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ABSTRACT 

 

One of the inefficiencies observed on the financial markets is a momentum effect. This inefficiency 

can be exploited by a trading strategy. Most of the empirical studies of momentum effect were made 

on the US stock market. In this thesis we test the momentum effect on the European markets, in 

particular, on the Swiss, French and German and elaborate a portfolio optimisation strategy, which 

would enable us to realise positive returns on the momentum portfolios. 

To implement this we use cumulative returns as an indicator of “winners” and “losers” stocks to be 

included into the portfolio and develop three approaches to portfolio optimisation: minimisation of 

variance of the portfolio, minimisation of covariance between long and short positions in the 

portfolio and minimisation of variance and covariance of the portfolio while holding beta of the 

portfolio equal 0. We also test two measurement periods: 6-month and 1-year and three holding 

periods: 1-month, 4-month and 6-month.  

The obtained results prove, that the strategy can generate positive returns, but there is no common 

strategy for all markets studied, which can be explained by national specifics, different number of 

market participants, number of stocks available, etc.   

The main achievement of this thesis is the elaboration of portfolio optimisation models for 

implementation of behavioural statistical arbitrage strategy under the certain investments constraints, 

which allows us to obtain the targeted risk/return profile of the portfolio. 
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1. INTRODUCTION 
 

1.1. OBJECTIVE 

 

As empirical evidence shows, financial markets demonstrate some inefficiencies, which can hardly 

be explained by traditional finance. One of those inefficiencies is a momentum effect. Under 

momentum effect stock prices, which were growing for some time in the past (from 6 months to 1 

year) continue to rise even further over their fundamental value for another several months instead of 

falling to their fundamental value under the influence of rational investors trying to exploit the 

arbitrage opportunity.  

Most of empirical studies on momentum effect were made on the US stock markets. The objective of 

this Master Thesis is to test the momentum effect on the European markets, in particular on 

constituents of the Swiss, French and German market indices and to elaborate portfolio optimisation 

models to implement statistical arbitrage. These market indices were chosen because they include 

small numbers of stocks, which make the calculations easier and less time-consuming. However the 

models can easily be extended to a larger number of stocks.  

 

1.2. METHODOLOGY 

 

The data used in our paper includes mid-week closing dividend and splits adjusted price data taken 

from the period of 02.01.1985 - 09.07.2003 for the Swiss and French markets, and of 03.07.1991 - 

09.07.2003 for the German market.  

To exploit the momentum effect first we choose “winners” and “loosers” among the available stocks 

on the basis on their cumulative return, which was proved to be the most important variable in 

seeking the momentum effect. There may be other ways of ranking the stocks, but taking into 

account the small number of stocks available, we don’t consider it appropriate to test them.  

To get the better view of the duration of momentum effect on the chosen markets we take two 

measurement periods – 6 months and 1 year, and three holding periods – 1 month, 4 months and 6 

months.   

The second stage is to form a portfolio and elaborate the optimisation model. We form a portfolio as 

a combination of two sub-portfolios: one is long on 5 “winners” stocks; another is short on 5 

“loosers” stocks. We put the weight constraints for the stocks in the sub-portfolios to be minimum 
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10% maximum 60%. The important condition is also zero cost of the strategy, i.e. sub-portfolios 

should sum up to 0.  

To solve the portfolio optimisation problem under the investment constraints, we use three models: 

1. Portfolio variance minimization, 

2. Covariance minimization between sub-portfolios, 

3. Minimization of portfolio variance and covariance between long and short portfolios under 

zero-beta condition. For this case we take only 4 months holding period and both 6-month and 

1-year measurement periods. 

 

1.3. CONCLUSIONS 

 

The main achievement of this thesis is the elaboration of portfolio optimisation models for 

implementation of behavioural statistical arbitrage strategy under the certain investments constraints, 

which allows us to obtain the targeted risk/return profile of the portfolio. 

The implemented models have proved, that it is possible to outperform the market using the strategy 

proposed. On the Swiss market the strategy generates the highest positive returns with comparison to 

the market index and it outperforms the market in the largest number of cases. On the German 

market the strategy demonstrates the worst performance with the smallest number of positive results.  

In terms of measurement and holding period the best performing strategy on the Swiss market 

corresponds to the classical momentum with a measurement period of 6 months and holding period 

of 4 months. For French and German markets the better measurement period is equal to 1 year. 

