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1 Ch 5 Problem 3

Neither is a density function. Both 2x−x3 and 2x−x2 attain positive and negative values
in the interval 0 < x < 5

2
, so no matter the value of C, f(x) is negative somewhere in the

interval. In contrast, density functions are, by definition, non-negative.

2 Ch 5 Problem 5

When the tank’s capacity is the 99th percentile of sales volume, the probability of the supply’s
being exhausted in a given week is .01. Let C denote the tank’s capacity. We wish for C to
satisfy

5

∫ C

0

(1− x)4dx = .99

−(1− x)5
∣∣∣C
0

= .99

(1− C)5 = .01

⇒ C = 1− 5
√
.01 = .602

The tank’s capacity should therefore be 602 gallons.

3 Ch 5 Problem 7

We will solve two simultaneous equations. We are equipped with two pieces of knowledge:
1) E[X] = 3

5
and

2) the density must integrate to 1.

Expectation equation: ∫ 1

0

x(a+ bx2)dx =
3

5

(
a

2
x2 +

b

4
x4)
∣∣∣1
0

=
3

5
a

2
+
b

4
=

3

5

1



Density equation: ∫ 1

0

a+ bx2dx = 1

ax+
b

3
x3
∣∣∣1
0

= 1

a+
b

3
= 1

Solving the two equations for a and b yields a = 3
5

and b = 6
5

4 Ch 5 Problem 8*

Integrate by parts:

E[X] =

∫ ∞
0

x2e−xdx

= −x2e−x
∣∣∣1
0
− 2

∫ 1

0

xe−xdx

= −1

e
− 2

[
−xe−x

∣∣∣1
0
−
∫ 1

0

e−xdx

]
= −1

e
− 2

[
−1

e
+ e−x

∣∣∣1
0

]
= −1

e
− 2

[
−1

e
+

(
1

e
− 1

)]
= 2 hours

5 Ch 5 Problem 11

Let X be the location of the chosen point. Then X ∼ Unif [0, L]. We can assume without
loss of generality that L equals 1.

P

(
X

1−X
<

1

4

)
+ P

(
X

1−X
> 4

)
= P (4X < 1−X) + P (X > 4− 4X)

= P

(
X <

1

5

)
+

(
X >

4

5

)
= .2 + .2 = .4

6 Ch 5 Problem 12

The more efficient placement would minimize the expected distance between breakdown point
and bus service station. Let B denote the breakdown point. Under the present arrangement,
the minimum distance M between B and a service station is given by
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M =


B 0 < B < 25
50−B 25 < B < 50
B − 50 50 < B < 75
100−B 75 < B < 100

E[M ] =

∫ 25

0

B ∗ 1

100
dB +

∫ 50

25

(50−B) ∗ 1

100
dB

+

∫ 75

50

(B − 50) ∗ 1

100
dB +

∫ 100

75

(100−B) ∗ 1

100
dB

=
1

100

(
B2

2

∣∣∣25
0

+

[
50B − B2

2

]∣∣∣50
25

+

[
B2

2
− 50B

]∣∣∣75
50

+

[
100B − B2

2

]∣∣∣100
75

)
=

1

100

[
252 − 02

2
+

(
50 ∗ 25− 502 − 252

2

)]
+

1

100

[(
752 − 502

2
− 50 ∗ 25

)
+

(
50 ∗ 25− 1002 − 752

2

)]
= 12.5 miles

We could have avoided the mess and arrived at the same happy ending by arguing by sym-
metry.

Under the alternate arrangement, the minimum distance M between B and a service station
is given by

M =



B 0 < B < 12.5
25−B 12.5 < B < 25
B − 25 25 < B < 37.5
50−B 37.5 < B < 50
B − 50 50 < B < 62.5
75−B 62.5 < B < 75
B − 75 75 < B < 87.5
100−B 37.5 < B < 50

With analagous calculations and reasoning, we find that the expected distance between the
breakdown point and nearest rest stop is 6.25 miles . Indeed, the alternate arrangement is
more efficient.

7 Ch 5 Problem 13

Let A be the number of minutes past 10 o’clock when the bus arrives. A ∼ Unif [0, 30].
Recall that the CDF of a Unif [a, b] random variable is given by F (x) = x−a

b−a .

a

P (A > 10) = 1− F (10)

= 1− 10− 0

30− 0
=

2

3

3



b

P (A > 25|A > 15) =
P (A > 25 ∩ A > 10)

P (A > 15)

=
P (A > 25)

P (A > 15)

= 1
6/1

2

= 1
3

8 Ch5 Problem 14*

If X ∼ U(0, 1), then f(x) = 1 for 0 < x < 1 and F (x) = x for 0 < x < 1. Since 0 < X < 1,
so 0 < Xn < 1. By using Proposition 2.1,

E(Xn) =

∫ 1

0

P (Xn > t)dt

=

∫ 1

0

P (X > t1/n)dt

=

∫ 1

0

1− P (X ≤ t1/n)dt

=

∫ 1

0

1− F (t1/n)dt

=

∫ 1

0

1− t1/ndt

=

[
t− t

1
n
+1

1
n

+ 1

]1
0

= 1− n

n+ 1

=
1

n+ 1
.

