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1 Ch 6 Problem 23
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Because f(z,y) = fx(x)fy(y) = 122y(1 — z), ’X and Y are independent |.
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Var[X] = E[X? - E[X]?
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2 Ch 6 Problem 26

a
F(a,b,c) = P(A<a,B<b,C<c)
= P(A<a)P(B<bP(C <c) because A, B, C are independent
= |abc
b

We should first mention that the joint density of A, B, C is equal to 1. The roots of a
quadratic are real when the discriminant is nonnegative, that is, when B? — 4AC > 0.



P(B? = 4AC > 0)
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3 Ch 6 Problem 38

a
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iIX =j)P(X =j)

First find the marginal mass function of Y:

5
P(Y =i) = Y PY =ilX =j)P(X = j)
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In tabular form:



Table 1: Conditional distribution of X given Y

X\Y[ 1 [ 2737475
1 [440] 0 | 0 | 0 |0
2 21939 0 | 0 |0
3 | 146 | 260 | 426 | 0 |0
4109 | 195 | .319 | 556 | 0
5 |.088 [ .156 | 255 | 444 | 1

C

[No.| For example, P(Y =1|X =1)=1# P(Y =1).

4 Ch 6 Problem 39

P(X =i,Y =)

P(Y = jIX =i) = = prg =

The joint density was computed in the previous homework. The method for computing the
marginal density is the same as in the previous problem. For 1 <17 <6,

. . 2 1<j<i
P(Y:]lX:Z) = {27“1_1 :Z
2i-1 J =

X and Y are ’not independent ‘ For example, P(X =6]Y =6) =1 # P(X =6).

5 Ch 6 Problem 40

First compute the marginal mass function of Y:

11 1
PY=1 = —4-=-
( ) 8+8 4
1 3
PY=2) = —+-=-
( ) 4+2 4
a
PIX=1]Y =1) = g2 = /i =5
P(X =2V =1) = 205 = i/1 =| 1]
PIX=1]Y =2) = #¢25 =i/ =5
P(X =2V =2) = 28, = i/3 = | ]
b

X and Y are |not independent ‘ For example, P(X =1|Y =1) # P(X = 1]Y = 2).
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6 Ch 6 Problem 42

We first find the marginal density of x, fx(z), and the value of the constant ¢ in one fell
SWOOP:
1 = / / fz,y) dy dz
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It follows that ¢ = ¢ and fx(z) = ge "2

fY|X(y|$) =

7 Ch 6 Problem 44

Because X1, Xy and X3 are independent, the joint density is the product of the marginals:
flzy,z9,23) =1x1x1=1 0<ax;<1,i=1,23.

P(one X; is larger than the sum of the others) = 3P(X; > X5 + X3)

1-X3 Xo+X3
_ / / / 1 dX, dX, dXq
3% =
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8 Ch 6 Problem 48

a
P(min(Xy,...,X5) <a) = 1—P(min(Xy,...,X5) > a)
= 1—P(X1 >CL,...,X5>@)
5
= 1- H P(X; > a) by independence
i=1
5
= 1-JJa-(1—e?)
i=1
- 1= 6—5)\(1
b

In order for the maximum of the five random variables to be less than a'

P(min(Xy,...,X5) <a) = P(X;<a,...,X5<a)

5
- H P(X; <a) by independence
i=1

'For example, let a = 50, and let X; equal your homework score on your ith to last assignment. If you
violated the rules of engagement and copied down answers from a solutions website, then max(X;) is now
< a in the grades spreadsheet.



