Statistics 430
 HW \#7 Solutions

Emil Pitkin

November 14, 2010

1 Ch 5 Problem 20

In the random sample of 100 people, the number in favor of a proposed rise in school taxes, X , is distributed $\operatorname{Bin}(100, .65)$. With $n=100, p=.65$, the mean number of people in favor is $n p=65$; the standard deviation: $\sqrt{n p(1-p)}=\sqrt{22.75}$. We apply the normal approximation to the binomial, remaining mindful of the continuity correction.
a

$$
\begin{aligned}
P(X \geq 49.5) & =P\left(\frac{X-65}{\sqrt{22.75}} \geq \frac{49.5-65}{\sqrt{22.75}}\right) \\
& \approx 1-\Phi(3.2497) \\
& \approx .9994
\end{aligned}
$$

b

$$
\begin{aligned}
P(59.5 \leq X \leq 70.5) & =P\left(\frac{59.5-65}{\sqrt{22.75}} \leq \frac{X-65}{\sqrt{22.75}} \leq \frac{70.5-65}{\sqrt{22.75}}\right) \\
& \approx P(-1.1531 \leq Z \leq 1.1531) \\
& \approx \Phi(1.1531)-\Phi(-1.1531) \\
& \approx .7511
\end{aligned}
$$

C

$$
\begin{aligned}
P(X \leq 74.5) & =P\left(\left(\frac{X-65}{\sqrt{22.75}} \leq \frac{74.5-65}{\sqrt{22.75}}\right)\right. \\
& \approx \Phi(1.9917) \\
& \approx .9768
\end{aligned}
$$

2 Ch 5 Problem 23

The number of times we roll a 6 , X , is a $\operatorname{Bin}\left(1000, \frac{1}{6}\right)$ random variable, with mean $n p=166.67$ and standard deviation $\sqrt{n p(1-p)}=11.785$.
i

$$
\begin{aligned}
P(149.5 \leq X \leq 200.5) & =P\left(\frac{149.5-166.67}{11.785} \leq \frac{X-166.67}{\sqrt{11.785}} \leq \frac{200.5-166.67}{11.785}\right) \\
& \approx P(-1.4566 \leq Z \leq 2.8709) \\
& \approx \Phi(2.8709)-\Phi(-1.4566) \\
& \approx .9253
\end{aligned}
$$

ii

Conditional on 6 appearing 200 times, the number of 5's rolled, X, is a $\operatorname{Bin}\left(800, \frac{1}{5}\right)$ random variable, with mean $n p=160$ and standard deviation $\sqrt{n p(1-p)}=\sqrt{25.6}$.

$$
\begin{aligned}
P(X \leq 149.5) & =P\left(\frac{X-160}{\sqrt{25.6}} \leq \frac{149.5-160}{\sqrt{25.6}}\right) \\
& \approx \Phi(-.9281) \\
& \approx .1767
\end{aligned}
$$

3 Ch 5 Problem 29

Without loss of generality, assume that the stock that your manager - call him "Bernie" - recommends is presently valued at $\$ 1$. In order for the stock to rise at least 30 percent over 1000 periods, its price must rise at least 470 of the days, since $1.012^{469} * .99^{531}=1.294$ and $1.012^{470} * .99^{530}=1.323$. The number of days in which the stock's price rises, X , is a $\operatorname{Bin}(1000, .52)$ random variable, with mean $n p=520$ and standard deviation $\sqrt{n p(1-p)}=$ $\sqrt{249.6}$.

$$
\begin{aligned}
P(X \geq 469.5) & =P\left(\frac{X-520}{\sqrt{249.6}} \geq \frac{469.5-520}{\sqrt{249.6}}\right) \\
& \approx 1-\Phi(-3.1965) \\
& \approx .9993
\end{aligned}
$$

4 Ch 5 Problem 32

Let X denote the number of hours required to repair the machine. We are given that $X \sim \operatorname{Expo}\left(\frac{1}{2}\right)$. We also know the CDF of an exponentially distributed random variable with parameter λ : $F(a)=1-e^{-\lambda a}$.

a

$$
\begin{aligned}
P(X>2) & =1-P(X \leq 2) \\
& =1-\left(1-e^{-\frac{1}{2} * 2}\right) \\
& =e^{-1}=.368
\end{aligned}
$$

b

By the memoryless property of the exponential distribution, the repair time past 9 hours is also distributed as an $\operatorname{Expo}\left(\frac{1}{2}\right)$ random variable. Hence

$$
\begin{aligned}
P(X>1) & =1-P(X \leq 1) \\
& =1-\left(1-e^{-\frac{1}{2} * 1}\right) \\
& =e^{-\frac{1}{2}}=.607
\end{aligned}
$$

5 Ch 5 Problem 34

i

Again, because the exponential distribution is memoryless, the number of additional thousands of miles that Jones will squeeze out of the car is still Expo $\left(\frac{1}{20}\right)$.

$$
\begin{aligned}
P(X>20) & =1-P(X \leq 20) \\
& =1-\left(1-e^{-\frac{1}{20} * 20}\right) \\
& =e^{-1}=.368
\end{aligned}
$$

ii

$$
\begin{aligned}
P(X>30 \mid X>10) & =\frac{P(X>30 \cap X>10)}{P(X>10)} \\
& =\frac{P(X>30)}{P(X>10)} \\
& =\frac{1}{4} / \frac{3}{4} \\
& =\frac{1}{3}
\end{aligned}
$$

$6 \quad$ Ch 5 Problem 37

a

$$
\begin{aligned}
P\left(|X|>\frac{1}{2}\right) & =P\left(X<-\frac{1}{2} \cup X>\frac{1}{2}\right) \\
& =\frac{1}{4}+\frac{1}{4} \\
& =\frac{1}{2}=.5
\end{aligned}
$$

b

For $0 \leq x \leq 1$:

$$
\begin{aligned}
P(|X|<x) & =P(-x<X<x) \\
F_{|X|}(x) & =P(X<x)-P(x<-x) \\
F_{|X|}(x) & =\frac{1+x}{2}-\frac{1-x}{2} \\
F_{|X|}(x) & =x \\
f_{|X|}(x) & = \begin{cases}1 & 0<x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

To wit, $|X|$ is uniformly distributed over $(0,1)$.

7 Ch 5 Problem 39

Let $X \sim \operatorname{Expo}(1)$, and let $Y=\log X$. Then

$$
\begin{aligned}
P(Y<y) & =P(\log X<y) \\
F_{Y}(y) & =P\left(X<e^{y}\right) \\
F_{Y}(y) & =1-e^{-e^{y}}
\end{aligned} f_{f_{Y}(y)}=--e^{-e^{y}} *-e^{y} .
$$

8 Ch 5 Problem 40

Let $X \sim \operatorname{Unif}(0,1)$, and let $Y=e^{X}$.

For $1<\mathrm{y}<\mathrm{e}$:

$$
\begin{aligned}
P(Y<y) & =P\left(e^{X}<y\right) \\
F_{Y}(y) & =P(X<\log y) \\
F_{Y}(y) & =\log y
\end{aligned}
$$

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{y} & 1<y<e \\
0 & \text { otherwise }
\end{array}\right.
$$

