Statistics 430
 HW \#6 Solutions

Hyunseung Kang, Emil Pitkin, and Yun Zhang

October 31, 2011

1 Ch 5 Problem 3

Neither is a density function. Both $2 x-x^{3}$ and $2 x-x^{2}$ attain positive and negative values in the interval $0<x<\frac{5}{2}$, so no matter the value of $\mathrm{C}, f(x)$ is negative somewhere in the interval. In contrast, density functions are, by definition, non-negative.

2 Ch 5 Problem 5

When the tank's capacity is the 99th percentile of sales volume, the probability of the supply's being exhausted in a given week is .01 . Let C denote the tank's capacity. We wish for C to satisfy

$$
\begin{aligned}
5 \int_{0}^{C}(1-x)^{4} d x & =.99 \\
-\left.(1-x)^{5}\right|_{0} ^{C} & =.99 \\
(1-C)^{5} & =.01 \\
& \Rightarrow C=1-\sqrt[5]{.01}=.602
\end{aligned}
$$

The tank's capacity should therefore be 602 gallons.

3 Ch 5 Problem 7

We will solve two simultaneous equations. We are equipped with two pieces of knowledge:

1) $E[X]=\frac{3}{5}$ and
2) the density must integrate to 1 .

Expectation equation:

$$
\begin{aligned}
\int_{0}^{1} x\left(a+b x^{2}\right) d x & =\frac{3}{5} \\
\left.\left(\frac{a}{2} x^{2}+\frac{b}{4} x^{4}\right)\right|_{0} ^{1} & =\frac{3}{5} \\
\frac{a}{2}+\frac{b}{4} & =\frac{3}{5}
\end{aligned}
$$

Density equation:

$$
\begin{aligned}
\int_{0}^{1} a+b x^{2} d x & =1 \\
a x+\left.\frac{b}{3} x^{3}\right|_{0} ^{1} & =1 \\
a+\frac{b}{3} & =1
\end{aligned}
$$

Solving the two equations for a and b yields $a=\frac{3}{5}$ and $b=\frac{6}{5}$

4 Ch 5 Problem 8*

Integrate by parts:

$$
\begin{aligned}
E[X] & =\int_{0}^{\infty} x^{2} e^{-x} d x \\
& =-\left.x^{2} e^{-x}\right|_{0} ^{1}-2 \int_{0}^{1} x e^{-x} d x \\
& =-\frac{1}{e}-2\left[-\left.x e^{-x}\right|_{0} ^{1}-\int_{0}^{1} e^{-x} d x\right] \\
& =-\frac{1}{e}-2\left[-\frac{1}{e}+\left.e^{-x}\right|_{0} ^{1}\right] \\
& =-\frac{1}{e}-2\left[-\frac{1}{e}+\left(\frac{1}{e}-1\right)\right] \\
& =2 \text { hours }
\end{aligned}
$$

5 Ch 5 Problem 11

Let X be the location of the chosen point. Then $X \sim \operatorname{Unif}[0, L]$. We can assume without loss of generality that L equals 1 .

$$
\begin{aligned}
P\left(\frac{X}{1-X}<\frac{1}{4}\right)+P\left(\frac{X}{1-X}>4\right) & =P(4 X<1-X)+P(X>4-4 X) \\
& =P\left(X<\frac{1}{5}\right)+\left(X>\frac{4}{5}\right) \\
& =.2+.2=.4
\end{aligned}
$$

6 Ch 5 Problem 12

The more efficient placement would minimize the expected distance between breakdown point and bus service station. Let B denote the breakdown point. Under the present arrangement, the minimum distance M between B and a service station is given by

$$
\begin{aligned}
M= & \begin{cases}B & 0<B<25 \\
50-B & 25<B<50 \\
B-50 & 50<B<75 \\
100-B & 75<B<100\end{cases} \\
E[M]= & \int_{0}^{25} B * \frac{1}{100} d B+\int_{25}^{50}(50-B) * \frac{1}{100} d B \\
& +\int_{50}^{75}(B-50) * \frac{1}{100} d B+\int_{75}^{100}(100-B) * \frac{1}{100} d B \\
= & \frac{1}{100}\left(\left.\frac{B^{2}}{2}\right|_{0} ^{25}+\left.\left[50 B-\frac{B^{2}}{2}\right]\right|_{25} ^{50}+\left.\left[\frac{B^{2}}{2}-50 B\right]\right|_{50} ^{75}+\left.\left[100 B-\frac{B^{2}}{2}\right]\right|_{75} ^{100}\right) \\
= & \frac{1}{100}\left[\frac{25^{2}-0^{2}}{2}+\left(50 * 25-\frac{50^{2}-25^{2}}{2}\right)\right] \\
& +\frac{1}{100}\left[\left(\frac{75^{2}-50^{2}}{2}-50 * 25\right)+\left(50 * 25-\frac{100^{2}-75^{2}}{2}\right)\right] \\
= & 12.5 \text { miles }
\end{aligned}
$$

We could have avoided the mess and arrived at the same happy ending by arguing by symmetry.

