Statistics 430
 HW \#8 Solutions

Emil Pitkin

November 17, 2010

1 Ch 6 Problem 1

a
For $1 \leq i \leq 6$ and $2 \leq j \leq 12$,

$$
p(i, j)= \begin{cases}\frac{1}{36} & i=\frac{j}{2} \\ \frac{2}{36} & i<j<2 i \\ 0 & \text { otherwise }\end{cases}
$$

b
For $1 \leq i, j \leq 6$,

$$
p(i, j)= \begin{cases}\frac{i}{36} & i=j \\ \frac{1}{36} & i<j \\ 0 & \text { otherwise }\end{cases}
$$

c
For $1 \leq i, j \leq 6$,

$$
p(i, j)= \begin{cases}\frac{1}{36} & i=j \\ \frac{2}{36} & i<j \\ 0 & \text { otherwise }\end{cases}
$$

2 Ch 6 Problem 2

a

Let $p(i, j)=P\left(X_{1}=i, X_{2}=j\right)$.

$$
\left\{\begin{array}{l}
p(1,1)=\frac{5}{13} * \frac{4}{12}=\frac{5}{39}=.128 \\
p(1,0)=\frac{5}{13} * \frac{8}{12}=\frac{10}{39}=.256 \\
p(0,1)=\frac{8}{13} * \frac{5}{12}=\frac{10}{39}=.256 \\
p(0,0)=\frac{8}{13} * \frac{7}{12}=\frac{15}{39}=.359
\end{array}\right.
$$

b
Let $p(i, j, k)=P\left(X_{1}=i, X_{2}=j, X_{3}=k\right)$.

$$
\left\{\begin{array}{l}
p(1,1,1)=\frac{5}{13} * \frac{4}{12} * \frac{3}{11}=\frac{15}{429}=.035 \\
p(1,1,0)=p(1,0,1)=p(0,1,1)=\frac{5}{13} * \frac{4}{12} * \frac{8}{11}=\frac{40}{429}=.093 \\
p(0,0,1)=p(0,1,0)=p(1,0,0)=\frac{8}{13} * \frac{7}{12} * \frac{5}{11}=\frac{70}{429}=.163 \\
p(0,0,0)=\frac{8}{13} * \frac{7}{12} * \frac{6}{11}=\frac{84}{429}=.196
\end{array}\right.
$$

3 Ch 6 Problem 7

The number of failures preceding the first success follows a geometric distribution with parameter p. Accordingly, $P\left(X_{1}=i\right)=(1-p)^{i} p$. The number of failures between the first two success is likewise a geometric random variable: $P\left(X_{2}=j\right)=(1-p)^{j} p$. Because X_{1} and X_{2} are independent,

$$
\begin{aligned}
P\left(X_{1}=i, X_{2}=j\right) & =P\left(X_{1}=i\right) P\left(X_{2}=j\right) \\
& =(1-p)^{i} p(1-p)^{j} p \\
& =p^{2}(1-p)^{i+j}
\end{aligned}
$$

4 Ch 6 Problem 9

a

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{1} f(x, y) d x d y & =\frac{6}{7} \int_{0}^{2} \int_{0}^{1} x^{2}+\frac{x y}{2} d x d y \\
& \left.=\frac{6}{7} \int_{0}^{2} \frac{1}{3}+\frac{y}{4} d y \quad \text { (note for part f: } f_{Y}(y)=\frac{1}{3}+\frac{y}{4}\right) \\
& =\frac{6}{7}\left(\frac{2}{3}+\frac{1}{2}\right)=1
\end{aligned}
$$

b

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{2} f(x, y) d y \\
& =\frac{6}{7} \int_{0}^{2} x^{2}+\frac{x y}{2} d y \\
& =\frac{6}{7}\left(x^{2} y+\left.\frac{x y^{2}}{4}\right|_{0} ^{2}\right) \\
& =\frac{6}{7}\left(2 x^{2}+x\right)
\end{aligned}
$$

c

$$
\begin{aligned}
P(X>Y) & =\frac{6}{7} \int_{0}^{1} \int_{0}^{x} x^{2}+\frac{x y}{2} d y d x \\
& =\left.\frac{6}{7} \int_{0}^{1}\left(x^{2} y+\frac{x y^{2}}{4}\right)\right|_{0} ^{x} d x \\
& =\frac{6}{7} \int_{0}^{1} x^{3}+\frac{x^{3}}{4} d x \\
& =\left.\frac{6}{7}\left(\frac{x^{4}}{4}+\frac{x^{4}}{16}\right)\right|_{0} ^{1} \\
& =\frac{15}{56}=.268
\end{aligned}
$$

