Evolution of the Quant from the Glory Days to the New Normal

J. Michael Steele
University of Pennsylvania, Wharton School
Ripped from the Headlines ...
Ripped from the Headlines ...

▶ “Recipe for Disaster: The Formula That Killed Wall Street”
Ripped from the Headlines …

▶ “Recipe for Disaster: The Formula That Killed Wall Street”
▶ Check out that date: virtually the *Bottom* of the bear market
Ripped from the Headlines …

▶ Check out that date: virtually the *Bottom* of the bear market

▶ On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.
Ripped from the Headlines …

 - Check out that date: virtually the *Bottom* of the bear market
 - On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.

Ripped from the Headlines …

 - Check out that date: virtually the *Bottom* of the bear market
 - On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.

 - Does this date look right — way back in 2005?

J. Michael Steele University of Pennsylvania, Wharton School

Evolution of the *Quant* from the Glory Days to the New Normal
Ripped from the Headlines ...

 - Check out that date: virtually the Bottom of the bear market
 - On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.

 - Does this date look right — way back in 2005?
 - Yet this was the real story ... and when the Quant Egg First Started to Crack.
Ripped from the Headlines …

 - Check out that date: virtually the Bottom of the bear market
 - On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.
 - Does this date look right — way back in 2005?
 - Yet this was the real story … and when the Quant Egg First Started to Crack.
- A Soup for Several Themes:
Ripped from the Headlines ...

 - Check out that date: virtually the Bottom of the bear market
 - On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.

 - Does this date look right — way back in 2005?
 - Yet this was the real story ... and when the Quant Egg First Started to Crack.

- A Soup for Several Themes:
 - The Demand and Supply of Models
Ripped from the Headlines …

 ▶ Check out that date: virtually the Bottom of the bear market
 ▶ On March 9, 2009 the SP500 hit the Devilish level of 666 — then doubled in 24 months.

 ▶ Does this date look right — way back in 2005?
 ▶ Yet this was the real story ... and when the Quant Egg First Started to Crack.

▶ A Soup for Several Themes:
 ▶ The Demand and Supply of Models
 ▶ Twain’s Rhyme: Financial History and Possible Futures
The Beginning of Any Model – an “Object of Interest”
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
 - CDO is a TLA for ...
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
 - CDO is a TLA for ...
 - Collateralized Debt Obligation: Which is almost the original work of “financial engineering” where one builds a new financial product out of available financial raw material.
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
 - CDO is a TLA for ...
 - Collateralized Debt Obligation: Which is almost the original work of “financial engineering” where one builds a new financial product out of available financial raw material.
 - The classic raw material for building a CDO is a collection of residential mortgages but any collection of “debt instruments” will do (even other CDOs).
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
 - CDO is a TLA for ...
 - *Collateralized Debt Obligation:* Which is almost the original work of “financial engineering” where one builds a new financial product out of available financial raw material.
 - The classic raw material for building a CDO is a collection of residential mortgages but any collection of “debt instruments” will do (even other CDOs).
 - CDOs were first engineered in 1987, but their volume ROARED up during US Residential housing boom of the 2000’s. At the peak in 2006 issuance was 520 Billion USD.
The Beginning of Any Model – an “Object of Interest”

- What is a CDO and Why do we Care?
 - CDO is a TLA for …
 - *Collateralized Debt Obligation*: Which is almost the original work of “financial engineering” where one builds a new financial product out of available financial raw material.
 - The classic raw material for building a CDO is a collection of residential mortgages but any collection of “debt instruments” will do (even other CDOs).
 - CDOs were first engineered in 1987, but their volume ROARED up during US Residential housing boom of the 2000’s. At the peak in 2006 issuance was 520 Billion USD.

