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Probability Theory of the Traveling Salesman Problem

I 1: The Classical Theorem of Beardwood, Halton, and
Hammersley

I (Few’s Estimate, Basic BHH, Computational Connections and
Comparison to MST)

I II: A Bookend Conjecture
I (Progress with Uniformity — Old and New, Stationarity as the

Frontier)

I III: A Construction You Can Use
I (Blocks and Twin Cities at Scale, Infinitely many

transformations, Coup de graĉe via extreme point theory)

I IV: Where Else Does This Lead?
I (“Places where Scale Matters” — Examples, known and

unknown)
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Probability Theory of the TSP, MST, and More

I Make life simple and consider the case of the TSP and MST
for sets of n points chosen at random from a density f with
compact support in R2.

I Let LMST
n and LTSPn denote the lengths of the optimal tree

and optimal path.
I A moments thought suggests that these should be O(

√
n).

Few (1955) gives a worst case upper bound of 3
√
n for the

TSP for n points in [0, 1]2.
I We actually have a precise limit theorem in each case:
I

limn→∞
Ln√
n

= C

∫
R2

√
f (x) dx . with probability one.

I For the TSP this is the famous Beardwood-Halton-Hammersly
theorem of 1959. For the MST the result is from Steele
(1988). The constants CTSP and CMST are not known exactly.
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Computational Theory of the TSP

I The TSP Problem is NP-Complete.

I People now solve large — but not super large — TSPs with
clever LP code.

I For about 20 years there have been polynomial time
ε-approximation algorithms, but even in theory these are
O(np(1/ε)) algorithms.

I Bottom Line:
The guaranteed ε-approximations to the TSP are not
particularly practical compared to LP, but perhaps the
“coding effort” conditions are not yet balanced.

I On the Other Hand:
There is a simple O(n) time, ε-approximation algorithm
(Karp-Steele (1985)) that you can use if you assume a
probability model for the points.
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Computational Theory of the MST

I The MST problem is computationally easy!

I Greedy algorithms of several kinds give O(n2) algorithms.

I With fancy data structures you can even do better.

I Current records are faster than O(n logε n).

I Bottom Line:
The MST and TSP may LOOK like similar problems ....

I BUT:
Their computational theory tells us that they are wildly
different.
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Does one Need Independence for the BHH to Hold?

I The natural “book end” conjecture is that the BHH might
hold for a stationary ergodic process with values in [0, 1]2, and
there are reasons to “think positive”...

I There is a “weak BHH” that only requires that asymptotically
each sub-square gets its “fair number” of point.

I The result in that case is

lim
n→∞

log Ln
log n

=
1

2

I Adams and Nobel (2010) established VC theory for Stationary
Ergodic Processes; so sub-squares uniformly get “fair share.”

I Reasons to “think negative”?

I The class of Stationary Ergodic Process is very rich. They
look probabilistically the “same” in any block of n
observations —but a priori they may reveal different kinds of
“granularity” over larger block sizes.
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Construction of a Counter-Example

I The basic idea is to construct a stationary ergodic process
such that certain special times τ1, τ2, . . . , τk . . . most cities are
part of a pair of twin cities, and the TSP cost is only a fraction
what the TSP cost would be for an independent sequence.

I Yet for the long periods between these times (think Permian
or Pleistocene Eras) one has very normal behavior where the
TSP cost is comparable to that of a independent sample.

I To make this pathology appear once is not hard. To make it
appear infinitely many times requires that one over come
several concrete challenges.
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A Transformation to Create Twin Cities: TN,ε

I Start with a doubly infinite stationary process
X = {Xk : k ∈ Z} with the marginal uniform distribution on
[0, 1]2.

I We break this into blocks of size N: For −∞ < k <∞ we set

Bk = XkN ,XkN−1, . . . ,X(k+1)N−1

I We then introduce “shifted blocks” of size N:

Bk(ε) = XkN +′ ε,XkN−1 +′ ε, . . . ,X(k+1)N−1 +′ ε

I We lay down the blocks and the “shifted blocks” to create a
sequence X̂ ∈ ([0, 1])∞:

. . .B−1,B−1(ε),B0,B0(ε), . . .Bk ,Bk(ε) . . .
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Confronting the Hard Part: Infinite Repetition

I Start with an i.i.d uniform sequence on [0, 1]2. Call it X0. Let
Nn, εn be given, n = 1, 2, . . .

I For n = 1, 2, . . . define Xn = TNn,εn(Xn−1)

I Show that if Nn and εn are wisely chosen then the processes
{Xn : n = 1, 2, . . .} converge in distribution to a stationary
process X with uniform marginal distributions.

I This gives us our feed stock. This is the guy you want to use
if you face a similar problem.

I To extract what you need from X there are several issues to
be addressed.
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Springing the Trap

I It is easier to deal with the means ELn(X ) than to deal with
the issues of almost sure convergence. For the purpose of a
counter-example, this is sufficient.

I One shows

lim inf
n→∞

ELn(X )√
n
≤ c1 < c2 ≤ lim sup

n→∞

ELn(X )√
n

I If Me denotes the set of ergodic shift-invariant measures on
([0, 1]2)∞ and if µ is the measure determined by X , then
Dynkin (1978) tells us there is a Dµ(dν) such that

µ(A) =

∫
Me

ν(A)Dµ(dν).

I We then argue (pretty easily) that some ν in Me must inherit
the bad behavior of the µ determined by X
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How Does This Help You?

I The BHH is a wonderful theorem with a large literature and
many applications.

I Still, there are no meaningful extensions to dependent random
variables.

I The example described here explains the obstruction, at least
in part.

I Mixtures of independent sequences satisfy the BHH and the
technical part of the present analysis isolates a special class of
“locally uniform processes” that satisfy the BHH. This is all
that is know in the positive direction.

I Two Natural Questions:

I Does the BHH hold for a stationary, uniform process if it is
strongly mixing?

I What does the iterated TN,ε construction tell us about other
spacial limit theorems?
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