Statistics 430
 HW \#8 Solutions

Emil Pitkin

November 24, 2010

1 Ch 6 Problem 23

$$
\begin{aligned}
f_{X}(x) & =\int_{0}^{1} f(x, y) d y \\
& =\int_{0}^{1} 12 x y(1-x) d y \\
& =6 x(1-x) \quad 0<x<1 \\
f_{Y}(y) & =\int_{0}^{1} f(x, y) d x \\
& =2 y \quad 0<y<1
\end{aligned}
$$

a
Because $f(x, y)=f_{X}(x) f_{Y}(y)=12 x y(1-x), X$ and Y are independent.
b

$$
\begin{aligned}
E[X] & =\int_{0}^{1} x f_{X}(x) d x \\
& =\int_{0}^{1} 6 x^{2}(1-x) d x \\
& =\frac{1}{2}
\end{aligned}
$$

C

$$
\begin{aligned}
E[Y] & =\int_{0}^{1} y f_{Y}(y) d y \\
& =\int_{0}^{1} 2 y^{2} d y \\
& =\frac{2}{3}
\end{aligned}
$$

d

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[X^{2}\right]-E[X]^{2} \\
E\left[X^{2}\right] & =\int_{0}^{1} x^{2} f_{X}(x) d x \\
& =\int_{0}^{1} 6 x^{3}(1-x) d x \\
& =\frac{3}{10} \\
\operatorname{Var}[X] & =\frac{3}{10}-\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{20}
\end{aligned}
$$

e

$$
\begin{aligned}
\operatorname{Var}[Y] & =E\left[Y^{2}\right]-E[Y]^{2} \\
E\left[Y^{2}\right] & =\int_{0}^{1} y^{2} f_{Y}(y) d x \\
& =\int_{0}^{1} 2 y^{3} d y \\
& =\frac{1}{2} \\
\operatorname{Var}[Y] & =\frac{1}{2}-\left(\frac{2}{3}\right)^{2} \\
& =\frac{1}{18}=.056
\end{aligned}
$$

2 Ch 6 Problem 26

a

$$
\begin{aligned}
F(a, b, c) & =P(A \leq a, B \leq b, C \leq c) \\
& =P(A \leq a) P(B \leq b) P(C \leq c) \quad \text { because A, B, C are independent } \\
& =a b c
\end{aligned}
$$

b
We should first mention that the joint density of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is equal to 1 . The roots of a quadratic are real when the discriminant is nonnegative, that is, when $B^{2}-4 A C \geq 0$.

$$
\begin{aligned}
P\left(B^{2}-4 A C \geq 0\right) & =\int_{0}^{1} \int_{0}^{\min \left(\frac{1}{4 c}, 1\right)} \int_{2 \sqrt{A C}}^{1} d B d A d C \\
& =\int_{.25}^{1} \int_{0}^{\frac{1}{4 c}} \int_{2 \sqrt{A C}}^{1} d B d A d C+\int_{0}^{.25} \int_{0}^{1} \int_{2 \sqrt{A C}}^{1} d B d A d C \\
& =\int_{.25}^{1} \int_{0}^{\frac{1}{4 c}} 1-2 \sqrt{A C} d A d C+\int_{0}^{.25} \int_{0}^{1} 1-2 \sqrt{A C} d A d C \\
& =\int_{.25}^{1} A-\left.2 \sqrt{C} * \frac{2}{3} A^{\frac{3}{2}}\right|_{0} ^{\frac{1}{4 c}} d C+\int_{0}^{.25} A-\left.2 \sqrt{C} * \frac{2}{3} A^{\frac{3}{2}}\right|_{0} ^{1} d C \\
& =\int_{.25}^{1} \frac{1}{4 c}-\frac{1}{6 C} d C+\int_{0}^{.25} 1-\frac{4}{3} \sqrt{C} d C \\
& =\left.\left(\frac{1}{12} \ln C\right)\right|_{.25} ^{1}+\left.\left(C-\frac{8}{3} C^{\frac{3}{2}}\right)\right|_{0} ^{.25} \\
& =-\frac{1}{12} \ln \frac{1}{4}+.25-\frac{8}{9} * \frac{1}{8} \\
& =\frac{1}{12} \ln \frac{1}{4}+\frac{5}{36}=.2544
\end{aligned}
$$

3 Ch 6 Problem 38

a

$$
\begin{aligned}
P(X=j, Y=i) & =P(Y=i \mid X=j) P(X=j) \\
& =\frac{1}{j} * \frac{1}{5} \\
& =\frac{1}{5 j} \quad 1 \leq i \leq j, 1 \leq j \leq 5
\end{aligned}
$$

b
First find the marginal mass function of Y :

$$
\begin{aligned}
P(Y=i) & =\sum_{j=i}^{5} P(Y=i \mid X=j) P(X=j) \\
& =\sum_{k=i}^{5} \frac{1}{k} * \frac{1}{5} \\
P(X=j \mid Y=i) & =\frac{P(X=j, Y=i)}{P(Y=i)} \\
& =\frac{\frac{1}{5 j}}{\sum_{k=i}^{5} * \frac{1}{k}} \\
& =\frac{1}{j \sum_{k=i}^{5} \frac{1}{k}}
\end{aligned}
$$

In tabular form:

Table 1: Conditional distribution of X given Y

$X \backslash Y$	1	2	3	4	5
1	.440	0	0	0	0
2	.219	.390	0	0	0
3	.146	.260	.426	0	0
4	.109	.195	.319	.556	0
5	.088	.156	.255	.444	1

C

No. For example, $P(Y=1 \mid X=1)=1 \neq P(Y=1)$.