The best performing strategy for all markets is the zero-beta strategy, which is implemented on the 

basis of 6-month measurement period and 1-year measurement period for the Swiss, French and 

German markets.  

Taking into account all mentioned above, we can make a conclusion, that there is no common model 

that can be applied on all of the chosen markets. This can be explained by national specifics of the 

markets, number of active participants on the markets and stocks available. 

 

1.4. OUTLINE 

 

In the second part of our thesis we give the overview of behavioural finance as an alternative to 

traditional paradigm. We explain the limits to efficient market hypothesis and some psychological 

issues, which lie in the basis of behavioural theories. We also give here an overview of some 
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theories and approaches developed in the literature to the financial markets’ phenomena observed on 

the aggregate stock market, cross-section of average returns, and fund comovement. At the end of 

part one we characterise such behavioural trading strategies as momentum and contrarian strategies 

and the interplay between the two. 

The third part of the paper is devoted to the overview of the hedge fund industry, its role and 

strategies, used by hedge funds. Then we concentrate more on the statistical arbitrage strategy, 

assumptions, which underlie the strategy and give some examples of statistical arbitrage trading 

models. 

The fourth part is the empirical part of the thesis. It combines the behavioural aspect and statistical 

arbitrage approach. It contains explanations on the data used, methodology and illustrates the 

portfolio optimisation methods. Here we also present the results obtained from portfolio simulations. 

The last part of the paper contains conclusions and results, which we obtained from our simulations. 
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2. BEHAVIOURAL FINANCE AS A NEW APPROACH TO FINANCIAL MARKETS 
 

2.1. OVERVIEW OF BEHAVIOURAL FINANCE  

 

The traditional finance paradigm seeks to understand financial markets using models in which agent 

are “rational”, which means: 

1. When agents receive new information they update their beliefs correctly.  

2. Given their beliefs, agents make choices consistently. 

However, sometimes financial markets demonstrate behaviour, which can hardly be explained by 

traditional finance. Among such financial phenomena we could mention the behaviour of the 

aggregate stock market and cross-section of average returns. 

Behavioural finance is a new approach to financial markets, which argues, that some of those 

phenomena can be better understood using models, in which some agents are not fully rational. 

Different theories of behavioural finance rely on releasing of one or both constraints of rationality. 

We will give an overview of some behavioural theories and their applications to the mentioned 

phenomena later in this part. 

Behavioural finance consists of 2 building blocks: 

1. Limits to arbitrage – includes theoretical studies, which show that irrationality can have a 

substantial and long-lived impact on prices and rational investors cannot always undo this 

impact through arbitrage. 

2. Psychology – behavioural models often need to specify the form of agents’ irrationality and 

define how people form their beliefs and preferences.   

 

2.1.1.MARKET EFFICIENCY AND LIMITS TO ARBITRAGE 

 

Efficient Markets Hypothesis (EMH) states, that a security’s price reflects its “fundamental value”, 

i.e. the sum of discounted expected cash flows, where in forming expectations investors correctly 

process all available information and where the discount rate is consistent with a normatively 

acceptable preference specification. In efficient market no investment strategy can earn excess 

risk-adjusted average returns. 

The traditional approach states, that even though irrational traders, known as “noise traders” can 

influence the price in the short run, rational traders, known as “arbitragers”, will immediately exploit 
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the attractive investment opportunity and implement the arbitrage strategy thereby correcting the 

mispricing. 

Behavioural finance argues that implementation of such strategy can often be both risky and costly, 

thereby allowing the mispricing to survive. Some of the risks, faced by arbitragers, are: 

1. Fundamental risk. After arbitrager’s exploiting of security underpricing, a piece of bad news 

about the company can course the price to fall even further. As long as it’s very difficult to find 

a perfect substitute for an individual stock, fundamental risk plays an important role in 

implementation of arbitrage strategy. 

2. Noise trader risk. If pessimism of irrational investors could course underpricing of security, 

they can become even more pessimistic, pushing the price even lower. This may course losses 

if arbitrager has short horizon and is not able to wait till the price will finally normalize. 

3. Short-sales constraints (fees and legal constraints). 

4. Cost of finding and learning about the mispricing. 

5. Cost of resources needed to exploit it. 

 

Taking into account the mentioned constraints on arbitrage, we can conclude that mispricing on the 

market is not necessarily eliminated immediately and may take place for quite a long period of time.  

