \\
& P(N=3)=\binom{2}{1}\left[p^{2}(1-p)+(1-p)^{2} p\right]=2[p(1-p)(p+1-p)]=2 p(1-p) \\
& \qquad \begin{aligned}
E(N) & =2 P(N=2)+3 P(N=3) \\
& =2\left[p^{2}+(1-p)^{2}\right]+3 *[2 p(1-p)] \\
& =2\left(-p^{2}+p+1\right)
\end{aligned}
\end{aligned}
$$

Take the first derivative, set is equal to zero, find that the critical point occurs at $\frac{1}{2}$. Confirm that your optimum is indeed a maximum by noticing that the second derivative $(=-4)$ is always negative.
b

$$
\begin{aligned}
& P(N=3)=p^{3}+(1-p)^{3} \\
& P(N=4)=\binom{3}{1}\left[p^{3}(1-p)+p(1-p)^{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
P(N=5) & =\binom{4}{2}\left[p^{3}(1-p)^{2}+p^{2}(1-p)^{3}\right] \\
E(N) & =3 P(N=3)+4 P(N=4)+5 P(N=5) \\
& \left.=3\left[p^{3}+(1-p)^{3}\right]+12\left[p^{3}(1-p)+p(1-p)^{3}\right]+30\left[p^{3}(1-p)^{2}+p^{2}(1-p)^{3}\right]\right] \\
& =3 p^{3}+3-9 p+9 p^{2}-3 p^{3}+12 p^{3}-12 p^{4}+12 p-36 p^{2} \\
& +36 p^{3}-12 p^{4}+30 p^{3}-60 p^{4}+30 p^{5}+30 p^{2}-90 p^{3}+90 p^{4}-30 p^{5} \\
& =3\left(2 p^{4}-4 p^{3}+p^{2}+p+1\right) \quad \text { after collecting the } 18 \text { terms }
\end{aligned}
$$

Substituting $\frac{1}{2}$ for p in $3\left(8 p^{3}-12 p^{2}+2 p+1\right)$ - the first derivative - yields 0 , confirming that $\frac{1}{2}$ is an optimum. Substituting $\frac{1}{2}$ for p in $3\left(24 p^{2}-24 p+2\right)$ - the second derivative - gives -12 , confirming that the optimum is indeed a maximum.

$9 \quad$ Ch 4 Problem 23

Because copper vascillates between $\$ 1$ and $\$ 4$, let's call our commodity C.

a

At the beginning of the week, buy a number of units of C, and sell them at the end of the week. Let $\$$ denote the amount of money we have at the end of the week.

- With probability $\frac{1}{2}, \$=(1000-2 C)+1 C$
- With probability $\frac{1}{2}, \$=(1000-2 C)+4 C$
- Therefore $E[\$]=\frac{1}{2}[1000-2 C+1 C+1000-2 C+4 C]=1000+\frac{1}{2} C$.

Subject to the constraint $0 \leq C \leq 500$, we notice that the expected cash on hand is a monotonically increasing function of C. Our strategy is therefore to buy 500 units of the commodity today a

b

At the beginning of the week, buy k units of commodity; at the end of the week buy some more.

- With probability $\frac{1}{2}, C=k+\frac{(1000-2 k)}{1}$
- With probability $\frac{1}{2}, C=k+\frac{(1000-2 k)}{4}$
- Therefore $E[C]=\frac{1}{2}\left[k+(1000-2 k)+k+\frac{(1000-2 k)}{4}\right]=625-\frac{k}{4}$.

We notice that the expected amount of commodity is a monotonically decreasing function of k , the amount purchased at the beginning of the week. Our strategy, then, is to spend all our money on the commodity a week from now.

10 Ch 4 Problem 30

a

Under no foreseeable circumstances. Let's calculate the probability of winning less than 1 million dollars on our first play - that is, the probability of (possibly miserable) failure.

Denote the event "winnings on nth flip" by T_{n}, since we lose on the nth flip if we see $n-1$ heads and then a tail.

At least how many consecutive heads must appear for us to win? Since we win 2^{n} dollars if we win on the nth flip, set $2^{n}>1,000,000$. Then $n \log 2>\log 1,000,000$ and $n>\frac{\log 1,000,000}{\log 2}=19.93$.
As long as the first tails comes up before the 20th flip, we lose. Therefore

$$
\begin{aligned}
P(\text { failure }) & =\sum_{i=1}^{19} P\left(T_{i}\right) \\
& =\sum_{i=1}^{19}\left(\frac{1}{2}\right)^{n} \\
& =\sum_{i=0}^{19}\left(\frac{1}{2}\right)^{n}-1 \\
& =\frac{1-\left(\frac{1}{2}\right)^{20}}{1-\frac{1}{2}}-1 \\
& =.999998
\end{aligned}
$$

So we have 2 chances in a million of recouping our buy-in.
b
Yes, if you have a well-padded bank account and a lot of time.

