Statistics 430
 HW \#4 Solutions

thanks to Emil Pitkin

October 12, 2011

1 Ch 4 Problem 25

a
$P(X=1)=.6 *(1-.7)+(1-.6) * .7=.46$.
b

- $P(X=0)=(1-.6) *(1-.7)=.12$
- $P(X=1)=.46$ from part a.
- $P(X=2)=1-.12-.46=.42$

$$
\begin{aligned}
E[X] & =0 P(X=0)+1 P(X=1)+2 P(X=2) \\
& =0 * .12+1 * .46+2 * .42=1.3
\end{aligned}
$$

2 Ch 4 Problem 28

Let X represent the number of defective items in the sample. Q : under what circumstances will we find i defective items? A: When i of the 3 items in our sample are defective, and the remaining $4-i$ defectives are buried among the 17 unsampled items. Any 4 of the 20 items could be defective. Therefore

$$
\begin{aligned}
P(X=i) & =\frac{\binom{3}{i}\binom{17}{4-i}}{\binom{20}{4}} \\
E[X] & =\sum_{i=0}^{3} i \frac{\binom{3}{i}\binom{17}{4-i}}{\binom{20}{4}} \\
& =\frac{0+2,040+816+51}{4845} \\
& =\frac{3}{5}=0.6
\end{aligned}
$$

3 Ch 4 Problem 35

a
Let W denote our winnings.

- $P(W=1.10)=\frac{\binom{5}{2}+\binom{5}{2}}{\binom{10}{2}}=\frac{4}{9}$
- $P(W=-1.00)=\frac{\binom{5}{1}\binom{5}{1}}{\binom{10}{2}}=\frac{5}{9}$
- $E[W]=1.1 * \frac{4}{9}-1 * \frac{5}{9}=-\frac{1}{15}=-.067$ dollars.
b

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-E[X])^{2}\right] \\
& =\frac{4}{9}\left[1.10-\left(-\frac{1}{15}\right)^{2}\right]+\frac{5}{9}\left[-1.00-\left(-\frac{1}{15}\right)^{2}\right] \\
& =\frac{49}{45}=1.089
\end{aligned}
$$

4 Ch 4 Problem 38

Because $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}$, we see that $E\left[X^{2}\right]=\operatorname{Var}[X]+E[X]^{2}$, which in our problem equals $5+1^{2}=6$.
a

$$
\begin{aligned}
E\left[(2+X)^{2}\right] & =E\left[4+4 X+X^{2}\right] \\
& =E[4]+4 E[X]+E\left[X^{2}\right] \\
& =4+4 * 1+6 \\
& =14
\end{aligned}
$$

b

$$
\begin{aligned}
\operatorname{Var}[4+3 X] & =\operatorname{Var}[3 X] \\
& =3^{2} \operatorname{Var}[X] \\
& =45
\end{aligned}
$$

5 Ch 4 Problem 41

If the man were not endowed with ESP-ness, then he would guess each coin's outcome correctly with probability $=.5$, and his number of correct guesses, X , would be distributed as a $\operatorname{Bin}(10, .5)$ random variable. The probability that he would have guessed at least 7 coin flips correctly is:

$$
\begin{aligned}
P(X \geq 7) & =\sum_{k=7}^{10}\binom{10}{k} \cdot 5^{k} \cdot 5^{10-k} \\
& =.5^{10}(120+45+10+1) \\
& =\frac{11}{64}=.1719
\end{aligned}
$$

6 Ch 4 Problem 49

a

Denote the event "first coin is flipped" by C_{1}, with C_{2} defined similarly. Let X be the number of heads out of 10 tosses.