One of strong evidence of long-lasting mispricing is index inclusion. It was noticed, that after 

inclusion into the S&P 500, a stock jumps in price by an average of 3.5% and much of this jump is 

permanent. Meanwhile, its fundamental value doesn’t change and Standard and Poor’s emphasizes 

that in selecting stocks for inclusion, they are simply trying to make their index representative of the 

US economy, not to convey any information about the level of riskiness of a firm’s future cash 

flows.  

 

2.1.2.PSYCHOLOGY  

 

The theory of limited arbitrage shows that if irrational traders cause deviations from fundamental 

value, rational traders will often be powerless to do anything about it. In order to say more about the 

structure of these deviations, behavioural models often assume a specific form of irrationality. For 

guidance on this, much research was done on the systematic biases that arise when people form 

beliefs, and preferences. 
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The most significant research on this topic was made by: Camerer (1995) and Rabin  (1998), 

Kahneman, Slovic and Tversky (1982), Kahneman and Tversky (2000) and Gilovich, Griffin and 

Kahneman (2002). We will not go deep in describing research made, but will summarize the main 

results.  

Beliefs and Preferences 

A crucial component of any model of financial markets is a specification of how agents form 

expectations and make choice between different options. Psychologists found the following results 

regarding the way, people form their beliefs: 

1. Overconfidence. Extensive evidence shows that people are overconfident in their judgments. 

This appears in two guises. First, the confidence intervals people assign to their estimates of 

quantities are far too narrow. Second, people are poorly calibrated when estimating 

probabilities: events they think are certain to occur actually occur only around 80 percent of the 

time, and events they deem impossible occur approximately 20 percent of the time. 

2. Optimism and Wishful Thinking. Most people display unrealistically rosy views of their 

abilities and prospects.   

3. Representativeness. Representativeness leads to sample size neglect bias. This means that in 

cases where people do not initially know the data generating process, they will tend to infer it 

too quickly on the basis of too few data points.   

4. Conservatism. People tend to underweight new information relative to prior. 

5. Belief Perseverance. There is much evidence that once people have formed an opinion, they 

cling to it too tightly and for too long. At least two effects appear to be at work. First, people 

are reluctant to search for evidence that contradicts their beliefs. Second, even if they find such 

evidence, they treat it with excessive scepticism.  

Experimental evidence shows, that when people form their preferences they systematically violate 

expected utility theory, which goes back to Von Neumann and Morgenstern (1947) and is widely 

used by traditional finance. We can summarize the following results obtained by researchers 

regarding the way, people form preferences: 

Prospect Theory:  

• Certainty effect. People place much more weight on outcomes that are certain relative to 

outcomes that are merely probable, then they should according to EU approach.  

• Framing. Preferences depend on problem description. There are numerous demonstrations of a 

30 to 40 percent shift in preferences depending on the wording of a problem.  
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• Narrow framing. Tendency to treat individual gambles separately from other portions of 

wealth.   

Ambiguity Aversion.  

In reality probabilities are rarely objectively known. Experimental results show that people do not 

like situations where they are uncertain about the probability distribution of a gamble. Such 

situations are known as situations of ambiguity, and the general dislike for them, as ambiguity 

aversion. In the real world, ambiguity aversion has much to do with how competent an individual is 

at assessing the relevant distribution. 

 

2.2. BEHAVIOURAL APPROACH TO SOME FINANCIAL PHENOMENA 

 

As it was mentioned above, financial markets demonstrate phenomena, which can hardly be 

explained by traditional finance. In this part we want to give an overview of behavioural approaches 

to some of those phenomena. 

 

2.2.1.AGGREGATE STOCK MARKET 

 

1. Equity Premium Puzzle – historically stock market earned a high excess rate of return.  

• Evidence. Using annual data from 1871-1993, Campbell and Cochrane (1999) report that the 

average log return of the S&P 500 index is 3,9% higher than the average log return on short 

term commercial paper.  

Behavioural approach.  

The core of the equity premium puzzle is that even though stocks appear to be an attractive asset - 

they have high average returns and a low covariance with consumption growth, investors appear 

very unwilling to hold them and demand a substantial risk premium in order to hold the market 

supply. To date, behavioural finance has pursued two approaches to this puzzle: one relies on 

prospect theory, the other on ambiguity aversion. 

