Statistics 430
 HW \#5 Solutions

Emil Pitkin

October 27, 2010

1 Ch 4 Problem 54 - Poisson paradigm

Because the number of cars speeding along a highway is large, and the probability that a given car is abandoned is small, we can estimate the number of weekly abandoned cars (X) by a Poisson random variable. Here, $\mathrm{X} \sim \operatorname{Pois}(2.2)$.
a
$P(X=0)=\frac{e^{-2.2} * 2.2^{0}}{0!}=e^{-2.2}=.111$
b
$P(X \geq 2)=1-P(X=0)-P(X=1)=1-e^{-2.2}-\frac{e^{-2.2} * 2.2^{1}}{1!}=1-3.2 e^{-2.2}=.645$

2 Ch 4 Problem 57

Let X denote the number of accidents occurring on the highway each day: $\mathrm{X} \sim \operatorname{Pois}(3)$.
a
$P(X \geq 3)=1-P(X=0)-P(X=1)-P(X=2)=1-e^{-3}-3 e^{-3}-\frac{e^{-3} *(3)^{2}}{2!}=1-8.5 e^{-3}=.5768$
b

$$
\begin{aligned}
P(X \geq 3 \mid X \geq 1) & =\frac{P(X \geq 3 \cap X \geq 1)}{P(X \geq 1)} \\
& =\frac{P(X \geq 3)}{P(X \geq 1)} \\
& =\frac{P(X \geq 3)}{1-P(X=0)} \\
& =\frac{.5768}{1-e^{-3}} \\
& =.6070
\end{aligned}
$$

3 Ch 4 Problem 60

Let X denote the number of colds Mr . Sniffles contracts during the year: $\mathrm{X} \sim \operatorname{Pois}(\lambda)$. We are given that $P(\lambda=5)=.25$, and $P(\lambda=3)=.75$. The drug is beneficial if for a given individual, $\lambda=3$.

$$
\begin{aligned}
P(\lambda=3 \mid X=2) & =\frac{P(X=2 \mid \lambda=3) P(\lambda=3)}{P(X=2 \mid \lambda=3) P(\lambda=3)+P(X=2 \mid \lambda=5) P(\lambda=5)} \\
& =\frac{.75 * \frac{e^{-3} * 3^{2}}{2!}}{.75 * \frac{e^{-3} * 3^{2}}{2!}+.25 * \frac{e^{-5} * 5^{2}}{2!}} \\
& =.8886
\end{aligned}
$$

4 Ch 4 Problem 61

We are met with the Poisson paradigm again. We are dealt a large number of poker hands ($n=1000$), with a small probability of a full house each time ($p=.0014$). The number of full houses (X) can therefore be approximated by a Poisson random variable with mean $n p=1.4$.
$P(X \geq 2)=1-P(X=0)-P(X=1)=1-e^{-1.4}-1.4 e^{-1.4}=1-2.4 e^{-1.4}=.4082$

5 Ch 4 Problem 71

Denote the event "Smith wins his ith bet" by W_{i}. Then $P\left(W_{i}\right)$ is $\frac{12}{38}$. We assume that the roulette spins are independent.
a
$P\left(\bigcup_{i=1}^{5} W_{i}^{c}\right)=\prod_{i=1}^{5} P\left(W_{i}\right)^{c}=\left(\frac{26}{38}\right)^{5}=.1500$.
b

$$
\left(\frac{26}{38}\right)^{3}\left(\frac{12}{38}\right)=.1012
$$

6 Ch 4 Problem 74

a

The number of potential interviewees who consent to the interview (X) is a Binomial random variable, with $n=5$ and $p=\frac{2}{3}$. Q: What is the probability that each of the 5 people consents to the interview?
A: $P(X=5)=\binom{5}{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{0}=\left(\frac{2}{3}\right)^{5}=\frac{32}{243}=.1317$.
b
Now $X \sim \operatorname{Binom}\left(8, \frac{2}{3}\right)$.

$$
\begin{aligned}
P(X \geq 5) & =\sum_{k=5}^{8}\binom{8}{k}\left(\frac{2}{3}\right)^{k}\left(\frac{1}{3}\right)^{8-k} \\
& =.7414
\end{aligned}
$$

c

We are asked for the probability that the 6th potential interviewee will be the 5 th to consent.

$$
\begin{aligned}
P(X=6) & =\binom{5}{4}\left(\frac{2}{3}\right)^{5} \frac{1}{3} \\
& =\frac{160}{729}=.2731
\end{aligned}
$$

d

$$
\begin{aligned}
P(X=7) & =\binom{6}{4}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{2} \\
& =\frac{160}{729}=.2731
\end{aligned}
$$

7 Ch 4 Problem 76

The pipe-smoking mathematician carries N_{1} matches in his left pocket, and N_{2} in his right. When he discovers that one of the boxes is empty, let X be the number of matches left in the other box.