$$
\begin{aligned}
P(X=7) & =P\left(X=7 \mid C_{1}\right) P\left(C_{1}\right)+P\left(X=7 \mid C_{2}\right) P\left(C_{2}\right) \\
& =\left[\binom{10}{7} \cdot 4^{7} \cdot 6^{3}\right] \frac{1}{2}+\left[\binom{10}{7} \cdot 7^{7} \cdot 3^{3}\right] \frac{1}{2} \\
& =[.0425] \cdot 5+[.2668] \cdot 5 \\
& =.1547
\end{aligned}
$$

b

By conditioning on the outcome of the first flip, we update the probability (now evenly split between coins 1 and 2) that coin 1 is being flipped. Let H_{1} denote the event "first flip is heads".

$$
\begin{aligned}
P\left(C_{1} \mid H_{1}\right) & =\frac{P\left(H_{1} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(H_{1} \mid C_{1}\right) P\left(C_{1}\right)+P\left(H_{1} \mid C_{2}\right) P\left(C_{2}\right)} \\
& =\frac{.4 * .5}{.4 * .5+.7 * .5} \\
& =\frac{4}{11}
\end{aligned}
$$

Our updated probabilities are now: $P\left(C_{1}\right)=\frac{4}{11}$ and $P\left(C_{2}\right)=\frac{7}{11}$. It is left to find the probability that 6 of the remaining 9 flips will land on heads - let Y be a $\operatorname{Bin}(9,6)$ random variable.

$$
\begin{aligned}
P(Y=6) & =P\left(Y=6 \mid C_{1}\right) P\left(C_{1}\right)+P\left(Y=6 \mid C_{2}\right) P\left(C_{2}\right) \\
& =\left[\binom{9}{6} \cdot 4^{6} \cdot 6^{3}\right] \frac{4}{11}+\left[\binom{9}{6} \cdot 7^{6} \cdot 3^{3}\right] \frac{7}{11} \\
& =[.0743] \cdot 3636+[.2668] \cdot 6364 \\
& =.1968
\end{aligned}
$$

7 Ch 4 Problem 5*

Claim: $\left.\sum_{i=0}^{\infty} i P(N>i)=\frac{1}{2} E\left[N^{2}\right]-E[N]\right)$
Proof:

$$
\begin{aligned}
\sum_{i=0}^{\infty} i P(N>i) & =\sum_{i=0}^{\infty} i \sum_{k=i+1}^{\infty} P(N=k) \\
& =\sum_{i=0}^{k-1} i \sum_{k=1}^{\infty} P(N=k) \\
& =\frac{(k-1) k}{2} \sum_{k=1}^{\infty} P(N=k) \\
& =\frac{1}{2}\left[k^{2} \sum_{k=1}^{\infty} P(N=k)-k \sum_{k=1}^{\infty} P(N=k)\right] \\
& \left.=\frac{1}{2} E\left[N^{2}\right]-E[N]\right)
\end{aligned}
$$

as we had set out to prove

8 Ch 4 Problem 10*

$$
\begin{aligned}
E\left[\frac{1}{X+1}\right] & =\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} \frac{1}{k+1} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} \frac{n!}{(k+1)!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\frac{1}{p(n+1)} \sum_{k=0}^{n} \frac{(n+1)!}{(k+1)!(n-k)!} p^{k+1}(1-p)^{n-k} \\
& =\frac{1}{p(n+1)} \sum_{k=0}^{n}\binom{n+1}{k+1} p^{k+1}(1-p)^{n-k} \\
& =\frac{1}{p(n+1)} \sum_{j=1}^{m}\binom{m}{j} p^{j}(1-p)^{m-j} \quad \mathrm{j}=\mathrm{k}+1 ; \mathrm{m}=\mathrm{n}+1 \\
& =\frac{1}{p(n+1)}\left[\sum_{j=0}^{m}\binom{m}{j} p^{j}(1-p)^{m-j}-\binom{m}{0} p^{0}(1-p)^{m-0}\right] \\
& =\frac{1}{p(n+1)}\left[1-(1-p)^{m}\right] \\
& =\frac{1}{p(n+1)}\left[1-(1-p)^{n+1}\right]
\end{aligned}
$$

as required Notice, for example, that when $p=1$, the expectation of $\frac{1}{X+1}$ is $\frac{1}{n+1}$, as expected.