Under the alternate arrangement, the minimum distance M between B and a service station is given by

$$
M=\left\{\begin{array}{lc}
B & 0<B<12.5 \\
25-B & 12.5<B<25 \\
B-25 & 25<B<37.5 \\
50-B & 37.5<B<50 \\
B-50 & 50<B<62.5 \\
75-B & 62.5<B<75 \\
B-75 & 75<B<87.5 \\
100-B & 37.5<B<50
\end{array}\right.
$$

With analagous calculations and reasoning, we find that the expected distance between the breakdown point and nearest rest stop is 6.25 miles. Indeed, the alternate arrangement is more efficient.

7 Ch 5 Problem 13

Let A be the number of minutes past 10 o'clock when the bus arrives. $A \sim \operatorname{Unif}[0,30]$. Recall that the CDF of a Unif $[a, b]$ random variable is given by $F(x)=\frac{x-a}{b-a}$.
a

$$
\begin{aligned}
P(A>10) & =1-F(10) \\
& =1-\frac{10-0}{30-0}=\frac{2}{3}
\end{aligned}
$$

b

$$
\begin{aligned}
P(A>25 \mid A>15) & =\frac{P(A>25 \cap A>10)}{P(A>15)} \\
& =\frac{P(A>25)}{P(A>15)} \\
& =\frac{1}{6} / \frac{1}{2} \\
& =\frac{1}{3}
\end{aligned}
$$

8 Ch5 Problem 14*

If $X \sim U(0,1)$, then $f(x)=1$ for $0<x<1$ and $F(x)=x$ for $0<x<1$. Since $0<X<1$, so $0<X^{n}<1$. By using Proposition 2.1,

$$
\begin{aligned}
E\left(X^{n}\right) & =\int_{0}^{1} P\left(X^{n}>t\right) d t \\
& =\int_{0}^{1} P\left(X>t^{1 / n}\right) d t \\
& =\int_{0}^{1} 1-P\left(X \leq t^{1 / n}\right) d t \\
& =\int_{0}^{1} 1-F\left(t^{1 / n}\right) d t \\
& =\int_{0}^{1} 1-t^{1 / n} d t \\
& =\left[t-\frac{t^{\frac{1}{n}+1}}{\frac{1}{n}+1}\right]_{0}^{1} \\
& =1-\frac{n}{n+1} \\
& =\frac{1}{n+1} .
\end{aligned}
$$

By using the definition of expectation, we first have to derive the pdf for $f\left(x^{n}\right)$. To do this, we find the cumulative distribution function and take the derivative (aka $F_{X^{n}}(x)=$ $\int_{0}^{x} f(x) d x \Rightarrow \frac{d}{d x} F_{X^{n}}(x)=f(x)$, by the Fundamental Theorem of Calculus)

$$
F_{X^{n}}(x)=P\left(X^{n}<x\right)=P\left(X<x^{1 / n}\right)=x^{1 / n} \Rightarrow \frac{1}{n} x^{1 / n-1}
$$

Then, our expectation is:

$$
\begin{aligned}
E\left(X^{n}\right) & =\int_{0}^{1} x \frac{1}{n} x^{1 / n-1} d x \\
& =\int_{0}^{1} \frac{1}{n} x^{\frac{1}{n}} d x \\
& =\frac{1}{n}\left[\frac{x^{\frac{1}{n}+1}}{\frac{1}{n}+1}\right]_{0}^{1} \\
& =\frac{1}{n}\left[\frac{1}{\frac{1}{n}+1}\right] \\
& =\frac{1}{n+1} .
\end{aligned}
$$

9 Ch 5 Problem 15

a

$$
\begin{aligned}
P(X>5) & =P\left(\frac{X-\mu}{\sigma}>\frac{5-10}{6}\right) \\
& =P(Z>-.83) \\
& =.798
\end{aligned}
$$

b

$$
\begin{aligned}
P(4<X<16) & =P\left(Z<\frac{16-10}{6}\right)-P\left(Z<\frac{4-10}{6}\right) \\
& =P(Z<1)-P(Z<-1) \\
& =.683
\end{aligned}
$$

C

$$
\begin{aligned}
P(X<8) & =P\left(Z<\frac{8-10}{6}\right) \\
& =P(Z<-.33) \\
& =.369
\end{aligned}
$$

d

$$
\begin{aligned}
P(X<20) & =P\left(Z<\frac{20-10}{6}\right) \\
& =P(Z<1.67) \\
& =.952
\end{aligned}
$$

e

$$
\begin{aligned}
P(X>16) & =P\left(Z>\frac{16-10}{6}\right) \\
& =P(Z>1) \\
& =.159
\end{aligned}
$$

