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My First Idea for the Talk

I Hey, maybe I can use this special forum to reveal the rare and
true beauty of some of my “less well known” papers?

I Pluses and Minuses
I On the plus side ...
I there is a wealth of material to choose from!
I On the minus side ...
I things that are obscure may be obscure for some good reason.

I So, let’s forget that idea...

I Ah, hell, its “my birthday” — one small indulgence can’t hurt!
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Reminder about the Shannon-McMillan-Breiman Theorem

I The SMB tells us that if you have a stationary process Xi ,
i = 1, 2, . . . then for any set A ⊂ R if you look at all of the 2n

atoms

Ain,out,...,out = {ω : Xi “is in A or out of A” for i = 1, 2, . . . , n}

I then you have an 0 ≤ H = H(X.,A) ≤ 1 such that
I About 2nH of these atoms essentially cover Ω
I All of the atoms in this approximate cover have size about

2−nH

I The second property is the reason why the SMB is often called
the equipartition theorem.

I This theorem crushes many questions about stationary
processes.
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SMB for Permutation Partitions

I Dan Rudolph and I asked ourselves if the partition in the SMB
theorem might be replaced with the partition given by the
order statistical atoms:

Aσ = {ω : Xσ(1)(ω) ≤ Xσ(2)(ω) ≤ · · · ≤ Xσ(n)(ω) }

I In (AP, 1980) we showed that if the process has finite entropy
then you can get by with just

n!ρnn atoms — and one has ρn → 0.

In other words, a super-exponentially small fraction will
suffice. We also showed that even if the process has zero
entropy then one can not improve on this bound.

I The proofs are cool (using the DeBruijn necklace at one
point) and both the SMB and permutations are important.
Still, opportunity calls —
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Dining on Probability, Combinatorics, and Optimization

I What would you like?

I I’d like something Non-Linear, please — with a strong Hint of
Recursion

I For example?
I Subadditive Euclidean Functionals (TSP, MST, Minimal

Matching — Euclidean or Graph Theoretical)
I Emprical Process Theory — especially VC theory and its many

consequences
I Subsequence problems: Monotone, Unimodal, Alternating —

and Long Common
I Global optima, sequential optima, and asymptotics of credible

heuristics
I And, ah, yes, problems that grow with n.

I And for dessert?

I When possible, I always enjoy “stochastic consequences”
without “direct stochastic assumptions”.
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The Erdös-Szekeres Theorem: Cradle of Ramsey Theory

I We say a sequence is “monontone” if it is either monotone
increasing or monotone decreasing.

I Given any sequence of n distinct real numbers x1, x2, . . . , xn,
Erdös and Szekeres proved in 1935 that there exists a
monontone subsequence of length k ≥

√
n.

I Why? [Rick’s Code for Proof.]
I We use a pigeonhole argument with k × k boxes for our

pigeons. To each element xi of our sequence we assign two
numbers ai and bi .

I We let ai be the length of the longest increasing sequence
ending with xi and we let bi be the length of the longest
decreasing subsequence ending with xi .

I We can check in our heads that the labels (ai , bi ) for the
points xi are all distinct.

I If k = max(ai , bi ) there are at most k2 labels — hence at
most k2 points in our sequence.
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√
n.

I Why? [Rick’s Code for Proof.]
I We use a pigeonhole argument with k × k boxes for our

pigeons. To each element xi of our sequence we assign two
numbers ai and bi .

I We let ai be the length of the longest increasing sequence
ending with xi and we let bi be the length of the longest
decreasing subsequence ending with xi .
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points xi are all distinct.
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most k2 points in our sequence.
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Longest Increasing Subsequence Problems

I If x1, x2, . . . , xn is a sequence of real numbers, we let
L(x1, x2, . . . , xn) be the length of the longest increasing
subsequence.

I If Xi , i = 1, 2, . . . are independent (say Uniform) then the
random variable L(X1,X2, . . . ,Xn) has been studied
intensively in a great sequence of remarkable investigations.
Stage direction: Pick up Dan Romik’s new book and
wave in the air.

I Key mid-point of the long and winding trail:

E [L(X1,X2, . . . ,Xn)] ∼ 2
√
n.

I What about non-random sequences that share some of the
properties of i.i.d uniform? Specifically, the Weyl sequences or
the van der Corput sequence?
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LIS and Weyl Sequences

I If α is an irrational number, then one of the most basic results
of the theory of uniform distribution is that the numbers
xk = kα mod 1 are uniformly distributed on the interval
[0, 1].

