Homework 7 Optional Problems Solutions

Renee Zhang

November 9, 2011

1 Ch 5 Problem 26*

Let X be the number of heads in 1000 tosses of the fair coin, and let Y be the number heads in 1000 tosses of the biased coin. X and Y have distributions $\operatorname{Binomial}(1000,0.5)$ and $\operatorname{Binomial}(1000,0.55)$ respectively.
(a) If the coin is actually fair, we shall reach a false conclusion when $X \geq 525$. Since $n=1000$ is large, the distribution of X can be approximated by Normal(500, 250).

$$
\begin{aligned}
P(X \geq 525) & =1-P(X<525) \\
& =1-\Phi\left(\frac{525.5-500}{\sqrt{250}}\right) \\
& =1-\Phi(1.61) \\
& =1-0.9464 \\
& =0.0537
\end{aligned}
$$

(b) If the coin is actually biased, we shall reach a false conclusion when $Y<$ 525. Since $n=1000$ is large, the distribution of Y can be approximated by $\operatorname{Normal}(550,247.5)$.

$$
\begin{aligned}
P(Y<525) & =\Phi\left(\frac{524.5-550}{\sqrt{247.5}}\right) \\
& =\Phi(-1.62) \\
& =1-\Phi(1.62) \\
& =1-0.9474 \\
& =0.0526
\end{aligned}
$$

2 Ch 5 Problem 27*

Let's firstly assume that the coin is fair. Then let X be the number of heads in the 10,000 tosses. $X \sim \operatorname{Binomial}(10000,0.5)$. By normal approximation, $X \rightarrow \operatorname{Normal}(5000,2500)$. Under this assumption, calculate the probability of having at least 5800 heads, to see whether it is a reasonably likely event.

$$
\begin{aligned}
P(X \geq 5800) & =1-P(X<5800) \\
& =1-\Phi\left(\frac{5799.5-5000}{\sqrt{2500}}\right) \\
& =1-\Phi(15.99) \\
& \approx 0
\end{aligned}
$$

Hence, it's not reasonable to assume the coin is fair.

3 Ch 5 Problem 38*

The equation having both roots real means

$$
\begin{aligned}
\Delta & =16 Y^{2}-16 Y-32 \\
& =16(Y-2)(Y+1) \\
& \geq 0
\end{aligned}
$$

So $Y \leq-1$ or $Y \geq 2$. Since $Y \sim \operatorname{Uniform}(0,5)$,

$$
P(Y \leq-1 \text { or } Y \geq 2)=0+\frac{3}{5}=\frac{3}{5}
$$

4 Ch 5 Problem 41*

$\theta \sim U n i f o r m(-\pi / 2, \pi / 2) . R=A \sin \theta$, where A is a fixed constant.

$$
\begin{aligned}
P(R \leq r) & =P(A \sin \theta \leq r) \\
& =P\left(\sin \theta \leq \frac{r}{A}\right) \\
& =P\left(\theta \leq \arcsin \frac{r}{A}\right) \\
& =\frac{\arcsin \left(\frac{r}{A}\right)+\frac{2}{\pi}}{\pi} \\
& =\frac{\arcsin \left(\frac{r}{A}\right)}{\pi}+2
\end{aligned}
$$

So the distribution of R is

$$
P(R=r)=\frac{d}{d r} P(R \leq r)
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \frac{1 / A}{\sqrt{1-r^{2} / A^{2}}} \\
& =\frac{1}{\pi \sqrt{A^{2}-r^{2}}}
\end{aligned}
$$

