Statistics 430 HW #7 Solutions

Emil Pitkin

November 14, 2010

1 Ch 5 Problem 20

In the random sample of 100 people, the number in favor of a proposed rise in school taxes, X, is distributed Bin(100,.65). With n = 100, p = .65, the mean number of people in favor is np = .65; the standard deviation: $\sqrt{np(1-p)} = \sqrt{22.75}$. We apply the normal approximation to the binomial, remaining mindful of the continuity correction.

a

$$P(X \ge 49.5) = P\left(\frac{X - 65}{\sqrt{22.75}} \ge \frac{49.5 - 65}{\sqrt{22.75}}\right)$$

$$\approx 1 - \Phi(3.2497)$$

$$\approx \boxed{.9994}$$

b

$$P(59.5 \le X \le 70.5) = P\left(\frac{59.5 - 65}{\sqrt{22.75}} \le \frac{X - 65}{\sqrt{22.75}} \le \frac{70.5 - 65}{\sqrt{22.75}}\right)$$

$$\approx P(-1.1531 \le Z \le 1.1531)$$

$$\approx \Phi(1.1531) - \Phi(-1.1531)$$

$$\approx \boxed{.7511}$$

С

$$P(X \le 74.5) = P\left(\left(\frac{X - 65}{\sqrt{22.75}} \le \frac{74.5 - 65}{\sqrt{22.75}}\right) \\ \approx \Phi(1.9917) \\ \approx \boxed{.9768}$$

2 Ch 5 Problem 23

The number of times we roll a 6, X, is a $Bin(1000, \frac{1}{6})$ random variable, with mean np = 166.67 and standard deviation $\sqrt{np(1-p)} = 11.785$.

i

$$P(149.5 \le X \le 200.5) = P\left(\frac{149.5 - 166.67}{11.785} \le \frac{X - 166.67}{\sqrt{11.785}} \le \frac{200.5 - 166.67}{11.785}\right)$$

$$\approx P\left(-1.4566 \le Z \le 2.8709\right)$$

$$\approx \Phi(2.8709) - \Phi(-1.4566)$$

$$\approx \boxed{.9253}$$

ii

Conditional on 6 appearing 200 times, the number of 5's rolled, X, is a $Bin(800, \frac{1}{5})$ random variable, with mean np = 160 and standard deviation $\sqrt{np(1-p)} = \sqrt{25.6}$.

$$P(X \le 149.5) = P\left(\frac{X - 160}{\sqrt{25.6}} \le \frac{149.5 - 160}{\sqrt{25.6}}\right)$$

$$\approx \Phi(-.9281)$$

$$\approx \boxed{.1767}$$

3 Ch 5 Problem 29

Without loss of generality, assume that the stock that your manager – call him "Bernie" - recommends is presently valued at \$1. In order for the stock to rise at least 30 percent over 1000 periods, its price must rise at least 470 of the days, since $1.012^{469} * .99^{531} = 1.294$ and $1.012^{470} * .99^{530} = 1.323$. The number of days in which the stock's price rises, X, is a Bin(1000, .52) random variable, with mean np = 520 and standard deviation $\sqrt{np(1-p)} = \sqrt{249.6}$.

$$P(X \ge 469.5) = P\left(\frac{X - 520}{\sqrt{249.6}} \ge \frac{469.5 - 520}{\sqrt{249.6}}\right)$$

$$\approx 1 - \Phi(-3.1965)$$

$$\approx \boxed{.9993}$$

4 Ch 5 Problem 32

Let X denote the number of hours required to repair the machine. We are given that $X \sim Expo(\frac{1}{2})$. We also know the CDF of an exponentially distributed random variable with parameter λ : $F(a) = 1 - e^{-\lambda a}$.

$$\mathbf{a}$$

$$P(X > 2) = 1 - P(X \le 2)$$

= 1 - (1 - e^{-\frac{1}{2}*2})
= e^{-1} = .368

 \mathbf{b}

By the memoryless property of the exponential distribution, the repair time past 9 hours is also distributed as an $Expo(\frac{1}{2})$ random variable. Hence

$$P(X > 1) = 1 - P(X \le 1)$$

= 1 - (1 - e^{-\frac{1}{2}*1})
= e^{-\frac{1}{2}} = .607

5 Ch 5 Problem 34

i

Again, because the exponential distribution is memoryless, the number of additional thousands of miles that Jones will squeeze out of the car is still $Expo(\frac{1}{20})$.

$$P(X > 20) = 1 - P(X \le 20)$$

= 1 - (1 - e^{-\frac{1}{20}*20})
= e^{-1} = .368

ii

$$P(X > 30|X > 10) = \frac{P(X > 30 \cap X > 10)}{P(X > 10)}$$
$$= \frac{P(X > 30)}{P(X > 10)}$$
$$= \frac{\frac{1}{4}}{\frac{3}{4}}$$
$$= \frac{1}{\frac{1}{3}}$$

6 Ch 5 Problem 37

a

$$\begin{split} P(|X| > \frac{1}{2}) &= P(X < -\frac{1}{2} \cup X > \frac{1}{2}) \\ &= \frac{1}{4} + \frac{1}{4} \\ &= \left\lceil \frac{1}{2} = .5 \right\rceil \end{split}$$

 \mathbf{b}

For
$$0 \le x \le 1$$
:

$$P(|X| < x) = P(-x < X < x)$$

$$F_{|X|}(x) = P(X < x) - P(x < -x)$$

$$F_{|X|}(x) = \frac{1+x}{2} - \frac{1-x}{2}$$

$$F_{|X|}(x) = x$$

$f_{ X }(x) = \left\{ \begin{array}{c} \\ \end{array} \right.$	1	0 < x < 1
	0	otherwise

To wit, |X| is uniformly distributed over (0, 1).

7 Ch 5 Problem 39

Let $X \sim Expo(1)$, and let $Y = \log X$. Then

$$P(Y < y) = P(\log X < y)$$

$$F_Y(y) = P(X < e^y)$$

$$F_Y(y) = 1 - e^{-e^y}$$

$$f_Y(y) = -e^{-e^y} * -e^y$$

=
$$\begin{cases} e^{y-e^y} & -\infty < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

8 Ch 5 Problem 40

Let $X \sim Unif(0,1)$, and let $Y = e^X$.

For
$$1 < y < e$$
:
 $P(Y < y) = P(e^X < y)$
 $F_Y(y) = P(X < \log y)$
 $F_Y(y) = \log y$

$$f_Y(y) = \begin{cases} \frac{1}{y} & 1 < y < e \\ 0 & \text{otherwise} \end{cases}$$