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A Path Through the TSP, MST, and Interpolations

� Part 1: Getting Started with the MST and TSP
� (Computational Differences, Stochastic Similarities, and

Consequences of Both.)

� Part II: Seeing Structures and Framing Conjectures
� (Some News you can Use and a TSP conjecture that fails.)

� Part III: Interpolation — The Real Theme
� (Wherein the famous Dogerpillars are introduced and

explored.)
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Computational Theory of the TSP

� The TSP Problem is NP-Complete

� As a practical mater, solving large TSPs exactly is not possible

� There are recent (circa 1995) ε-approximation algorithms

� These are still impractical — O(np(1/ε))

� Bottom Line:
Even the ε approximation to the TSP is “essentially”
impossible

� On the Other Hand:
There is a O(n) time ε algorithm (Karp-Steele (1985)) if you
assume a probability model for the points.
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Computational Theory of the MST

� The MST problem is computationally easy!

� Greedy algorithms of several kinds give O(n2) algorithms

� With fancy data structures you can even do better

� Current records are faster than O(n logε n)

� Bottom Line:
The MST and TSP may LOOK like similar problems ....

� BUT:
Their computational theory tells us that they are wildly
different
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� Make life simple and consider the case of the TSP and MST
for sets of n points chosen at random from a density f with
compact support in R2.

� Let LMST
n and LTSPn denote the lengths of the optimal tree

and optimal path

� A moments thought suggests that these should be O(
√
n)

� We actually have a precise limit theorem in each case:

�

limn→∞
Ln√
n
= C

∫
R2

√
f (x) dx . with probability one
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Probability Theory of the TSP, MST, and More

� Make life simple and consider the case of the TSP and MST
for sets of n points chosen at random from a density f with
compact support in R2.

� Let LMST
n and LTSPn denote the lengths of the optimal tree

and optimal path

� A moments thought suggests that these should be O(
√
n)

� We actually have a precise limit theorem in each case:

�

limn→∞
Ln√
n
= C

∫
R2

√
f (x) dx . with probability one

� For the TSP this is the famous Beardwood-Halton-Hammersly
theorem of 1959. For the MST the result is from Steele
(1988). The constants CTSP and CMST are not known
exactly. The natural analogs hold in d ≥ 2.
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Idea of the Modern Proof of BHH

� Three Steps: Reduction to Uniforms, Control of the Mean,
and Control of the Variance

� Method for the Means
� Dissect the square to k2 subsquares
� Get subadditivity and smooth it by Poissonization
� Get the limits by an extension of Fekete’s lemma
� Back out to ELn via a Tauberian theorem

� This method is easier than that used by BHH, but it is close
in spirit

� The modern approach to the variance is radically different
from that used by BHH

� The modern package is much more robust to changes in
“problem” and “model”.
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Step 3: The Variance and “News You can Use”

� There is a VERY GENERAL trick for bounding

VarF (X1,X2, ...,Xn)

� Steele (1981), generalizing Efron and Stein (1980), showed it
is bounded by

1

2

∑
1≤i≤n

E (F (X1,X2, ...,Xi , ...,Xn)− F (X1,X2, ..., X̂i , ...,Xn))
2

� For the TSP and MST this can be used to prove that (in
d = 2) there is a constant C such that for

VarLn ≤ C for all n

� Even now this may seem surprising. Here, and in many other
cases, it gives an very pleasing path to the desired strong laws.
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Sharper Concentration

� After intermediate results by several authors, Talagrand
proved with his convex distance inequality that the TSP and
MST in d = 2 have Gaussian tail bounds:

P(|Ln − ELn| ≥ x) ≤ Ae−Bx2 .
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Sharper Concentration

� After intermediate results by several authors, Talagrand
proved with his convex distance inequality that the TSP and
MST in d = 2 have Gaussian tail bounds:

P(|Ln − ELn| ≥ x) ≤ Ae−Bx2 .

� The proof of this inequality can be somewhat simplified by
using the Spacefilling Curve Heuristic to get a “certificate” for
the size of Talangrand’s distance. Results of the same nature
can be obtained using Ledoux’s Log-Sobolev inequality.

� The problems in d > 2 dropped briefly off the radar. Here we
only know

VarLn ≤ Cn(d−2)/d for all n

� We do not know if this is the “truth” when d > 2. Lower
bounds on variance are hard to come by. We have similar
open issues with respect to sharp concentration in d > 2.
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Intermezzo: A Natural Conjecture

� It is natural to ask if one really needs independent, identically
distributed observations

� How about processes that are stationary with ergodic density
f ?

� This question is motivated by recent progress by Nobel (2008)
who showed results in Vapnik-Chervonikis theory continue to
hold in the stationary ergodic case.

� As it happens, for the TSP and MST one DOES NOT have
the strong law for stationary ergodic processes.

� The construction of the counter-example in Steele (2009) is
too complicated to give in detail, but it is actually pretty
simple given some conceptual hints.