d

$$
\begin{aligned}
P\left(\left.Y>\frac{1}{2} \right\rvert\, X<\frac{1}{2}\right) & =\frac{P\left(Y>\frac{1}{2}, X<\frac{1}{2}\right)}{P\left(X<\frac{1}{2}\right)} \\
& =\frac{\int_{\frac{1}{2}}^{2} \int_{0}^{\frac{1}{2}} f(x, y) d x d y}{\int_{0}^{\frac{1}{2}} f_{X}(x) d x} \\
& =\frac{\left.\frac{6}{7} \int_{\frac{1}{2}}^{2}\left(\frac{x^{3}}{3}+\frac{x^{2} y}{4}\right)\right|_{0} ^{\frac{1}{2}} d y}{\left.\frac{6}{7}\left(\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{\frac{1}{2}}} \\
& =\frac{\int_{\frac{1}{2}}^{2} \frac{1}{24}+\frac{y}{16} d y}{\frac{1}{12}+\frac{1}{8}} \\
& =\frac{\frac{23}{128}}{\frac{5}{24}} \\
& =\frac{69}{80}=.8625
\end{aligned}
$$

e

$$
\begin{aligned}
E[X] & =\int_{0}^{1} x f_{X}(x) d x \\
& =\frac{6}{7} \int_{0}^{1} x\left(2 x^{2}+x\right) d x \\
& =\left.\frac{6}{7}\left(\frac{x^{4}}{2}+\frac{x^{3}}{3}\right)\right|_{0} ^{1} \\
& =\frac{5}{7}=.714
\end{aligned}
$$

$$
\begin{aligned}
E[Y] & =\int_{0}^{2} y f_{Y}(y) d y \\
& =\frac{6}{7} \int_{0}^{2} y\left(\frac{1}{3}+\frac{y}{4}\right) d x \\
& =\left.\frac{6}{7}\left(\frac{y^{2}}{6}+\frac{y^{3}}{12}\right)\right|_{0} ^{2} \\
& =\frac{8}{7}=1.143
\end{aligned}
$$

5 Ch 6 Problem 14

Let X denote the location of the accident, and let Y denote the location of the wambulance at the time of the accident. We are given that $X \sim \operatorname{Unif}(0, L)$ and $Y \sim \operatorname{Unif}(0, L)$. We are asked for the distribution function of $|X-Y|$, the distance between the accident and the ambulance.

Here is our strategy:

- Define a random variable $Z=-Y$, so that we can write $X-Y$ as the sum $X+Z$:

Let $Z=-Y \sim \operatorname{Unif}(-L, 0)$. Z has density function $\frac{1}{L}$ on $(-L, 0)$.

- Notice that $X+Z$ is a symmetric distribution, so the density of $|X+Z|$ is twice the density of $X+Z$ when $X+Z$ is between 0 and L :

$$
f_{|X+Z|}(a)=2 * f_{X+Z}(a) \quad 0<\mathrm{a}<\mathrm{L}
$$

- Write the density of $X+Z$ using the convolution formula:

$$
f_{X+Z}(a)=\int f_{X}(x) f_{Z}(a-x) d x
$$

- Find the limits of integration:

As above, we let $0<a<L . f_{Z}(a-x)$ is nonzero when $-L<a-x<0$, that is, when $a<x<L+a$. Since x is constrained to lie between 0 and L, we need $a<x<L$.

$$
\begin{aligned}
f_{X+Z}(a) & =\int_{a}^{L} f_{X}(x) f_{Z}(a-x) d x \\
& =\frac{1}{L} \int_{a}^{L} f_{Z}(a-x) d x \\
& =\frac{1}{L^{2}} \int_{a}^{L} d x \\
& =\frac{L-a}{L^{2}}
\end{aligned}
$$

- Combine:

$$
\begin{aligned}
f_{|X-Y|}(a) & =2 f_{X-Y}(a) \quad 0<\mathrm{a}<\mathrm{L} \\
& =\frac{2(L-a)}{L^{2}}
\end{aligned}
$$

