Optimal Sequential Selection
 Alternating Subsequences: Means, Concentration, and CLTs

J. Michael Steele
University of Pennsylvania
The Wharton School
Department of Statistics

IWAP and ECM8: Summer 2012

Introduction and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (c.f. Stanley, 2010): alternating permutations

Introduction and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (c.f. Stanley, 2010): alternating permutations
- Probabilistic version (full-information)
- Longest monotone subsequences: Hammersley (1972), Kingman (1973), Logan and Shepp (1977), Veršik and Kerov (1977),
- Longest Unimodal subsequences: Steele (1981)
- Longest Alternating subsequences: Widom (2006),
 Pemantle (c.f. Stanley, 2007), Stanley (2008), Houdré and Restrepo (2010)

Introduction and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (c.f. Stanley, 2010): alternating permutations
- Probabilistic version (full-information)
- Longest monotone subsequences: Hammersley (1972), Kingman (1973), Logan and Shepp (1977), Veršik and Kerov (1977),
- Longest Unimodal subsequences: Steele (1981)
- Longest Alternating subsequences: Widom (2006),
 Pemantle (c.f. Stanley, 2007), Stanley (2008), Houdré and Restrepo (2010)
- Study the sequential (on-line) version of these problems
- Objective: maximize the expected length (number of selections) of monotone, unimodal and alternating subsequences

Full-information vs. on-line - Increasing

$$
n=100
$$

Full-information vs. on-line - Increasing

$$
n=100 \quad I_{n}=15
$$

Full-information vs. on-line - Increasing

$$
n=100 \quad I_{n}=15 \quad I_{n}^{\circ}\left(\pi_{n}^{*}\right)=14
$$

Full-information vs. on-line - Unimodal

$$
n=100
$$

Full-information vs. on-line - Unimodal

$$
n=100 \quad U_{n}=22
$$

Full-information vs. on-line - Unimodal

$$
n=100 \quad U_{n}=22 \quad U_{n}^{\circ}\left(\pi_{n}^{*}\right)=21
$$

Increasing Subsequences: Beginning with the Classics
Theorem (On-Line Monotone: The Leading Case)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Increasing Subsequences: Beginning with the Classics
Theorem (On-Line Monotone: The Leading Case)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Increasing Subsequences: Beginning with the Classics
Theorem (On-Line Monotone: The Leading Case)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2} .
$$

Increasing Subsequences: Beginning with the Classics
Theorem (On-Line Monotone: The Leading Case)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2} .
$$

So, in particular, one has $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad$ as $n \rightarrow \infty$.

Increasing Subsequences: Beginning with the Classics

Theorem (On-Line Monotone: The Leading Case)

There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2} .
$$

So, in particular, one has $\mathbb{E}\left[\rho_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad$ as $n \rightarrow \infty$.

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)

Increasing Subsequences: Beginning with the Classics

Theorem (On-Line Monotone: The Leading Case)

There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2} .
$$

So, in particular, one has $\mathbb{E}\left[\rho_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad$ as $n \rightarrow \infty$.

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Well seasoned results - 21 years or older. Can we say something NEW?

Increasing Subsequences: Beginning with the Classics

Theorem (On-Line Monotone: The Leading Case)

There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

So, in particular, one has $\mathbb{E}\left[\iota_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2}$ as $n \rightarrow \infty$.

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Well seasoned results - 21 years or older. Can we say something NEW?

Theorem (Something New - Variance Bounds (Arlotto \& Steele, 2011))
For all $n \geq 1$, one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] / 3-2 \leq \operatorname{Var}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \leq \mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Increasing Subsequences: Beginning with the Classics

Theorem (On-Line Monotone: The Leading Case)

There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
(2 n)^{1 / 2}-(8 n)^{1 / 4}-2<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

So, in particular, one has $\mathbb{E}\left[\iota_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad$ as $n \rightarrow \infty$.

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Well seasoned results - 21 years or older. Can we say something NEW?

Theorem (Something New - Variance Bounds (Arlotto \& Steele, 2011))
For all $n \geq 1$, one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] / 3-2 \leq \operatorname{Var}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \leq \mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

- Bin-packing Connection: SMS is cognate to a special bin packing problem, and the proof of this variance bound applies to a rich class of these.