- Let’s Look at a Picture of the Construction of a CDO
Why Everyone Loved CDOs
Why Everyone Loved CDOs

- **Investors**: They got a higher interest rate for a “comparable level of risk”
Why Everyone Loved CDOs

- **Investors**: They got a higher interest rate for a “comparable level of risk”
- **Rating Agencies**: For the years 2000-2006 they got 40% of their revenue from rating CDOs
Why Everyone Loved CDOs

▶ **Investors**: They got a higher interest rate for a “comparable level of risk”

▶ **Rating Agencies**: For the years 2000-2006 they got 40% of their revenue from rating CDOs

▶ **Mortgage Originators**: They could do more business without using up their balance sheet or taking credit risk.
Why Everyone Loved CDOs

- **Investors**: They got a higher interest rate for a “comparable level of risk”
- **Rating Agencies**: For the years 2000-2006 they got 40% of their revenue from rating CDOs
- **Mortgage Originators**: They could do more business without using up their balance sheet or taking credit risk.
- **Home Purchasers**: Many more people could buy homes — including some that should not have done so
Why Everyone Loved CDOs

- **Investors**: They got a higher interest rate for a “comparable level of risk”
- **Rating Agencies**: For the years 2000-2006 they got 40% of their revenue from rating CDOs
- **Mortgage Originators**: They could do more business without using up their balance sheet or taking credit risk.
- **Home Purchasers**: Many more people could buy homes — including some that should not have done so
- **The Government**: CDOs created placement for mortgage assets beyond Fannie Mae and Freddie Mac. Politicians could even imagine a day when Fannie Mae and Freddie Mac could be decommissioned.
What is Special about Risk in a Pool of Mortgages?

J. Michael Steele
University of Pennsylvania, Wharton School

Evolution of the Quant from the Glory Days to the New Normal
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks

J. Michael Steele University of Pennsylvania, Wharton School
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
 - The Mortgage Analogy: It’s clear we need to consider the “dependence” of events.

J. Michael Steele University of Pennsylvania, Wharton School

Evolution of the Quant from the Glory Days to the New Normal
What is Special about Risk in a Pool of Mortgages?

- **Insurance, Broken Hearts and a Farmer’s Story**
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
 - The Mortgage Analogy: It’s clear we need to consider the “dependence” of events.

- **So How Does one Measure (or Model) the Dependence of Chance Driven Events?**
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
 - The Mortgage Analogy: It’s clear we need to consider the “dependence” of events.

- So How Does one Measure (or Model) the Dependence of Chance Driven Events?
 - First things first: $P(A)$
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
 - The Mortgage Analogy: It’s clear we need to consider the “dependence” of events.

- So How Does one Measure (or Model) the Dependence of Chance Driven Events?
 - First things first: $P(A)$
 - Now, the harder $P(B \text{ given } A)$
What is Special about Risk in a Pool of Mortgages?

- Insurance, Broken Hearts and a Farmer’s Story
 - Independence and Normal Actuarial Risks
 - Actuarial science and mortality of a surviving spouse
 - The great Mississippi Flood of 1927
 - The Mortgage Analogy: It’s clear we need to consider the “dependence” of events.

- So How Does one Measure (or Model) the Dependence of Chance Driven Events?
 - First things first: \(P(A) \)
 - Now, the harder \(P(B \text{ given } A) \)
 - Always in Demand: Relevant Tools and Relevant Data
Default “Life Times” with Correlation Zero

Mortgage Pair Default Times

Mortgage A vs Mortgage B

J. Michael Steele University of Pennsylvania, Wharton School

Evolution of the Quant from the Glory Days to the New Normal
Default “Life Times” with 20% Correlation

Mortgage Pair Default Times

Mortgage A

Mortgage B

J. Michael Steele, University of Pennsylvania, Wharton School

Evolution of the Quant from the Glory Days to the New Normal
Default “Life Times” with 40% Correlation

Mortgage Pair Default Times

Mortgage A
Mortgage B

J. Michael Steele University of Pennsylvania, Wharton School
Evolution of the Quant from the Glory Days to the New Normal
Default “Life Times” with 80% Correlation

Mortgage Pair Default Times

J. Michael Steele University of Pennsylvania, Wharton School

Evolution of the Quant from the Glory Days to the New Normal
Mottos for Modelers and David Li’s Approach
Mottos for Modelers and David Li’s Approach