4 Ch 6 Problem 39

$$
P(Y=j \mid X=i)=\frac{P(X=i, Y=j)}{P(X=i)}
$$

The joint density was computed in the previous homework. The method for computing the marginal density is the same as in the previous problem. For $1 \leq i \leq 6$,

$$
P(Y=j \mid X=i)= \begin{cases}\frac{2}{2 i-1} & 1 \leq j<i \\ \frac{1}{2 i-1} & j=i\end{cases}
$$

X and Y are not independent. For example, $P(X=6 \mid Y=6)=1 \neq P(X=6)$.

5 Ch 6 Problem 40

First compute the marginal mass function of Y :

$$
\begin{aligned}
& P(Y=1)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\
& P(Y=2)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}
\end{aligned}
$$

a

$$
\begin{aligned}
& \left\{\begin{array}{l}
P(X=1 \mid Y=1)=\frac{p(1,1)}{P(Y=1)}=\frac{1}{8} / \frac{1}{4}=\frac{1}{2} \\
P(X=2 \mid Y=1)=\frac{p(2,1)}{P(Y=1)}=\frac{1}{8} / \frac{1}{4}=\frac{1}{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
P(X=1 \mid Y=2)=\frac{p(1,2)}{P(Y=2)}=\frac{1}{4} / \frac{3}{4}=\frac{1}{3} \\
P(X=2 \mid Y=2)=\frac{p(2,2)}{P(Y=2)}=\frac{1}{2} / \frac{3}{4}=\frac{2}{3}
\end{array}\right.
\end{aligned}
$$

b
X and Y are not independent. For example, $P(X=1 \mid Y=1) \neq P(X=1 \mid Y=2)$.

6 Ch 6 Problem 42

We first find the marginal density of $\mathrm{x}, f_{X}(x)$, and the value of the constant c in one fell swoop:

$$
\begin{aligned}
1 & =\int_{-x}^{x} \int_{0}^{\infty} f(x, y) d y d x \\
& =\int_{0}^{\infty} \int_{-x}^{x} c\left(x^{2}-y^{2}\right) e^{-x} d y d x \\
& =\int_{0}^{\infty} c\left[\left.e^{-x}\left(x^{2} y-\frac{y^{3}}{3}\right)\right|_{-x} ^{x}\right] d x \\
& =\int_{0}^{\infty} \underbrace{c * \frac{4}{3} e^{-x} x^{3}}_{f_{X}(x)} d x \text { integrate by parts } \\
& =\left.c * \frac{4}{3} * e^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)\right|_{0} ^{\infty} \\
& =8 c
\end{aligned}
$$

It follows that $c=\frac{1}{8}$ and $f_{X}(x)=\frac{1}{6} e^{-x} x^{3}$.

$$
\begin{aligned}
f_{Y \mid X}(y \mid x) & =\frac{f(x, y)}{f_{X}(x)} \\
& =\frac{\frac{1}{8}\left(x^{2}-y^{2}\right) e^{-x}}{\frac{1}{6} e^{-x} x^{3}} \\
& =\frac{3}{4}\left(\frac{1}{x}-\frac{y^{2}}{x^{3}}\right)
\end{aligned}
$$

7 Ch 6 Problem 44

Because X_{1}, X_{2} and X_{3} are independent, the joint density is the product of the marginals: $f\left(x_{1}, x_{2}, x_{3}\right)=1 * 1 * 1=1,0<x_{i}<1, i=1,2,3$.
$P\left(\right.$ one X_{i} is larger than the sum of the others $)=3 P\left(X_{1}>X_{2}+X_{3}\right)$

$$
\begin{aligned}
& =3 * \int_{0}^{1} \int_{0}^{1-X_{3}} \int_{1}^{X_{2}+X_{3}} 1 d X_{1} d X_{2} d X_{3} \\
& =3 * \frac{1}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

8 Ch 6 Problem 48

a

$$
\begin{aligned}
P\left(\min \left(X_{1}, \ldots, X_{5}\right) \leq a\right) & =1-P\left(\min \left(X_{1}, \ldots, X_{5}\right)>a\right) \\
& =1-P\left(X_{1}>a, \ldots, X_{5}>a\right) \\
& =1-\prod_{i=1}^{5} P\left(X_{i}>a\right) \quad \text { by independence } \\
& =1-\prod_{i=1}^{5}\left(1-\left(1-e^{-\lambda a}\right)\right) \\
& =1-e^{-5 \lambda a}
\end{aligned}
$$

b

In order for the maximum of the five random variables to be less than a^{1}

$$
\begin{aligned}
P\left(\min \left(X_{1}, \ldots, X_{5}\right) \leq a\right) & =P\left(X_{1} \leq a, \ldots, X_{5} \leq a\right) \\
& =\prod_{i=1}^{5} P\left(X_{i} \leq a\right) \quad \text { by independence } \\
& =\prod_{i=1}^{5}\left(1-e^{-\lambda a}\right) \\
& =\left(1-e^{-\lambda a}\right)^{5} .
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ For example, let $\mathrm{a}=50$, and let X_{i} equal your homework score on your ith to last assignment. If you violated the rules of engagement and copied down answers from a solutions website, then $\max \left(X_{i}\right)$ is now $\leq a$ in the grades spreadsheet.