We calculate $P(X=k)$. First consider the case when he discovers that the left box is empty. He must have reached into the left box $N_{1}+1$ times (N times he retrieved a match;
the next time he discovered it was empty). Because, by assumption, k matches remain in the right-hand box, he must have reached into it $N_{2}-k$ times. He therefore reached for matches a total of $N_{1}+N_{2}+1-k$ times.

The last time he reached, he must have reached into the left-hand pocket. Of the first $N_{1}+N_{2}-k$ reaches, he reached into the left-hand pocket N_{1} times, making for a total of $\binom{N_{1}+N_{2}-k}{N_{1}}$ possible sequences of reaches. Since he chooses the right or left pocket with probability $\frac{1}{2}$ each time, the probability of any given sequence of $N_{1}+N_{2}+1-k$ reaches occurs with probability $\left(\frac{1}{2}\right)^{2 N+1-k}$.

The probability of k matches remaining in the right hand pocket is therefore $\binom{N_{1}+N_{2}-k}{N_{1}}\left(\frac{1}{2}\right)^{N_{1}+N_{2}-}$ By symmetry, the probability of k matches remaining in the left hand pocket when the right pocket is found empty is $\binom{N_{1}+N_{2}-k}{N_{2}}\left(\frac{1}{2}\right)^{N_{1}+N_{2}-k+1}$. Adding, we find that

$$
P(X=k)=\binom{N_{1}+N_{2}-k}{N_{1}}\left(\frac{1}{2}\right)^{N_{1}+N_{2}-k+1}+\binom{N_{1}+N_{2}-k}{N_{2}}\left(\frac{1}{2}\right)^{N_{1}+N_{2}-k+1}
$$

8 Ch 4 Problem 78

Because we keep selecting (that is, failing) until exactly two of the balls we draw are white, the number of selections, X , is a geometric random variable, with parameter $p=\frac{\binom{4}{2}^{2}}{\binom{8}{4}}=\frac{18}{35}$.

$$
\begin{aligned}
P(X=n) & =(1-p)^{n-1} p \\
& =\left(1-\frac{18}{35}\right)^{n-1} * \frac{18}{35} \\
& =\frac{(17)^{n-1} 18}{(35)^{n}}
\end{aligned}
$$

9 Ch 4 Problem 79

X is a hypergeometric random variable.
a

$$
\begin{aligned}
P(X=0) & =\frac{\binom{6}{0}\binom{94}{10}}{\binom{100}{10}} \\
& =.5223
\end{aligned}
$$

b

$$
\begin{aligned}
P(X>2) & =1-P(X=0)-P(X=1)-P(X=2) \\
& =1-.5223-\frac{\binom{6}{1}\binom{94}{9}}{\binom{100}{10}}-\frac{\binom{6}{2}\binom{94}{8}}{\binom{100}{10}} \\
& =.0126
\end{aligned}
$$

10 Ch 4 Problem 80

a

A payoff is "fair" when the expected winnings are 0 . Without loss of generality, assume that the gambler bets $\$ 1$. The player wins his bet with probability $\frac{20 * 19}{80 * 79}=\frac{19}{316}$, and loses his dollar with probability $\frac{297}{316}$. Let X be the gambler's expected winnings. In order for $E[X]=0$, the payoff F must be such that

$$
\begin{aligned}
\frac{297}{316} *(-1)+\frac{19}{316} F & =0 \\
F & =\frac{297}{19}=15.63
\end{aligned}
$$

Unsurprisingly, the casino $f^{* * *}$ s over the gambler.

b

$P_{n, k}$ is a hypergeometric random variable. The casino selects the 20 numbers in any of $\binom{80}{20}$ possible ways. We choose n numbers, of which k must be winning numbers $\left(\binom{20}{k}\right.$ such numbers), and the remaining $20-k$ winning numbers must lie among the $80-n$ numbers we did not choose ($\binom{80-n}{20-k}$ ways).

$$
P_{n, k}=\frac{\binom{20}{k}\binom{(80-n}{20-k}}{\binom{80}{20}}
$$

C

Let F be the payoff.