Prospect theory suggests: 

1. Investors treat gambles separately. In financial context this means, that people may choose a 

portfolio allocation by computing for each allocation the potential gains and losses in the value 

of their holdings, and then take the allocation with the highest prospective utility.  
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2. Loss aversion of investors depends on the frequency at which information is presented to them. 

For example, on daily basis, stocks go down in value almost as often as they go up, so for an 

investor, who calculates gains and losses of a portfolio daily, loss aversion makes stocks 

appear unattractive.  In contrast, loss aversion does not have much effect on investor’s 

perception of stocks if he calculates the return once per decade. 

One of the earliest papers to link prospect theory to the equity premium puzzle is Benartzi and 

Thaler (1995). They study how an investor with prospect theory type preferences allocates his 

financial wealth between T-Bills and the stock market. They calculated how often investors would 

have to evaluate their portfolios to make them roughly indifferent, between stocks and bonds. They 

found the answer to be a year. This result seems natural, as long as all financial and tax statements 

are prepared on a yearly basis. This, in turn, suggests a simple way of understanding the high 

historical equity premium. If investors get utility from annual changes in financial wealth and are 

loss averse over these changes, their fear of a major drop in financial wealth will lead them to 

demand a high premium as compensation.  

Equity puzzle is in large part a consumption puzzle: given the low volatility of consumption growth, 

why are investors so reluctant to buy a high return asset, stocks, especially when that asset's 

covariance with consumption growth is so low? Barberis, Huang and Santos (2001) attempt to build 

prospect theory into a dynamic equilibrium model of stock returns. They show that loss aversion can 

indeed provide a partial explanation of the high Sharpe ratio on the aggregate stock market.  

Both approaches are effectively assuming that investors engage in narrow framing, both cross-

sectionally and temporally. Even if they have many forms of wealth, both financial and non-

financial, they still get utility from changes in the value of one specific component of their total 

wealth: financial wealth in the case of BT and stock holdings in the case of BHS. And even if 

investors have long investment horizons, they still evaluate their portfolio returns on an annual basis. 

Ambiguity Aversion 

Ambiguity aversion suggests that people don’t like gambles, for which they can’t evaluate the 

probability distribution.  

One of the more popular approaches supposes that when faced with ambiguity, people entertain a 

range of possible probability distributions and act to maximize the minimum expected utility under 

any candidate distribution. In effect, people behave as if they expect the actual distribution to be 
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such as to leave them as worse off as possible. 

Maenhout (1999) applies this framework to the issue of the equity premium. He shows that if 

investors are concerned that their model of stock returns is misspecified, they will charge a 

substantially higher equity premium as compensation for the perceived ambiguity in the probability 

distribution. He notes, however, that to explain the full 3.9% equity premium requires an 

unreasonably high concern about misspecification. At best then, ambiguity aversion is only a partial 

resolution of the equity premium puzzle. 

2. Volatility Puzzle – stock returns and price-dividend ratios are both highly variable. 

• Evidence. In the same data set mentioned above, the annual standard deviation of excess log 

returns on the S&P 500 is 18%, while the annual standard deviation of the log price-dividend 

ratio is 27%.  

Behavioural approach.  

We can group behavioural approaches to the volatility puzzle by whether they focus on beliefs or on 

preferences: 

Beliefs 

1. One possible explanation is that investors believe that the mean dividend growth rate is more 

variable than it actually is. When they see a surge in dividends, they are too quick to believe 

that the mean dividend growth rate has increased. Their exuberance pushes prices up relative to 

dividends, adding to the volatility of returns. This is a direct application of representativeness 

and in particular, of the version of representativeness known as the law of small numbers, 

where people expect even short samples to reflect the properties of the parent population.  

2. Another belief-based approach relies more on private, rather than public information, and in 

particular, on overconfidence about private information. Suppose that an investor has seen 

public information about the economy, and has formed a prior opinion about future cash-flow 

growth. He then does some research on his own and becomes overconfident about the 

information he gathers: he overestimates its accuracy and puts too much weight on it relative to 

his prior. If the private information is positive, he will push prices up too high relative to 

current dividends, again adding to return volatility. 

