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On-line Selection of Subsequences Introduction

Optimal Sequential Selection
of Subsequences

Increasing
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On-line Selection of Subsequences Introduction

Increasing, Unimodal and Alternating plots

() 1 / 15

J.M. Steele () Subsequence Selection June, 2011 4 / 13



On-line Selection of Subsequences Introduction

On-line vs. full-information

n = 100,

Uo
n (π∗n ) = 21, Un = 22.
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On-line Selection of Subsequences Main Results

Increasing Subsequences: Beginning with the Classics

Theorem

There is a policy π∗ ∈ Π(n) such that E[I on (π∗)] = supπ∈Π(n) E [I on (π)], and for such an
optimal policy one has

(2n)1/2 − (8n)1/4 − 2 < E[I on (π∗)] < (2n)1/2 for all n ≥ 1.

so, in particular, one has

E[I on (π∗)] ∼ (2n)1/2 as n→∞.

Asymptotic behavior: Samuels and Steele (1981)

Upper bound: Bruss and Robertson (1991), Gnedin (1999)

Lower bound: Rhee and Talagrand (1991)

Well Trod Ground but with Something New:
I Different proof for the upper-bound;
I Variance bounds
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On-line Selection of Subsequences Main Results

Unimodal Subsequences: More Complex but Still Analogous

Theorem

There is a policy π∗ ∈ Π(n) such that

E[Uo
n (π∗)] = sup

π∈Π(n)

E [Uo
n (π)],

and for such an optimal policy there is a constant C such that

2n1/2 − Cn1/4 < E[Uo
n (π∗)] < 2n1/2 for all n ≥ 1.

So, in particular, one has

E[Uo
n (π∗)] ∼ 2n1/2 as n→∞.
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On-line Selection of Subsequences Main Results

Alternating Subsequences: Something Quite Different

Theorem (Asymptotic Selection Rate for Large Samples)

For each n = 1, 2, ..., there is a policy π∗n ∈ Π such that E[Ao
n(π∗n )] = supπ∈Π E[Ao

n(π)],
and for such an optimal policy one has for all n ≥ 1 that

(2−
√

2)n ≤ E[Ao
n(π∗n )] ≤ (2−

√
2)n + C ,

where C is a constant with C < 11− 4
√

2 ∼ 5.343. In particular, one has

E[Ao
n(π∗n )] ∼ (2−

√
2)n as n→∞.

Theorem (Expected Selection Size in Geometric Samples)

For each 0 < ρ < 1, there is a π∗ ∈ Π, such that E[Ao
N(π∗)] = supπ∈Π E[Ao

N(π)], and for
such an optimal policy one has

E[Ao
N(π∗)] =

3− 2
√

2− ρ+ ρ
√

2

ρ(1− ρ)
∼ (2−

√
2)(1− ρ)−1 ∼ (2−

√
2)EN as ρ→ 1.
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On-line Selection of Subsequences Proof of the Expected Length of Alternating Subsequences

Proof of the Expected Length of Alternating Subsequences (sketch)

Finite-horizon Bellman equation:

vi,n(s, r) =

{
svi+1,n(s, 0) +

∫ 1

s
max {vi+1,n(s, 0), 1 + vi+1,n(x , 1)} dx if r = 0

(1− s)vi+1,n(s, 1) +
∫ s

0
max {vi+1,n(s, 1), 1 + vi+1,n(x , 0)} dx if r = 1

Reflection identity: vi,n(s, 0) = vi,n(1− s, 1) for all 1 ≤ i ≤ n and all s ∈ [0, 1].

“Flipped” finite-horizon Bellman equation:

vi,n(y) = yvi+1,n(y) +

∫ 1

y

max {vi+1,n(y), 1 + vi+1,n(1− x)} dx .

“Flipped” infinite-horizon Bellman equation:

v(y) = ρyv(y) +

∫ 1

y

max {ρv(y), 1 + ρv(1− x)} dx .

Threshold-policy for infinite-horizon: f ∗(y) = max{ξ0, y}, ξ0 ∈ [0, 1/2)

Solve for v(·) and obtain

v(0) = v(ξ0) =
3− 2

√
2− ρ+ ρ

√
2

ρ(1− ρ)
.
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On-line Selection of Subsequences Proof of the Expected Length of Alternating Subsequences

Proof of the Expected Length of Alternating Subsequences (sketch)

Finite-horizon lower bound: use the infinite-horizon threshold policy.

Finite-horizon upper bound: use the finite-horizon optimal threshold functions
{f ∗1,n, . . . , f ∗n−2,n} and regenerate this selection process over an infinite horizon.
The value of E[Ao

N(π∗)] then gives the desired upper bound.
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On-line Selection of Subsequences Big Picture

The News You Can Use

First — Soften The Ground:

Study the more “symmetrical” infinite horizon (or other “smoothed”) problem
variations

Second — Have the Courage (and Techniques) to Return to Finite n:

Typically, it is the finite n problem that interests us most. We can try to return to
finite n by exploiting “suboptimality”.

This works well enough for means but more refined information (such as variance)
requires much more work.

Open Problems:
I CLT for “Monotone” and Finite n?
I CLT for “Alternating” (even good variance asymptotics)
I Richer Understanding of Martingale connections with the Bellman Equation
I Richer Understanding of Bellman Equation asymptotics (and max-type integral

equations)
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Thank you!

J.M. Steele () Subsequence Selection June, 2011 12 / 13



References

References

F. Thomas Bruss and James B. Robertson. “Wald’s lemma” for sums of order statistics
of i.i.d. random variables. Adv. in Appl. Probab., 23(3):612–623, 1991. ISSN
0001-8678. doi: 10.2307/1427625.

Alexander V. Gnedin. Sequential selection of an increasing subsequence from a sample of
random size. J. Appl. Probab., 36(4):1074–1085, 1999. ISSN 0021-9002.

WanSoo Rhee and Michel Talagrand. A note on the selection of random variables under
a sum constraint. J. Appl. Probab., 28(4):919–923, 1991. ISSN 0021-9002.

Stephen M. Samuels and J. Michael Steele. Optimal sequential selection of a monotone
sequence from a random sample. Ann. Probab., 9(6):937–947, 1981. ISSN 0091-1798.

J.M. Steele () Subsequence Selection June, 2011 13 / 13


	Acknowledgements
	On-line Selection of Subsequences
	Introduction
	Main Results
	Proof of the Expected Length of Alternating Subsequences
	Big Picture

	
	

	References
	References

