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Introduction

Introduction and Motivation

Famous combinatorial problems with long mathematical
history on sequences of n real numbers, or permutations
of the integers 1, . . . , n

I Erdős and Szekeres (1935): monotone subsequences

I Fan Chung (1980): unimodal subsequences

I Euler (c.f. Stanley, 2010): alternating permutations

Probabilistic version (full-information)

I Longest monotone subsequences: Hammersley (1972),
Kingman (1973), Logan and Shepp (1977), Veřsik and
Kerov (1977), . . .

I Longest Unimodal subsequences: Steele (1981)

I Longest Alternating subsequences: Widom (2006),
Pemantle (c.f. Stanley, 2007), Stanley (2008), Houdré
and Restrepo (2010)

Study the sequential (on-line) version of these problems
I Objective: maximize the expected length (number of

selections) of monotone, unimodal and alternating
subsequences
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Introduction

Full-information vs. on-line — Increasing
n = 100

Un = 22 Uo
n (π∗n ) = 21

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J. M. Steele (Upenn, Wharton) On-line Selection June 2012 3



Introduction

Full-information vs. on-line — Increasing
n = 100 In = 15
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Introduction

Full-information vs. on-line — Increasing
n = 100 In = 15 I on (π∗n ) = 14
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Introduction

Full-information vs. on-line — Unimodal
n = 100

Un = 22 Uo
n (π∗n ) = 21
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Main Results Increasing Subsequences

Increasing Subsequences: Beginning with the Classics

Theorem (On-Line Monotone: The Leading Case)

There is a policy π∗ ∈ Π(n) such that E[I on (π∗)] = sup
π∈Π(n)

E [I on (π)], and for such an

optimal policy and all n ≥ 1 one has

(2n)1/2 − (8n)1/4 − 2 <

E[I on (π∗)]

< (2n)1/2.

So, in particular, one has E[I on (π∗)] ∼ (2n)1/2 as n→∞.

Asymptotic behavior: Samuels and Steele (1981)
Upper bound: Bruss and Robertson (1991), Gnedin (1999)
Lower bound: Rhee and Talagrand (1991)
Well seasoned results — 21 years or older. Can we say something NEW?

Theorem (Something New – Variance Bounds (Arlotto & Steele, 2011))

For all n ≥ 1, one has

E[I on (π∗)]/3− 2 ≤ Var[I on (π∗)] ≤ E[I on (π∗)].

Bin-packing Connection: SMS is cognate to a special bin packing problem, and the
proof of this variance bound applies to a rich class of these.
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Main Results Unimodal Subsequences

Unimodal Subsequences: Substantially Harder — but Still Analogous

Theorem (Arlotto & Steele, 2011)

There is a policy π∗ ∈ Π(n) such that E[Uo
n (π∗)] = sup

π∈Π(n)

E [Uo
n (π)], and for such an

optimal policy and all n ≥ 1 one has

2n1/2 − O(n1/4) <

E[Uo
n (π∗)]

< 2n1/2.

So, in particular, one has

E[Uo
n (π∗)] ∼ 2n1/2 as n→∞.

Theorem (Arlotto & Steele, 2011)

For all n ≥ 1, one has
Var[Uo

n (π∗)] ≤ E[Uo
n (π∗)].

MDP Connections: Here we have a second MDP where “the mean bounds the
variance.” This and further examples promise the beginning of a handy theory that
knits all the examples together.
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E[Ao

n(π)], and

for such an optimal policy one has for all n ≥ 1 that

(2−
√

2)n ≤

E[Ao
n(π∗n )]

≤ (2−
√

2)n + C ,

where C is a constant with C < 11− 4
√

2 ∼ 5.343. In particular, one has

E[Ao
n(π∗n )] ∼ (2−

√
2)n as n→∞.