Unimodal Subsequences: Substantially Harder - but Still Analogous
Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Unimodal Subsequences: Substantially Harder - but Still Analogous
Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
2 n^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Unimodal Subsequences: Substantially Harder - but Still Analogous
Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
2 n^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]<2 n^{1 / 2} .
$$

Unimodal Subsequences: Substantially Harder - but Still Analogous
Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
2 n^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]<2 n^{1 / 2} .
$$

So, in particular, one has

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \sim 2 n^{1 / 2} \quad \text { as } n \rightarrow \infty .
$$

Unimodal Subsequences: Substantially Harder - but Still Analogous
Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
2 n^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]<2 n^{1 / 2}
$$

So, in particular, one has

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \sim 2 n^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Theorem (Arlotto \& Steele, 2011)
For all $n \geq 1$, one has

$$
\operatorname{Var}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \leq \mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

Unimodal Subsequences: Substantially Harder - but Still Analogous

Theorem (Arlotto \& Steele, 2011)
There is a policy $\pi^{*} \in \Pi(n)$ such that $\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[U_{n}^{\circ}(\pi)\right]$, and for such an optimal policy and all $n \geq 1$ one has

$$
2 n^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]<2 n^{1 / 2}
$$

So, in particular, one has

$$
\mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \sim 2 n^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Theorem (Arlotto \& Steele, 2011)
For all $n \geq 1$, one has

$$
\operatorname{Var}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right] \leq \mathbb{E}\left[U_{n}^{\circ}\left(\pi^{*}\right)\right]
$$

- MDP Connections: Here we have a second MDP where "the mean bounds the variance." This and further examples promise the beginning of a handy theory that knits all the examples together.

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{\circ}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right]
$$

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{\circ}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right]
$$

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)

For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{\circ}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right] \leq(2-\sqrt{2}) n+C,
$$

where C is a constant with $C<11-4 \sqrt{2} \sim 5.343$.

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{\circ}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{\circ}\left(\pi_{n}^{*}\right)\right] \leq(2-\sqrt{2}) n+C,
$$

where C is a constant with $C<11-4 \sqrt{2} \sim 5.343$. In particular, one has

$$
\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \sim(2-\sqrt{2}) n \quad \text { as } n \rightarrow \infty .
$$

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)

For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{o}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \leq(2-\sqrt{2}) n+C
$$

where C is a constant with $C<11-4 \sqrt{2} \sim 5.343$. In particular, one has

$$
\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \sim(2-\sqrt{2}) n \quad \text { as } n \rightarrow \infty
$$

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
For each $0<\rho<1$, there is a $\pi^{*} \in \Pi$, such that $\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{N}^{\circ}(\pi)\right]$, and for such an optimal policy one has

$$
\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]=\frac{3-2 \sqrt{2}-\rho+\rho \sqrt{2}}{\rho(1-\rho)}
$$

Alternating Subsequences - the Main Topic Today

Theorem (Arlotto, Chen, Shepp, Steele, 2011)

For each $n=1,2, \ldots$, there is a policy $\pi_{n}^{*} \in \Pi$ such that $\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{n}^{o}(\pi)\right]$, and for such an optimal policy one has for all $n \geq 1$ that

$$
(2-\sqrt{2}) n \leq \mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \leq(2-\sqrt{2}) n+C
$$

where C is a constant with $C<11-4 \sqrt{2} \sim 5.343$. In particular, one has

$$
\mathbb{E}\left[A_{n}^{o}\left(\pi_{n}^{*}\right)\right] \sim(2-\sqrt{2}) n \quad \text { as } n \rightarrow \infty
$$

Theorem (Arlotto, Chen, Shepp, Steele, 2011)
For each $0<\rho<1$, there is a $\pi^{*} \in \Pi$, such that $\mathbb{E}\left[A_{N}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi} \mathbb{E}\left[A_{N}^{\circ}(\pi)\right]$, and for such an optimal policy one has

$$
\mathbb{E}\left[A_{N}^{o}\left(\pi^{*}\right)\right]=\frac{3-2 \sqrt{2}-\rho+\rho \sqrt{2}}{\rho(1-\rho)} \sim(2-\sqrt{2})(1-\rho)^{-1} \sim(2-\sqrt{2}) \mathbb{E} N \quad \text { as } \rho \rightarrow 1
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ & \end{cases}
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), \quad 1+v_{i+1, n}(1-x) \quad\right\} d x
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), \quad 1+v_{i+1, n}(1-x)\right\} d x
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), \quad 1+v_{i+1, n}(1-x) \quad\right\} d x
$$

- "Flipped" infinite-horizon Bellman equation - the "Easy One":

$$
v(y)=\rho y v(y)+\int_{y}^{1} \max \{\rho v(y), 1+\rho v(1-x)\} d x
$$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), \quad 1+v_{i+1, n}(1-x) \quad\right\} d x
$$

- "Flipped" infinite-horizon Bellman equation - the "Easy One":

$$
v(y)=\rho y v(y)+\int_{y}^{1} \max \{\rho v(y), 1+\rho v(1-x)\} d x
$$

- Threshold-policy for infinite-horizon: $f^{*}(y)=\max \left\{\xi_{0}, y\right\}, \xi_{0} \in[0,1 / 2)$