6 Ch 6 Problem 16

a

$$
A=\bigcup_{i=1}^{n} A_{i}
$$

b
Indeed, the A_{i} are mutually exclusive.
c
Let us first find $P\left(A_{i}\right)$. The event A_{i} occurs when all n points lie in a semicircle beginning at the point P_{i}. Said otherwise, n-1 points lie within 180° of P_{i} clockwise. Since the number of degress between P_{i} and each of the other P_{j} is uniformly distributed between 0 and 360, $P\left(P_{j}<180\right)=\frac{1}{2}$. Because the locations of the points are independent, $P\left(A_{i}\right)=\left(\frac{1}{2}\right)^{n-1}$

$$
\begin{aligned}
P(A) & =P\left(\bigcup_{i=1}^{n} A_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A_{i}\right) \\
& =\sum_{i=1}^{n}\left(\frac{1}{2}\right)^{n-1} \\
& =n\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

7 Ch 6 Problem 17

Argue by symmetry. The probability that X_{2} lies between X_{1} and $X_{3}\left(\equiv p_{2}\right)^{1}$ is equal to the probability that X_{1} lies between X_{2} and $X_{3}\left(\equiv p_{1}\right)$ and that X_{3} lies between X_{1} and $X_{2}\left(\equiv p_{3}\right)$. One, and only one of these events must occur . So $p_{1}+p_{2}+p_{3}=1$ and $p_{1}=p_{2}=p_{3}$. Therefore $p_{2}=\frac{1}{3}$.

[^0]
8 Ch 6 Problem 18

Let us mildly reformulate the question: let X be the distance between the left point and the midpoint, and let Y be the distance between the right point and the midpoint. We can, without loss of generality, let $\mathrm{L}=2$, so that X and Y are both $\operatorname{Unif}(0,1)$ random variables. Since the ratio of $\frac{L}{3}$ to $\frac{L}{2}$ is $\frac{2}{3}$, we want to find $P\left(X+Y>\frac{2}{3}\right)$.

We know, from section 6.3.1, that $X+Y$ has the triangular distribution, with

$$
f_{X+Y}(a)=\left\{\begin{array}{lc}
a & 0 \leq a \leq 1 \\
2-a & 1<a<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
P\left(X+Y>\frac{2}{3}\right) & =1-P\left(X+Y<\frac{2}{3}\right) \\
& =1-\int_{0}^{\frac{2}{3}} a d a \\
& =1-\frac{4 / 9}{2} \\
& =\frac{7}{9}
\end{aligned}
$$

$9 \quad$ Ch 6 Problem 19

To verify that $f(x, y)$ is a density function, see whether it integrates to 1 . Indeed,

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x} \frac{1}{x} d y d x & =\left.\int_{0}^{1} \frac{y}{x}\right|_{0} ^{x} d x \\
& =\int_{0}^{1} 1 d x \\
& =1
\end{aligned}
$$

a

$$
\begin{aligned}
f_{Y}(y) & =\int_{y}^{1} \frac{1}{x} d x \\
& =\left.\ln x\right|_{y} ^{1} \\
& =\ln 0-\ln y \\
& =-\ln y
\end{aligned}
$$

b

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{x} \frac{1}{x} d y \\
& =\left.\frac{y}{x}\right|_{0} ^{x} \\
& =\frac{x}{x}-\frac{0}{x} \\
& =1
\end{aligned}
$$

C
From part b, X is uniform between 0 and 1 , so $E[X]=\frac{1}{2}$.
d

$$
\begin{aligned}
E[Y] & =\int_{0}^{1} y f_{Y}(y) d y \\
& =\int_{0}^{1}-y * \ln y d y
\end{aligned}
$$

What time is it? Time to integrate by parts (and to remember that $\int \ln y=y \ln y-y$):

$$
\begin{aligned}
E[Y]=-\int_{0}^{1} y * \ln y d y & =-\left[\left.y(y \ln y-y)\right|_{0} ^{1}-\int_{0}^{1} y \ln y-y d y\right] \\
2 \int_{0}^{1} y * \ln y d y & =\left.y(y \ln y-y)\right|_{0} ^{1}-\int_{0}^{1}-y d y=-1+\frac{1}{2}=-\frac{1}{2} \\
\int_{0}^{1}-y * \ln y d y & =\frac{1}{4}
\end{aligned}
$$

[^0]: ${ }^{1}$ The triple bar means "defined as."