$$
\begin{aligned}
E[F] & =-1 * \frac{\binom{10}{0}\binom{70}{00-0}}{\binom{80}{20}}+-1 * \frac{\binom{10}{1}\binom{70}{00-1}}{\binom{80}{20}}+-1 * \frac{\binom{10}{2}\binom{70}{20-2}}{\binom{80}{20}}+-1 * \frac{\binom{10}{3}\binom{70}{20-3}}{\binom{80}{20}} \\
& +-1 * \frac{\binom{10}{4}\binom{70}{20-4}}{\binom{80}{20}}+1 * \frac{\binom{10}{5}\binom{70-5}{20-5}}{\binom{80}{20}}+17 * \frac{\binom{10}{6}\binom{70}{20-6}}{\binom{80}{20}}+179 * \frac{\binom{10}{7}\binom{70-7}{20-7}}{\binom{80}{20}} \\
& +1299 * \frac{\binom{10}{8}\binom{70}{20-8}}{\binom{80}{20}}+2599 * \frac{\binom{10}{9}\binom{70-9}{20-9}}{\binom{80}{20}}+24999 * \frac{\binom{70}{10}\left(\begin{array}{c}
80-10
\end{array}\right)}{\binom{80}{20}} \\
& =-.206
\end{aligned}
$$

11 Ch 4 Problem 84

a

Define the following indicator random variables:

$$
I_{i}=\left\{\begin{array}{ll}
1 & \text { Box i is empty } \\
0 & \text { otherwise }
\end{array}\right\}
$$

The number of empty boxes is given by $\sum_{i=1}^{5} I_{i}$. What are we interested in? The expected number of boxes with no balls lodged inside, which is given by

$$
\begin{aligned}
E\left[\sum_{i=1}^{5} I_{i}\right] & =\sum_{i=1}^{5} E\left[I_{i}\right] \\
& =\sum_{i=1}^{5} P\left(I_{i}=1\right) \\
& =\sum_{i=1}^{5}\left(1-p_{i}\right)^{10}
\end{aligned}
$$

b

We proceed analagously. Define the following indicator random variables:

$$
I_{i}=\left\{\begin{array}{ll}
1 & \text { Box i has one ball inside } \\
0 & \text { otherwise }
\end{array}\right\}
$$

The number of boxes with a single ball is given by $\sum_{i=1}^{5} I_{i}$. What are we interested in? The expected number of boxes with exactly one ball lodged inside, which is given by

$$
\begin{aligned}
E\left[\sum_{i=1}^{5} I_{i}\right] & =\sum_{i=1}^{5} E\left[I_{i}\right] \\
& =\sum_{i=1}^{5} P\left(I_{i}=1\right) \\
& =\sum_{i=1}^{5}\binom{10}{1}\left(p_{i}\right)^{1}\left(1-p_{i}\right)^{9}
\end{aligned}
$$

12 Ch 4 Theoretical Exercise 18*

We are asked to find the value of λ that maximizes $P(X=k)$, where X is a $\operatorname{Pois}(\lambda)$ random variable.

$$
P(X=k)=\frac{e^{-\lambda} * \lambda^{k}}{k!}
$$

Take the derivative with respect to λ, set the expression equal to 0 , and solve for λ :

$$
\begin{aligned}
\frac{1}{k!}\left(e^{-\lambda} * k \lambda^{k-1}-e^{-\lambda} \lambda^{k}\right) & =0 \\
\underbrace{\left[\frac{1}{k!} e^{-\lambda} * \lambda^{k-1}\right]}_{\text {kill it }}(k-\lambda) & =0 \\
& \Rightarrow \lambda^{*}=k
\end{aligned}
$$

13 Ch 4 Theoretical Exercise 19*

Claim:

$$
E\left[X^{n}\right]=\lambda E\left[(X+1)^{n-1}\right]
$$

Proof:

$$
\begin{aligned}
\lambda E\left[(X+1)^{n-1}\right] & =\lambda \sum_{k=0}^{\infty} \frac{(k+1)^{n-1} e^{-\lambda} \lambda^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \frac{(k+1)^{n} e^{-\lambda} \lambda^{k+1}}{(k+1)!} \\
& =\sum_{j=1}^{\infty} \frac{(j)^{n} e^{-\lambda} \lambda^{j}}{(j)!} \\
& =\sum_{j=0}^{\infty} \frac{(j)^{n} e^{-\lambda} \lambda^{j}}{(j)!} \\
& =E\left[X^{n}\right] \\
E\left[X^{3}\right] & =\lambda E\left[(X+1)^{2}\right] \\
& =\lambda\left(E\left[X^{2}+2 E[X]+1\right]\right) \\
& =\lambda(\lambda E[X+1]+2 E[X]+1) \\
& =\lambda\left(\lambda^{2}+\lambda+2 \lambda+1\right) \\
& =\lambda^{3}+3 \lambda^{2}+\lambda
\end{aligned}
$$