Sketch of the Tools and Methods: Alternating Subsequence Problem

- Finite-horizon Bellman equation:

$$
v_{i, n}(s, r)= \begin{cases}s v_{i+1, n}(s, 0)+\int_{s}^{1} \max \left\{v_{i+1, n}(s, 0), 1+v_{i+1, n}(x, 1)\right\} d x & \text { if } r=0 \\ (1-s) v_{i+1, n}(s, 1)+\int_{0}^{s} \max \left\{v_{i+1, n}(s, 1), 1+v_{i+1, n}(x, 0)\right\} d x & \text { if } r=1\end{cases}
$$

- Reflection identity: $v_{i, n}(s, 0)=v_{i, n}(1-s, 1)$ for all $1 \leq i \leq n$ and all $s \in[0,1]$.
- "Flipped" finite-horizon Bellman equation:

$$
v_{i, n}(y)=y v_{i+1, n}(y)+\int_{y}^{1} \max \left\{v_{i+1, n}(y), \quad 1+v_{i+1, n}(1-x) \quad\right\} d x
$$

- "Flipped" infinite-horizon Bellman equation - the "Easy One":

$$
v(y)=\rho y v(y)+\int_{y}^{1} \max \{\rho v(y), 1+\rho v(1-x)\} d x
$$

- Threshold-policy for infinite-horizon: $f^{*}(y)=\max \left\{\xi_{0}, y\right\}, \xi_{0} \in[0,1 / 2)$
- Solve for $v(\cdot)$ and obtain

$$
v(0)=v\left(\xi_{0}\right)=\frac{3-2 \sqrt{2}-\rho+\rho \sqrt{2}}{\rho(1-\rho)} .
$$

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.
- A Slightly Easier Problem: The problem that is easier to solve is most often the problem with geometric discounting, or geometric sample size.

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.
- A Slightly Easier Problem: The problem that is easier to solve is most often the problem with geometric discounting, or geometric sample size.
- The On-going Challenge: It is a challenging task to go back from geometric asymptotics to finite n asymptotics. This is the "Tauberian Theory" of MDPs, and it is far less developed than one might hope.

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.
- A Slightly Easier Problem: The problem that is easier to solve is most often the problem with geometric discounting, or geometric sample size.
- The On-going Challenge: It is a challenging task to go back from geometric asymptotics to finite n asymptotics. This is the "Tauberian Theory" of MDPs, and it is far less developed than one might hope.
- Not for the Faint of Heart! For the time being at least, the passage back to finite n is special and technical. For the Alternating Sequence Problem there were two steps:

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.
- A Slightly Easier Problem: The problem that is easier to solve is most often the problem with geometric discounting, or geometric sample size.
- The On-going Challenge: It is a challenging task to go back from geometric asymptotics to finite n asymptotics. This is the "Tauberian Theory" of MDPs, and it is far less developed than one might hope.
- Not for the Faint of Heart! For the time being at least, the passage back to finite n is special and technical. For the Alternating Sequence Problem there were two steps:
- Finite-horizon lower bound: use the infinite-horizon threshold policy.

Rights of Passage: Returning from Geometric Discounted Problems to Problems with a Finite Horizon

- Problem of Interest: The problem that most often interests us in sequential selection is the finite horizon problem where we know we will see n values.
- A Slightly Easier Problem: The problem that is easier to solve is most often the problem with geometric discounting, or geometric sample size.
- The On-going Challenge: It is a challenging task to go back from geometric asymptotics to finite n asymptotics. This is the "Tauberian Theory" of MDPs, and it is far less developed than one might hope.
- Not for the Faint of Heart! For the time being at least, the passage back to finite n is special and technical. For the Alternating Sequence Problem there were two steps:
- Finite-horizon lower bound: use the infinite-horizon threshold policy.
- Finite-horizon upper bound: use the finite-horizon optimal threshold functions $\left\{f_{1, n}^{*}, \ldots, f_{n-2, n}^{*}\right\}$ and regenerate this selection process over an infinite horizon. The value of $\mathbb{E}\left[A_{N}^{o}\left(\pi^{*}\right)\right]$ then gives the desired upper bound.

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing			
Unimodal			
Alternating			

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal			
Alternating			

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating			

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Go Beyond Moments and LLNs? How about CLTs?

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Go Beyond Moments and LLNs? How about CLTs?
- Bruss and Delbaen (2004) proved the CLT for the "Monotone Sequential Selection" (in the Poissonized version). It would be nice to do the "Tauberian" transition to recover a CLT for the finite horizon problem. This is not as easy "as it looks."

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Go Beyond Moments and LLNs? How about CLTs?
- Bruss and Delbaen (2004) proved the CLT for the "Monotone Sequential Selection" (in the Poissonized version). It would be nice to do the "Tauberian" transition to recover a CLT for the finite horizon problem. This is not as easy "as it looks."
- A CLT for "Unimodal Sequential Selection" seems feasible but - even in the smooth Poisson version - technically difficulties appear at every turn.