10 Ch 5 Problem 17

Let D denote the distance from the shot to the target. We are given that $D \sim U n i f[0,10]$. The winnings W are distributed as follows:

$$
\begin{aligned}
W & = \begin{cases}10 & 0<D<1 \\
5 & 1<D<3 \\
3 & 3<D<5 \\
0 & 5<D<10\end{cases} \\
E[W] & =\sum_{w_{i}} w_{i} p\left(w_{i}\right) \\
& =10 * \frac{1}{10}+5 * \frac{2}{10}+3 * \frac{2}{5}+0 * \frac{1}{2} \\
& =2.6
\end{aligned}
$$

11 Ch5 Problem 18*

Let X be a normal random variable with mean 5 and variance σ^{2}. $X \sim N\left(5, \sigma^{2}\right)$. If $0.2=P(X>9)$, then

$$
\begin{aligned}
0.8 & =P(X \leq 9) \\
& =P\left(\frac{X-5}{\sigma} \leq \frac{9-5}{\sigma}\right), \text { where } \frac{X-5}{\sigma}=Z \sim N(0,1) \\
& =\Phi\left(\frac{4}{\sigma}\right)
\end{aligned}
$$

From a standard normal table, we have $\Phi^{-1}(0.8)=0.842$. Thus

$$
\frac{4}{\sigma}=0.842 \Rightarrow \sigma=4.75 .
$$

Hence $\operatorname{Var}(X)=\sigma^{2}=22.56$.

12 Ch5 Theoretical Problem 2*

In order to show that

$$
E[Y]=\int_{0}^{\infty} P(Y>y) d y-\int_{0}^{\infty} P(Y<-y) d y
$$

it is equivalent to show that

$$
\begin{align*}
\int_{0}^{\infty} P(Y<-y) d y & =-\int_{-\infty}^{0} x f_{Y}(x) d x \tag{1}\\
\int_{0}^{\infty} P(Y>y) d y & =\int_{0}^{\infty} x f_{Y}(x) d x \tag{2}
\end{align*}
$$

Now we are showing (1),

$$
\begin{aligned}
L H S & =\int_{y=0}^{\infty}\left(\int_{x=-\infty}^{-y} f_{Y}(x) d x\right) d y \\
& =\int_{x=-\infty}^{0}\left(\int_{y=0}^{-x} 1 d y\right) f_{Y}(x) d x \\
& =\int_{x=-\infty}^{0}-x f_{Y}(x) d x \\
& =\text { RHS. }
\end{aligned}
$$

And showing (2),

$$
\begin{aligned}
L H S & =\int_{y=0}^{\infty}\left(\int_{x=y}^{\infty} f_{Y}(x) d x\right) d y \\
& =\int_{x=0}^{\infty}\left(\int_{y=0}^{x} 1 d y\right) f_{Y}(x) d x \\
& =\int_{x=0}^{\infty} x f_{Y}(x) d x \\
& =\text { RHS }
\end{aligned}
$$

Combining (1) and (2), we have

$$
\begin{aligned}
E[Y] & =\int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =\int_{-\infty}^{0} x f_{Y}(x) d x+\int_{0}^{\infty} x f_{Y}(x) d x, \text { where } x, y \text { are dummy } \\
& =(2)-(1)
\end{aligned}
$$

13 Ch5 Theoretical Problem 5*

For a nonnegative random variable $X,\left(X^{n}\right.$ nonnegative) we have

$$
E\left[X^{n}\right]=\int_{t=0}^{\infty} P\left(X^{n}>t\right) d t
$$

Using change of variables $t=x^{n},\left\{X^{n}>x^{n}\right\} \Leftrightarrow\{X>x\}$ and $\frac{d t}{d x}=n x^{n-1}$,

$$
\begin{aligned}
E\left[X^{n}\right] & =\int_{x=0}^{\infty} P(X>x) \frac{d t}{d x} d x \\
& =\int_{x=0}^{\infty} P(X>x) n x^{n-1} d x, \text { as required. }
\end{aligned}
$$

14 Ch5 Theoretical Problem 8

15 Ch5 Theoretical Problem 13

We derive all of these medians using the definition of the median (i.e. m is a median of X if $F(m)=\frac{1}{2}$), rather than intuition (because it's obvious, otherwise)

15.1 a

15.2 b

15.3 c

16 Ch5 Theoretical Problem 21

Using $x \rightarrow \sqrt{2 x}$ change of variables, we get the following

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} e^{-x} x^{-1 / 2} d x=\int_{0}^{\infty} e^{-\frac{1}{2} y^{2}}\left(\frac{1}{2} y^{2}\right)^{-1 / 2} y d y=\int_{0}^{\infty} \sqrt{2} e^{-\frac{1}{2} y^{2}} d y=\sqrt{\pi}
$$

where the last equality uses $\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y=\frac{1}{2}$