▶ “All models are wrong, but some are useful.” — G.E.P. Box
Mottos for Modelers and David Li’s Approach

▶ “All models are wrong, but some are useful.” — G.E.P. Box
▶ “A limited model is better than no model at all” — Anonymous
Mottos for Modelers and David Li’s Approach

- “All models are wrong, but some are useful.” — G.E.P. Box
- “A limited model is better than no model at all” — Anonymous
- “A model should be as simple as possible — but not simpler.” — A. Einstein
Mottos for Modelers and David Li’s Approach

- “All models are wrong, but some are useful.” — G.E.P. Box
- “A limited model is better than no model at all” — Anonymous
- “A model should be as simple as possible — but not simpler.” — A. Einstein
- David Li’s Approach
Mottos for Modelers and David Li’s Approach

- “All models are wrong, but some are useful.” — G.E.P. Box
- “A limited model is better than no model at all” — Anonymous
- “A model should be as simple as possible — but not simpler.” — A. Einstein
- **David Li’s Approach**
 - Life Times are not normal (or Gaussian); but we can “transform them” to be normal.
Mottos for Modelers and David Li’s Approach

- “All models are wrong, but some are useful.” — G.E.P. Box
- “A limited model is better than no model at all” — Anonymous
- “A model should be as simple as possible — but not simpler.” — A. Einstein

David Li’s Approach

- Life Times are not normal (or Gaussian); but we can “transform them” to be normal.
- With jointly normal data, we have the tool of correlation to “deal with” dependence.
Mottos for Modelers and David Li’s Approach

- “All models are wrong, but some are useful.” — G.E.P. Box
- “A limited model is better than no model at all” — Anonymous
- “A model should be as simple as possible — but not simpler.” — A. Einstein

David Li’s Approach

- Life Times are not normal (or Gaussian); but we can “transform them” to be normal.
- With jointly normal data, we have the tool of correlation to “deal with” dependence.
- True, we have zillions of correlations to worry about, but we “simplify the model” by assuming that all of the correlations are equal. After all, this is still progress, right?
Try a Little Mathematics (or, Day Dream for One Overhead)
Try a Little Mathematics (or, Day Dream for One Overhead)

▶ All This Transforming: Boiled Down
Try a Little Mathematics (or, Day Dream for One Overhead)

- **All This Transforming: Boiled Down**
 - A *copula* is a distribution function $C : [0, 1]^d \rightarrow [0, 1]$ with uniform marginals.
Try a Little Mathematics (or, Day Dream for One Overhead)

- All This Transforming: Boiled Down
 - A copula is a distribution function $C : [0, 1]^d \rightarrow [0, 1]$ with uniform marginals.
 - The “independence” copula (for $d=2$) is simply $C_{\text{Ind}}(x, y) = xy$.
Try a Little Mathematics (or, Day Dream for One Overhead)

▶ All This Transforming: Boiled Down
- A copula is a distribution function $C : [0, 1]^d \rightarrow [0, 1]$ with uniform marginals.
- The “independence” copula (for $d=2$) is simply $C_{\text{Ind}}(x, y) = xy$.
- The “Gaussian copula” is the modestly more scary:

$$C_{Gaus}(x, y) = \int_{\infty}^{\Phi^{-1}(x)} \int_{\infty}^{\Phi^{-1}(y)} \frac{1}{2\pi(1 - \rho^2)^{1/2}} \exp \left\{ \frac{-s^2 - 2\rho st + t^2}{2(1 - \rho^2)} \right\} ds dt$$
Try a Little Mathematics (or, Day Dream for One Overhead)

▶ All This Transforming: Boiled Down
 ▶ A copula is a distribution function $C : [0, 1]^d \rightarrow [0, 1]$ with uniform marginals.
 ▶ The “independence” copula (for $d=2$) is simply $C_{\text{Ind}}(x, y) = xy$.
 ▶ The “Gaussian copula” is the modestly more scary:

$$C_{\text{Gaus}}(x, y) = \int_{\infty}^{\Phi^{-1}(x)} \int_{\infty}^{\Phi^{-1}(y)} \frac{1}{2\pi(1 - \rho^2)^{1/2}} \exp \left\{ \frac{-s^2 - 2\rho st + t^2}{2(1 - \rho^2)} \right\} ds dt$$