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Go Beyond Moments and LLNs? How about CLTs?
- Bruss and Delbaen (2004) proved the CLT for the "Monotone Sequential Selection" (in the Poissonized version). It would be nice to do the "Tauberian" transition to recover a CLT for the finite horizon problem. This is not as easy "as it looks."
- A CLT for "Unimodal Sequential Selection" seems feasible but - even in the smooth Poisson version - technically difficulties appear at every turn.
- The CLT for "Alternating Sequential Selection" looks like the most direct challenge.

Big Picture and the "Next Question"

- How Much Better Does a "Prophet" Do?

	Full Information	Real Time Information	Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Go Beyond Moments and LLNs? How about CLTs?
- Bruss and Delbaen (2004) proved the CLT for the "Monotone Sequential Selection" (in the Poissonized version). It would be nice to do the "Tauberian" transition to recover a CLT for the finite horizon problem. This is not as easy "as it looks."
- A CLT for "Unimodal Sequential Selection" seems feasible but - even in the smooth Poisson version - technically difficulties appear at every turn.
- The CLT for "Alternating Sequential Selection" looks like the most direct challenge.
- Here Alessandro Arlotto and I are happy to have some progress to report.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)

There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{o}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.
- Conditions to Check? These are surprisingly concrete, even though a kind of alpha mixing is involved.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, 2012)

There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1)
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.
- Conditions to Check? These are surprisingly concrete, even though a kind of alpha mixing is involved.
- Source of Juice? We have honestly independent blocks (of random size) and this gives us all the mixing we need.

Quick Glance Back

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Progress Intermittent — but presistent over many years

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Progress Intermittent - but presistent over many years
- New Vistas? The "Tauberian Problem" and "means that bound variances"

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Progress Intermittent - but presistent over many years
- New Vistas? The "Tauberian Problem" and "means that bound variances"
- Variance Limits and CLTs Some down, many more to go ...

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Progress Intermittent - but presistent over many years
- New Vistas? The "Tauberian Problem" and "means that bound variances"
- Variance Limits and CLTs Some down, many more to go ...
- Enough for Today? ... almost certainly, but with some left for tomorrow.

Quick Glance Back

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Progress Intermittent - but presistent over many years
- New Vistas? The "Tauberian Problem" and "means that bound variances"
- Variance Limits and CLTs Some down, many more to go ...
- Enough for Today? ... almost certainly, but with some left for tomorrow.
- Thank You for Your Attention!

References I

F. Thomas Bruss and Freddy Delbaen. A central limit theorem for the optimal selection process for monotone subsequences of maximum expected length. Stochastic Process. Appl., 114(2):287-311, 2004.
F. Thomas Bruss and James B. Robertson. "Wald's lemma" for sums of order statistics of i.i.d. random variables. Adv. in Appl. Probab., 23(3):612-623, 1991.
F. R. K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A, 29(3):267-279, 1980.
P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2: 463-470, 1935.

Alexander V. Gnedin. Sequential selection of an increasing subsequence from a sample of random size. J. Appl. Probab., 36(4):1074-1085, 1999.
J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages 345-394, Berkeley, CA, 1972. Univ. California Press.
C. Houdré and R. Restrepo. A probabilistic approach to the asymptotics of the length of the longest alternating subsequence. Electron. J. Combin., 17(1):Research Paper 168, 1-19, 2010.

References II

J. F. C. Kingman. Subadditive ergodic theory. Ann. Probability, 1:883-909, 1973. With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author.
B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. Advances in Math., 26(2):206-222, 1977.
WanSoo Rhee and Michel Talagrand. A note on the selection of random variables under a sum constraint. J. Appl. Probab., 28(4):919-923, 1991.
Stephen M. Samuels and J. Michael Steele. Optimal sequential selection of a monotone sequence from a random sample. Ann. Probab., 9(6):937-947, 1981.
Richard P. Stanley. Increasing and decreasing subsequences and their variants. In International Congress of Mathematicians. Vol. I, pages 545-579. Eur. Math. Soc., Zürich, 2007.

Richard P. Stanley. Longest alternating subsequences of permutations. Michigan Math. J., 57:675-687, 2008. Special volume in honor of Melvin Hochster.

Richard P. Stanley. A survey of alternating permutations. Contemp. Math., 531:165-196, 2010.
J. Michael Steele. Long unimodal subsequences: a problem of F. R. K. Chung. Discrete Math., 33(2):223-225, 1981.

References III

A. M. Veršik and S. V. Kerov. Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR, 233 (6):1024-1027, 1977.

Harold Widom. On the limiting distribution for the length of the longest alternating sequence in a random permutation. Electron. J. Combin., 13(1):Research Paper 25, 1-7, 2006.