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
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π∈Π
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3− 2
√

2− ρ+ ρ
√

2

ρ(1− ρ)

∼ (2−
√

2)(1− ρ)−1 ∼ (2−
√

2)EN as ρ→ 1.
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Main Results Sequentially Selected Alternating Subsequences: Tools for Analysis

Sketch of the Tools and Methods: Alternating Subsequence Problem

Finite-horizon Bellman equation:

vi,n(s, r) =


svi+1,n(s, 0) +

∫ 1

s

max {vi+1,n(s, 0), 1 + vi+1,n(x , 1)} dx if r = 0

(1− s)vi+1,n(s, 1) +

∫ s

0

max {vi+1,n(s, 1), 1 + vi+1,n(x , 0)} dx if r = 1

Reflection identity: vi,n(s, 0) = vi,n(1− s, 1) for all 1 ≤ i ≤ n and all s ∈ [0, 1].

“Flipped” finite-horizon Bellman equation:

vi,n(y) = yvi+1,n(y) +

∫ 1

y

max

{
vi+1,n(y), 1 + vi+1,n(1− x)

}
dx .

“Flipped” infinite-horizon Bellman equation — the “Easy One”:

v(y) = ρyv(y) +

∫ 1

y

max {ρv(y), 1 + ρv(1− x)} dx .

Threshold-policy for infinite-horizon: f ∗(y) = max{ξ0, y}, ξ0 ∈ [0, 1/2)

Solve for v(·) and obtain

v(0) = v(ξ0) =
3− 2

√
2− ρ+ ρ

√
2

ρ(1− ρ)
.
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Main Results Sequentially Selected Alternating Subsequences: Tools for Analysis

Rights of Passage: Returning from Geometric Discounted Problems to
Problems with a Finite Horizon

Problem of Interest: The problem that most often interests us in sequential selection
is the finite horizon problem where we know we will see n values.

A Slightly Easier Problem: The problem that is easier to solve is most often the
problem with geometric discounting, or geometric sample size.

The On-going Challenge: It is a challenging task to go back from geometric
asymptotics to finite n asymptotics. This is the “Tauberian Theory” of MDPs, and
it is far less developed than one might hope.

Not for the Faint of Heart! For the time being at least, the passage back to finite n
is special and technical. For the Alternating Sequence Problem there were two steps:

Finite-horizon lower bound: use the infinite-horizon threshold policy.

Finite-horizon upper bound: use the finite-horizon optimal threshold functions
{f ∗1,n, . . . , f ∗n−2,n} and regenerate this selection process over an infinite horizon.
The value of E[Ao

N(π∗)] then gives the desired upper bound.
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Reprise of the Means

Big Picture and the “Next Question”

How Much Better Does a “Prophet” Do?

Full Information Real Time Information Bonus
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Question: Go Beyond Moments and LLNs? How about CLTs?

Bruss and Delbaen (2004) proved the CLT for the “Monotone Sequential Selection”
(in the Poissonized version). It would be nice to do the “Tauberian” transition to
recover a CLT for the finite horizon problem. This is not as easy “as it looks.”

A CLT for “Unimodal Sequential Selection” seems feasible but — even in the
smooth Poisson version — technically difficulties appear at every turn.

The CLT for “Alternating Sequential Selection” looks like the most direct challenge.

Here Alessandro Arlotto and I are happy to have some progress to report.
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Reprise of the Means CLT for Alternating

Sequentially Selected Alternating Series — A CLT

Theorem (Arlotto & Steele, 2012)

There is a constant σ > 0 such that

Ao
n(π∗n )− n(2−

√
2)

nσ
⇒ N(0, 1).

The Mysterious σ? Its existence is proved but the value is not yet known.

A Candidate σ? Yes, but not yet in the bag.

Path to Proof? Ao
n(π∗n ) can be written as a (reverse, inhomogeneous) Markov

Additive Functional.

Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more
recently) have an elegant approach to the CLT for inhomogeneous Markov additive
process.

Conditions to Check? These are surprisingly concrete, even though a kind of alpha
mixing is involved.

Source of Juice? We have honestly independent blocks (of random size) and this
gives us all the mixing we need.
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Reprise of the Means Final Slide

Quick Glance Back

Problems of Sequential Selection: Rich in history, connections, problems and
techniques

Progress Intermittent — but presistent over many years

New Vistas? The “Tauberian Problem” and “means that bound variances”

Variance Limits and CLTs Some down, many more to go ...

Enough for Today? ... almost certainly, but with some left for tomorrow.

Thank You for Your Attention!
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