▶ The famous Li Model is just

$$C_{\text{Gaus}}(F_A(x), F_B(y))$$

This gives you one parameter to deal with dependence and it allows for the kinds of marginal distributions you meet in real life. You lucky rascal, you can now compute away — having “dealt” professionally with the pesky dependence issue.
2001 and the Mortgage Market Is About to Depart Kansas
2001 and the Mortgage Market Is About to Depart Kansas

2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
- ... but not all was well
2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
- ... but not all was well
 - There really is some logic to home ownership — and home prices
2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
- ... but not all was well
 - There really is some logic to home ownership — and home prices
 - That “house prices do not go down” was wishful thinking
2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
- ... but not all was well
 - There really is some logic to home ownership — and home prices
 - That “house prices do not go down” was wishful thinking
- CDO Issuance: 2007 481 B USD, 2008 61 B USD, and then in 2009 just 4 B USD
2001 and the Mortgage Market Is About to Depart Kansas

- Think back to how good 2006 felt
- ... but not all was well
 - There really is some logic to home ownership — and home prices
 - That “house prices do not go down” was wishful thinking
 - CDO Issuance: 2007 481 B USD, 2008 61 B USD, and then in 2009 just 4 B USD
- This is what a crash looks like — in the CDO market. The tipping point was in 2006. The equity market did not start its crash until November 2007. The economy ... we’ll it stayed on the skids to 2009 Q1.
Financial Crisis 2007-2009
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante* vs *Ex Post*
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante vs Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante vs Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
- This erasure and the hit to the housing sector were serious enough to bring on two years of economic contraction.
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante vs Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
- This erasure and the hit to the housing sector were serious enough to bring on two years of economic contraction.
- There are many tons of real economic and personal wreckage.
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante vs Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
- This erasure and the hit to the housing sector were serious enough to bring on two years of economic contraction.
- There are many tons of real economic and personal wreckage.
- The biggest problem is underemployment — and this problem could last for decades.
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante* vs *Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
- This erasure and the hit to the housing sector were serious enough to bring on two years of economic contraction.
- There are many tons of real economic and personal wreckage.
- The biggest problem is underemployment — and this problem could last for decades.
- Blame? The media has had no problem finding villains — including some like Bernie Madoff who might not have been caught in their natural lives had the “tide not gone out.”
Financial Crisis 2007-2009

- Honest Thinking: *Ex Ante vs Ex Post*
- We erased the “shadow banking system” — which was home to 500 B of activity.
- This erasure and the hit to the housing sector were serious enough to bring on two years of economic contraction.
- There are many tons of real economic and personal wreckage.
- The biggest problem is underemployment — and this problem could last for decades.
- Blame? The media has had no problem finding villains — including some like Bernie Madoff who might not have been caught in their natural lives had the “tide not gone out.”
- Lessons Learned? Well, let’s stick to what quants may have learned — and may still worry about.
Quants: Responsibilities and Lessons Learned
Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a part of the dependence issue in CDOs. This is what modelers do.
Quants: Responsibilities and Lessons Learned

- Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a part of the dependence issue in CDOs. This is what modelers do.

- Li’s model did not deal with the fact that in extremes all assets become (more and more) correlated. Many quants have brass plaques on their wall with this homily. They learned it first hand during the Russian and LTCM crisis of 1998. This is in everyone’s mind — and no one’s models.
Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a part of the dependence issue in CDOs. This is what modelers do.

Li’s model did not deal with the fact that in extremes all assets become (more and more) correlated. Many quants have brass plaques on their wall with this homily. They learned it first hand during the Russian and LTCM crisis of 1998. This is in everyone’s mind — and no one’s models.