By using the definition of expectation, we first have to derive the pdf for f(xn). To do
this, we find the cumulative distribution function and take the derivative (aka FXn(x) =∫ x
0
f(x)dx⇒ d

dx
FXn(x) = f(x), by the Fundamental Theorem of Calculus)

FXn(x) = P (Xn < x) = P (X < x1/n) = x1/n ⇒ 1

n
x1/n−1
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Then, our expectation is:

E(Xn) =

∫ 1

0

x
1

n
x1/n−1dx

=

∫ 1

0

1

n
x

1
ndx

=
1

n

[
x

1
n
+1

1
n

+ 1

]1
0

=
1

n

[
1

1
n

+ 1

]
=

1

n+ 1
.

9 Ch 5 Problem 15

a

P (X > 5) = P

(
X − µ
σ

>
5− 10

6

)
= P (Z > −.83)

= .798

b

P (4 < X < 16) = P (Z <
16− 10

6
)− P (Z <

4− 10

6
)

= P (Z < 1)− P (Z < −1)

= .683

c

P (X < 8) = P (Z <
8− 10

6
)

= P (Z < −.33)

= .369

d

P (X < 20) = P (Z <
20− 10

6
)

= P (Z < 1.67)

= .952
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e

P (X > 16) = P (Z >
16− 10

6
)

= P (Z > 1)

= .159

10 Ch 5 Problem 17

Let D denote the distance from the shot to the target. We are given that D ∼ Unif [0, 10].
The winnings W are distributed as follows:

W =


10 0 < D < 1
5 1 < D < 3
3 3 < D < 5
0 5 < D < 10

E[W ] =
∑
wi

wip(wi)

= 10 ∗ 1

10
+ 5 ∗ 2

10
+ 3 ∗ 2

5
+ 0 ∗ 1

2

= 2.6

11 Ch5 Problem 18*

Let X be a normal random variable with mean 5 and variance σ2. X ∼ N(5, σ2). If
0.2 = P (X > 9), then

0.8 = P (X ≤ 9)

= P

(
X − 5

σ
≤ 9− 5

σ

)
, where

X − 5

σ
= Z ∼ N(0, 1)

= Φ

(
4

σ

)
From a standard normal table, we have Φ−1(0.8) = 0.842. Thus

4

σ
= 0.842⇒ σ = 4.75.

Hence V ar(X) = σ2 = 22.56.

12 Ch5 Theoretical Problem 2*

In order to show that

E[Y ] =

∫ ∞
0

P (Y > y)dy −
∫ ∞
0

P (Y < −y)dy,

6



it is equivalent to show that∫ ∞
0

P (Y < −y)dy = −
∫ 0

−∞
xfY (x)dx (1)∫ ∞

0

P (Y > y)dy =

∫ ∞
0

xfY (x)dx. (2)

Now we are showing (1),

LHS =

∫ ∞
y=0

(∫ −y
x=−∞

fY (x)dx

)
dy

=

∫ 0

x=−∞

(∫ −x
y=0

1dy

)
fY (x)dx

=

∫ 0

x=−∞
−xfY (x)dx

= RHS.

And showing (2),

LHS =

∫ ∞
y=0

(∫ ∞
x=y

fY (x)dx

)
dy

=

∫ ∞
x=0

(∫ x

y=0

1dy

)
fY (x)dx

=

∫ ∞
x=0

xfY (x)dx

= RHS.

Combining (1) and (2), we have

E[Y ] =

∫ ∞
−∞

yfY (y)dy

=

∫ 0

−∞
xfY (x)dx+

∫ ∞
0

xfY (x)dx, where x, y are dummy

= (2)− (1).

13 Ch5 Theoretical Problem 5*

For a nonnegative random variable X, (Xn nonnegative) we have

E[Xn] =

∫ ∞
t=0

P (Xn > t)dt.

Using change of variables t = xn, {Xn > xn} ⇔ {X > x} and dt
dx

= nxn−1,
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E[Xn] =

∫ ∞
x=0

P (X > x)
dt

dx
dx

=

∫ ∞
x=0

P (X > x)nxn−1dx, as required.

14 Ch5 Theoretical Problem 8

15 Ch5 Theoretical Problem 13

We derive all of these medians using the definition of the median (i.e. m is a median of X
if F (m) = 1

2
), rather than intuition (because it’s obvious, otherwise)

15.1 a

15.2 b

15.3 c

16 Ch5 Theoretical Problem 21

Using x→
√

2x change of variables, we get the following

Γ(
1

2
) =

∫ ∞
0

e−xx−1/2dx =

∫ ∞
0

e−
1
2
y2
(

1

2
y2
)−1/2

ydy =

∫ ∞
0

√
2e−

1
2
y2dy =

√
π

where the last equality uses
∫∞
0

1√
2π
e−

1
2
y2dy = 1

2
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