I About 40 years ago, David Boyd and I considered the LIS
problem for the Weyl sequences and we published a paper in
Crelle’s Journal (the same one favored by Abel, Cantor, and
Eisenstein) where we studied the LIS for the Weyl sequences.

I The behavior of the LIS depends on the continued fraction
expansion of α.

I For example: α = (1 +
√

5)/2 = [1; 1, 1, . . .] one has

lim sup
n→∞

L(α, 2α, . . . , nα)/
√
n = 51/4

lim inf
n→∞

L(α, 2α, . . . , nα)/
√
n = 2/51/4
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Reflections: van der Corput Meets LIS

I Integers ... made binary ... then reflected in the “decimal
point”:

I {1, 2, 3, 4, 5, 6, . . .} → {1, 10, 11, 100, 101, 110, . . .}
I {1, 10, 11, 100, 101, 110, . . .} →
{0.1, 0.01, 0.11, 0.001, 0.101, 0.011, . . .}

I {0.1, 0.01, 0.11, 0.001, 0.101, 0.011, . . .} →
{1/2, 1/4, 3/4, 1/8, 5/8, 3/8, . . .}

I This determines a sequence v1, v2, . . . : The van der Corput
sequence; the most smoothly distributed sequence. About 40
years ago Andres del Junco and I found that

lim sup
n→∞

L(v1, v2, . . . , vn)/
√
n = 3/2

lim inf
n→∞

L(v1, v2, . . . , vn)/
√
n =
√

2
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Intermezzo: Reflections of a Second Kind

I Take any notable date in the past. For example, I got a Ph.d.
in 1975.

I Look at the date in the past that has the same distance to
1975 as the present. That was 40 years ago, so 1975 minus 40
is 1935.

I Now reflect (in a further sense) on what happened in 1935
I The first canned beer is sold in the US.
I Porky Pig makes his debut.
I Joseph Stalin opens the Moscow Metro to the public.
I The world’s first parking meters are installed in Oklahoma City.
I The first nighttime Major League Baseball game is played.
I The Erdös Szekeres Theorem is published.
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Sequential Selection

I In the problem of sequential selection, one is presented with a
value Xi and has to chose it or reject it.

I One has a new LIS variable: LSEQ(X1,X2, . . . ,Xn) — when
you do the best you can do.

I Steve Samuels and I found in (AP, 1981) that

E [LSEQ(X1,X2, . . . ,Xn)] ∼
√

2n

I Alessandro Arlotto, Vinh Nguyen, and I found most recently
that LSEQ(X1,X2, . . . ,Xn) satisfies the natural CLT; this is in
total contrast to L(X1,X2, . . . ,Xn) — the Global Optimum.
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Markov Decision Problems

I Sequential selection problems live in the world of Markov
decision problems — and that is a big world.

I It contains the theory of optimal stopping (a favorite of
probabilists) as well as inventory optimization, revenue
management, transportation logistics (favorites in OR).

I Despite a huge literature, there is relatively little that
corresponds to probability “Laws” — though algorithms and
models abound.

I This yields a rich soup of problems and examples. Here one is
reminded of an observation of Conway....
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Rashoman Paradox — A Direction Picked and Followed

I We looked mainly at subsequence results and we spent more
time on old ones than new ones. This is more in the nature of
picking a view and expressing it rather than looking for an
over all perspective.

I We had more “dessert” than a balanced diet would suggest,
but the web page can always add the balance.

I Spitzer once said to me, “It’s not the theorem that matters
but the phenomenon.” I love that insight; it’s quite freeing.

I News you can use?
I The van der Corput sequence shadows uniform independent

sequences in strange and instructive ways.
I Sequential problems of all stripes add color to the “direct

problems” of probabilistic combinatorial optimization.
I Special problems are not so special; every special problem is a

test of technique or an invitation to the development of deeper
techniques.
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Thanks to You All

I Thanks to Alessandro, Shankar, and Vladimir for their caring
and their organizing.

I Thanks to Erhan, Rick, Ed, and Andrew for their wise advice.

I Thanks to all of the speakers who have taken the substantial
trouble to travel a long way and to prepare talks that warm
my heart. W. Shakespeare and D. Hammett were wrong:
THIS is the stuff that dreams are made of.

I Thanks to my teachers, especially Frank Spitzer, Kai Lai
Chung, and Sam Karlin (directly) and George Polya and John
Hammersley (indirectly)

I Thanks to my co-authors: David, Jim, Vladimir, Alessandro,
Shankar, Tauhid, and Elchanan who are here — and all the
others who are not here.

I This has been a treat — Thanks!
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