These ideas have a lot in common with those explaining cross-sectional anomalies, which we will 

describe in the next section.  
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Preferences 

In explaining volatility puzzle using preferences approach, Barberis, Huang and Santos (2001) 

appeal to experimental evidence about dynamic aspects of loss aversion. This evidence suggests that 

the degree of loss aversion is not the same in all circumstances but depends on prior gains and 

losses. In particular, Thaler and Johnson (1990) find that after prior gains, subjects take on gambles 

they normally do not, and that after prior losses, they refuse gambles that they normally accept. One 

interpretation of this evidence is that losses are less painful after prior gains because they are 

cushioned by those gains. However, after being burned by a painful loss, people may become more 

wary of additional setbacks. 

Suppose that there is some good cash-flow news. This pushes the stock market up, generating prior 

gains for investors, who are now less scared of stocks: any losses will be cushioned by the 

accumulated gains. They therefore discount future cash flows at a lower rate, pushing prices up still 

further relative to current dividends and adding to return volatility. 

 

2.2.2.CROSS-SECTION OF AVERAGE RETURNS 

 

Empirical studies about the cross-section of average returns also revealed some anomalies, which 

can hardly be explained by the most used and intuitive model – Capital Asset Pricing Model. 

1. Size Premium. 

Using data on returns of stocks traded on NYSE, AMEX, and NASDAQ during the period from 

1963 to 1990 Fama and French (1992) found that the average return of the group of stocks, which 

have smallest market capitalization, is 0.74% per month higher than the average return of the group 

of stocks with largest market capitalization. This is anomaly relative to CAPM, because while stocks 

with the smallest market capitalization do have higher betas, the difference in risk is not enough to 

explain the difference in average returns. 

2. Predictive Power of Scaled-Price Ratios  

From the same data set, Fama and French group all stocks into deciles based on their book-to-market 

ratio, and measure the average return of each decile over the next year. They found that the average 

return of the highest B/M-ratio decile, containing so called "value" stocks, is 1.53% per month 

higher than the average return on the lowest-B/M-ratio decile, "growth" or "glamour" stocks, a 

difference much higher than can be explained through differences in beta between the two portfolios. 
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Repeating the calculations with the earnings-price ratio as the ranking measure produces a difference 

of 0.68% per month between the two extreme decile portfolios. 

3. Long-Term Reversals. 

Every three years from 1926 to 1982, De Bondt and Thaler (1985) rank all stocks traded on the 

NYSE by their prior three year cumulative return and form two portfolios: a "winner" portfolio of 

the 35 stocks with the best prior record and a "loser" portfolio of the 35 worst performers. They then 

measure the average return of these two portfolios over the three years subsequent to their formation. 

They find that over the whole sample period, the average annual return of the loser portfolio is 

higher than the average return of the winner portfolio by about 8% per year. 

4. Momentum Effect 

Every month from January 1963 to December 1989, Jegadeesh and Titman (1993) group all stocks 

traded on the NYSE into deciles based on their prior six month return and compute average returns 

of each decile over the six months after portfolio formation. They find that the decile of biggest prior 

winners outperforms the decile of biggest prior losers by an average of 10 percent on an annual 

basis.  

Comparing this result to De Bondt and Thaler's (1985) study of prior winners and losers illustrates 

the crucial role played by the length of the prior ranking period. In one case, prior winners continue 

to win; in the other, they perform poorly. A challenge to both behavioural and rational approaches is 

to explain why extending the formation period switches the result in this way. 

5. Event Studies:  

Event studies examine how important corporate announcements influence the stock prices. 

• Earnings Announcements 

Every quarter from 1974 to 1986, Bernard and Thomas (1989) group all stocks traded on the NYSE 

and AMEX into deciles based on the size of the surprise in their most recent earnings announcement. 

They found that on average, over the 60 days after the earnings announcement, the decile of stocks 

with surprisingly good news outperforms the decile with surprisingly bad new by an average of 

about 4 percent, a phenomenon known as post-earnings announcement drift. A later study by Chan. 

Jegadeesh and Lakonishok (1996) measures surprise in other ways relative to analyst expectations, 

and by the stock price reaction to the news and obtains similar results. 

• Dividend Initiations and Ommissions 

Michaely, Thaler and Womack (1995) study firms, which announced initiation or omission of a 

dividend payment between 1964 and 1988. They found, that on average, the shares of firms initiating 
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(omitting) dividends significantly outperform (underperform) the market portfolio over the year after 

the announcement. 

