Optimal Sequential Selection
 Monotone, Alternating, and Unimodal Subsequences

J. Michael Steele

June, 2011

Acknowledgements

- Alessandro Arlotto (Univ. Pennsylvania, Wharton)
- Lawrence A. Shepp (Univ. Pennsylvania, Wharton)
- Robert Chen (Univ. Miami)

Optimal Sequential Selection of Subsequences

Increasing, Unimodal and Alternating plots

On-line vs. full-information

On-line vs. full-information

On-line vs. full-information

$$
n=100, \quad U_{n}^{o}\left(\pi_{n}^{*}\right)=21, \quad U_{n}=22
$$

Increasing Subsequences: Beginning with the Classics

Theorem

There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2} \quad \text { for all } n \geq 1
$$

so, in particular, one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Well Trod Ground but with Something New:
- Different proof for the upper-bound;
- Variance bounds

Unimodal Subsequences: More Complex but Still Analogous

Theorem

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right],
$$

and for such an optimal policy there is a constant C such that

$$
2 n^{1 / 2}-C n^{1 / 4}<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]<2 n^{1 / 2} \quad \text { for all } n \geq 1
$$

So, in particular, one has

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \sim 2 n^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Alternating Subsequences: Something Quite Different

Theorem (Asymptotic Selection Rate for Large Samples)

For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{o}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \leq(2-\sqrt{2}) n+C
$$

where C is a constant with $C<11-4 \sqrt{2} \sim 5.343$. In particular, one has

$$
\mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right] \sim(2-\sqrt{2}) n \quad \text { as } n \rightarrow \infty
$$

Theorem (Expected Selection Size in Geometric Samples)

For each $0<\rho<1$, there is a $\pi^{*} \in \Pi$, such that $\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{N}^{o}(\pi)\right]$, and for such an optimal policy one has

$$
\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]=\frac{3-2 \sqrt{2}-\rho+\rho \sqrt{2}}{\rho(1-\rho)} \sim(2-\sqrt{2})(1-\rho)^{-1} \sim(2-\sqrt{2}) \mathbb{E} N \quad \text { as } \rho \rightarrow 1
$$

Proof of the Expected Length of Alternating Subsequences (sketch)

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), 1+v_{i+1, n}(1-x)\right\} d x
$$

- "Flipped" infinite-horizon Bellman equation:

$$
v(y)=\rho y v(y)+\int_{y}^{1} \max \{\rho v(y), 1+\rho v(1-x)\} d x
$$

- Threshold-policy for infinite-horizon: $f^{*}(y)=\max \left\{\xi_{0}, y\right\}, \xi_{0} \in[0,1 / 2)$
- Solve for $v(\cdot)$ and obtain

$$
v(0)=v\left(\xi_{0}\right)=\frac{3-2 \sqrt{2}-\rho+\rho \sqrt{2}}{\rho(1-\rho)} .
$$

Proof of the Expected Length of Alternating Subsequences (sketch)

- Finite-horizon lower bound: use the infinite-horizon threshold policy.
- Finite-horizon upper bound: use the finite-horizon optimal threshold functions $\left\{f_{1, n}^{*}, \ldots, f_{n-2, n}^{*}\right\}$ and regenerate this selection process over an infinite horizon. The value of $\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]$ then gives the desired upper bound.

The News You Can Use

- First - Soften The Ground:
- Study the more "symmetrical" infinite horizon (or other "smoothed") problem variations
- Second - Have the Courage (and Techniques) to Return to Finite n:
- Typically, it is the finite n problem that interests us most. We can try to return to finite n by exploiting "suboptimality".
- This works well enough for means but more refined information (such as variance) requires much more work.
- Open Problems:
- CLT for "Monotone" and Finite n ?
- CLT for "Alternating" (even good variance asymptotics)
- Richer Understanding of Martingale connections with the Bellman Equation
- Richer Understanding of Bellman Equation asymptotics (and max-type integral equations)

Thank you!

References

F. Thomas Bruss and James B. Robertson. "Wald's lemma" for sums of order statistics of i.i.d. random variables. Adv. in Appl. Probab., 23(3):612-623, 1991. ISSN 0001-8678. doi: 10.2307/1427625.

Alexander V. Gnedin. Sequential selection of an increasing subsequence from a sample of random size. J. Appl. Probab., 36(4):1074-1085, 1999. ISSN 0021-9002.
WanSoo Rhee and Michel Talagrand. A note on the selection of random variables under a sum constraint. J. Appl. Probab., 28(4):919-923, 1991. ISSN 0021-9002.
Stephen M. Samuels and J. Michael Steele. Optimal sequential selection of a monotone sequence from a random sample. Ann. Probab., 9(6):937-947, 1981. ISSN 0091-1798.