� Three Hints Do It: Cyclic processes, O(n−(1+ε)/2) shifts, and
subsequent scales.
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� There are several ways the TSP is hard and the MST is easy:
� The computational issues we mentioned earlier
� Probabilistic Differences — E.g. the CLT of Kesten and Lee.

� Here is a puzzle: Are there “structures” that fall between the
TSP and MST?

� There is at least on reasonably well-studied class of graphs
does fall in between

� In graph theory, a CATERPILLAR is a graph G with two
properties:

� It is itself a tree (i.e. connected and without cycles)
� It contains a path P such that if P is deleted from G the

resulting graphs is a union of disjoint stars.
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Part III: Interpolation between the TSP and MST

� There are several ways the TSP is hard and the MST is easy:
� The computational issues we mentioned earlier
� Probabilistic Differences — E.g. the CLT of Kesten and Lee.

� Here is a puzzle: Are there “structures” that fall between the
TSP and MST?

� There is at least on reasonably well-studied class of graphs
does fall in between

� In graph theory, a CATERPILLAR is a graph G with two
properties:

� It is itself a tree (i.e. connected and without cycles)
� It contains a path P such that if P is deleted from G the

resulting graphs is a union of disjoint stars.

� The minimal spanning caterpillar is well defined and we
naturally have

LMST
n ≤ LCATn ≤ LTSPn
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Strong Law for Caterpillars

� One gets the asymptotics of the means just as one does in the
modern proof of the BHH

� For the variance, one again uses the Jackknife inequality.

� This time there are some technical difficulties:
� So far I only get

VarLn ≤ Cεn
ε for all n

� One suspects this can be improved to universal boundedness as
for the TSP and MST
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Strong Law for Caterpillars

� One gets the asymptotics of the means just as one does in the
modern proof of the BHH

� For the variance, one again uses the Jackknife inequality.

� This time there are some technical difficulties:
� So far I only get

VarLn ≤ Cεn
ε for all n

� One suspects this can be improved to universal boundedness as
for the TSP and MST

� Still, this is good enough. One gets the strong law for
minimal spanning caterpillars.
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� One can ask: Are Caterpillars more like MSTs or TSPs?
� Computation of the minimum spanning caterpillar is NP

complete, because ...
� Just getting the order of the Stars right is NP complete
� Nevertheless, a non-trivial fraction of the length of a caterpillar

will be in the stars.

� One would like a richer class than caterpillars — something
that would eventually catch up with the spanning tree.

� This leads one to the notion of a Dogerpillar.

� Note: If you Google “caterpillar” you will find much irrelevant
information.

� Ironically, if you Google “dogerpillar” you still find much that
irrelevant. It’s hard to come up with a neologism these days.
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Introducing Dogerpillars

� Definition: A graph G is a dogerpillar (more precisely a
k = k(n)-dogerpillar) if

� there is a path P in G such that
� if you delete P from G the resulting graph is a collection of

disjoint trees such that each tree has no more than k vertices.
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Introducing Dogerpillars

� Definition: A graph G is a dogerpillar (more precisely a
k = k(n)-dogerpillar) if

� there is a path P in G such that
� if you delete P from G the resulting graph is a collection of

disjoint trees such that each tree has no more than k vertices.

� Specializations:

� Taking k = n, we see that the Dogerpillar is a tree
� Taking k = 0, we see that the Dogerpillar is a path
� The most interesting cases are k = o(n), especially

k = O(
√
n).
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Why I like Dogerpillars

� The minimal spanning dogerpillars do seem to be the most
natural interpolation of the class of spanning trees and TSP
paths

� They retain much of the tractability of the MST and TSP

� The suggest some questions that seem compelling:
� For “large enough k” the Dogerpillar should become the MST.
� It seems very interesting to know this critical rate
� At the critical rate, we have the CLT, but we may be able to

get the CLT at much lower critical rates.

� Let’s look at the progress to date...
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Probability Theory of Dogerpillars — Circa March 2010

� For all kn ∼ nα with 0 < α < 1 one has the strong law:

lim
n→∞

LDOG
n√
n

= C

∫
R2

√
f (x)dx
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� For all kn ∼ nα with 0 < α < 1 one has the strong law:

lim
n→∞

LDOG
n√
n

= C

∫
R2

√
f (x)dx

� The proof of this result required the development of many
facts that are analogous to those that were useful for the
MST and TSP

� Nevertheless, there are many questions that are open ...

� Relaxation of kn ∼ nα

� Universal boundedness of VarLDOG
n when d = 2.

� Sharp Tail Bounds as Talagrand found for the TSP and MST
in d = 2.

� CLT for at least some interesting ranges of kn, at least
kn ∼ n1/2+ε
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� We’ve reviewed the probability theory of the TSP and MST as
it has evolved over the last 25 years.

� We did not go into the widely diffused applications in
computer science, communication theory, and networks of
many kinds.

� YOU WILL at some future time find a place in your work to
apply the jackknife inequality that we reviewed our
discussion of the surprising bound VarLn ≤ C < ∞

� We introduced Caterpillars and Dogerpillars

� We covered what is known of their probability theory and
suggested ways they may be useful in the future.

� Thank You for Your Attention!
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