• Stock Repurchases 

Ikenberry, Lakonishok and Vermaelen (1995) look at firms, which announced a share repurchase 

between 1980 and 1990, while Mitchell and Stafford (2001) study firms which did either self-tenders 

or share repurchases between 1960 and 1993. The latter study finds that on average, the shares of 

these firms outperform a control group matched on size and book-to-market market by a substantial 

margin over the four-year period following the event. 

• Primary and Secondary Offerings 

Loughran and Ritter (1995) study firms, which undertook primary or secondary equity offerings 

between 1970 and 1990. They find that the average return of shares of these firms over the five-year 

period after the issuance is markedly below the average return of shares of non-issuing firms 

matched to the issuing firms on size. 

Belief-based behavioral models: 

1. Representativeness and Conservatism. Barberis, Shieifer and Vishny (1998), argue that much of 

the above evidence is the result of systematic errors that investors make when they use public 

information to form expectations of future cash flows. They build a model that incorporates 

two of the updating biases: conservatism, the tendency to underweight new information 

relative to priors, and representativeness. When a company announces surprisingly good 

earnings, conservatism means that investors react insufficiently, pushing the price up too little. 

Since the price is too low, subsequent returns will be higher on average, thereby generating 

both post-earnings announcement drift and momentum. After a series of good earnings 

announcements, though, representativeness causes people to overreact and push the price up 

too high. Since the price is now too high, subsequent returns are too low on average, thereby 

generating long-term reversals and a scaled-price ratio effect. 

2. Overconfidence. Daniel, Hirshleifer and Subrahmanyam (1998, 2001) stress biases in the 

interpretation of private, rather than public information. They assume that investors are more 

likely to be overconfident about private information they have worked hard to generate than 

about public information. If the private information is positive, overconfidence means that 

investors will push prices up too far relative to fundamentals. Future public information will 

slowly pull prices back to their correct value, thus generating long-term reversals and a scaled-

price effect. To get momentum and a post-earnings announcement effect, DHS assume so 
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called self-attribution bias: public news which confirms the investor's research strongly 

increases the confidence he has in that research; disconfirming public news, though, is given 

less attention, and the investor's confidence in the private information remains unchanged. This 

asymmetric response means that initial overconfidence is on average followed by even greater 

overconfidence, generating momentum. 

3. Bounded rationality. Positive feedback trading plays a central role in the model of Hong and 

Stein (1999), where two boundedly rational groups of investors interact, meaning that investors 

are only able to process a subset of available information. "Newswatchers" make forecasts 

based only on private information, while "Momentum traders" condition only on the most 

recent price change. They assume that private information diffuses slowly through the 

population of newswatchers. By buying, momentum traders hope to profit from the continued 

diffusion of information. This behaviour preserves momentum, but also generates price 

reversals: since momentum traders cannot observe the extent of news diffusion, they keep 

buying even after price has reached fundamental value, generating an overreaction that is only 

later reversed.  

 

4. Models with Institutional Frictions. The institutional friction that has attracted the most 

attention is short-sale constraints. They can make investors less willing to establish a short 

position than a long one. Several papers argue that when investors differ in their beliefs, the 

existence of short-sale constraints can generate deviations from fundamental value and in 

particular, explain why stocks with high price-earnings ratios earn lower average returns in the 

cross-section. There are at least two mechanisms through which differences of opinion and 

short-sale constraints can generate price-earnings ratios that are too high, and thereby explain 

why price-earnings ratios predict returns in the cross-section. 

Miller (1977) notes that when investors hold different views about a stock, those with bullish 

opinions will, of course, take long positions. Bearish investors, on the other hand, want to short the 

stock, but being unable to do so, they sit out of the market. Stock prices therefore reflect only the 

opinions of the most optimistic investors, which, in turn, means that they are too high and that they 

will be followed by lower returns. 

Scheinkman and Xiong (2001) argue that in a dynamic setting, a second, speculation-based 

mechanism arises. They show that when there are differences in beliefs, investors will be happy to 

buy a stock for more than its fundamental value in anticipation of being able to sell it later to other 

investors even more optimistic than themselves. Short-sale constraints are very important here, 
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because in their absence, an investor can profit from another's greater optimism by simply shorting 

the stock. With short-sale constraints, the only way to do so is to buy the stock first, and then sell it 

on later. 