Keynes said: “When the facts change, I change my mind. What do you do, Sir?”
Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a part of the dependence issue in CDOs. This is what modelers do.

Li’s model did not deal with the fact that in extremes all assets become (more and more) correlated. Many quants have brass plaques on their wall with this homily. They learned it first hand during the Russian and LTCM crisis of 1998. This is in everyone’s mind — and no one’s models.

Keynes said: “When the facts change, I change my mind. What do you do, Sir?”

The business of “originate to distribute” changed the risk characteristics of mortgages.
Quants: Responsibilities and Lessons Learned

- Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a part of the dependence issue in CDOs. This is what modelers do.

- Li’s model did not deal with the fact that in extremes all assets become (more and more) correlated. Many quants have brass plaques on their wall with this homily. They learned it first hand during the Russian and LTCM crisis of 1998. This is in everyone’s mind — and no one’s models.

- Keynes said: “When the facts change, I change my mind. What do you do, Sir?”
 - The business of “originate to distribute” changed the risk characteristics of mortgages.
 - The ratio of median home price to median household income changed the likelihood of a national decline in housing prices
Quants: Responsibilities and Lessons Learned

▶ Nobody who understands Li’s model will put any blame on his shoulders. He clearly and honestly put forward a simple model that addressed a *part* of the dependence issue in CDOs. This is what modelers do.

▶ Li’s model did not deal with the fact that *in extremes all assets become (more and more) correlated*. Many quants have brass plaques on their wall with this homily. They learned it first hand during the Russian and LTCM crisis of 1998. This is in everyone’s mind — and no one’s models.

▶ Keynes said: “When the facts change, I change my mind. What do you do, Sir?”

▶ The business of “originate to distribute” changed the risk characteristics of mortgages.
▶ The ratio of median home price to median household income changed the likelihood of a national decline in housing prices
▶ Absorption of marginal purchasers created fragile owners — so historical rates were less relevant to contemporary estimates.
Quants, the Next Problem, and the New Normal
N quants were thrown up in the air and there were only $\frac{N}{2}$ boxes for the quants to fall back into.
Quants, the Next Problem, and the New Normal

- N quants where thrown up in the air and there were only N/2 boxes for the quants to fall back into.
- This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.
N quants were thrown up in the air and there were only $N/2$ boxes for the quants to fall back into.

This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.

The biggest “quant risk” that is out there today is VAR, value at risk.
N quants where thrown up in the air and there were only $N/2$ boxes for the quants to fall back into.

This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.

The biggest “quant risk” that is out there today is VAR, value at risk.

VAR suffers from the same “peso problem” that was behind the worst inferences of CDO crisis.
Quants, the Next Problem, and the New Normal

- N quants were thrown up in the air and there were only N/2 boxes for the quants to fall back into.
- This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.
- The biggest “quant risk” that is out there today is VAR, value at risk.
 - VAR suffers from the same “peso problem” that was behind the worst inferences of CDO crisis
 - VAR is not counter cyclical — it encourages (even forces) herd behavior.
Quants, the Next Problem, and the New Normal

- N quants were thrown up in the air and there were only N/2 boxes for the quants to fall back into.
- This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.
- The biggest “quant risk” that is out there today is VAR, value at risk.
 - VAR suffers from the same “peso problem” that was behind the worst inferences of CDO crisis
 - VAR is not counter cyclical — it encourages (even forces) herd behavior.
- To Quant or Not to Quant? My view — it’s a glorious life and it adds value to society!
Quants, the Next Problem, and the New Normal

- N quants were thrown up in the air and there were only N/2 boxes for the quants to fall back into.
- This had more to do with the shrinkage of the shadow banking system than with any success or failure of models.
- The biggest “quant risk” that is out there today is VAR, value at risk.
 - VAR suffers from the same “peso problem” that was behind the worst inferences of CDO crisis
 - VAR is not counter cyclical — it encourages (even forces) herd behavior.
- To Quant or Not to Quant? My view — its a glorious life and it adds value to society!
- Just don’t check your common sense at the door.