Preference-based behavioural models. 

Barberis and Huang (2001) show that application of loss aversion and narrow framing to individual 

stocks can generate the evidence on long-term reversals and on scaled-price ratios. The key idea is 

that when investors hold a number of different stocks, narrow framing may induce them to derive 

utility from gains and losses in the value of individual stocks. The investor is loss averse over 

individual stock fluctuations and the pain of a loss on a specific stock depends on that stock's past 

performance.  

To see how this model generates a value premium, consider a stock, which has had poor returns 

several periods in a row. Precisely because the investor focuses on individual stock gains and losses, 

he finds this painful and becomes especially sensitive to the possibility of further losses on the stock. 

In effect, he perceives the stock as riskier, and discounts its future cash flows at a higher rate: this 

lowers its price-earnings ratio and leads to higher subsequent returns, generating a value premium.  

 

2.3. BEHAVIOURAL TRADING STRATEGIES 

 

In this section we are illustrating two behavioural trading strategies: momentum and contrarian 

strategies, which are already being successfully used by some investors. The empirical evidence 

explaining momentum and reversal effects is given above as well as some behavioural applications 

to these phenomena. Below we summarize this information and explain strategies, which can be 

used to exploit these market inefficiencies. 

 

2.3.1.MOMENTUM TRADING STRATEGIES 

 

Price momentum can be explained by the following behavioural factors: 

1. Representativeness, which means that naïve investors extrapolate future earnings on the basis 

of the recent past. Expecting that stocks will continue to behave the way they did for, let’s say, 
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lest six months, investors may decide to take long positions on stocks having performed well, 

leading to price increases, and to take short positions on past loosers, leading to price decrease. 

2. Overconfidence can also partially explain momentum, because many investors are more 

confident in their privately obtained information, then in information, which is publicly 

available. If public information contradicts private, most investors tend to underreact to this 

information, while if it supports private information; investor’s overconfidence grows to even 

higher degree, coursing overreaction.    

3. Private information diffuses among agents on the market gradually, coursing graduate price 

increase. Momentum traders may further provoke momentum by buying stocks in trend, but 

being unable to precisely evaluate the degree of information diffusion, may push prices higher 

then their fundamental value is, which will course the future reversal. 

4. Short-sales constraints and different beliefs of investors can also explain momentum, because 

while bullish investors are buying stocks, bearish investors face difficulties in short selling 

them.  

Momentum investing. 

To implement momentum trading strategy, the first thing to do is to rank available stocks. To do so, 

it’s necessary to define measures of price momentum. Empirical evidence has shown, that the best 

results from forming price momentum portfolios is obtained, when the period for ranking stocks lies 

somewhere between 6 to 12 months. 

With price momentum, the bottom ranked stocks are those, that have realized the lowest return over 

the measurement period (referred to as “losers”), while the top ranked stocks are those that have 

realized the highest return (“winners”).  

The portfolio is formed basing on expectation that the winners will continue to outperform the 

loosers over the next several months. 

 

 

2.3.2.CONTRARIAN TRADING STRATEGIES 

 

According to empirical evidence, price reversals take place after 2 or 3 years after portfolio 

formation. If a price reversal exists, it should be possible to implement a strategy, which allows 

capturing the advantages of a possible mispricing at a particular moment. Such a strategy is the so-

called contrarian (or value) strategy.  

There are two possible explanations of outperformance of value strategies: 
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1. First relies on the same belief as momentum effect - investors behave naively and base their 

expectations and forecasts in extrapolating information from past earnings and returns. Many 

investors tend to behave excessively optimistic towards stocks having well performed in the 

recent past and, at the same time, they are pessimistic on stocks having recently poorly 

performed. In doing so, investors overreact to the information flow and invest in these naive 

strategies. More attentive investors implement contrarian strategies, consisting in a bet against 

the naive investors. This suggests that value strategies yield positive returns because of the 

exploitation of sub-optimal behaviour of investors.  

2. An alternative explanation for the outperformance of value strategies argues that investors rely 

excessively on analysts' long-term earnings forecasts, which in many cases reveal a too 

optimistic view. In the same way as a naive strategy based on the extrapolation of past 

earnings, investors observe the forecasts of financial analysts and agree to buy stocks which are 

predicted to grow, moving up their price and sell forecasted loser stocks moving down their 

price. Contrarian investors bet against naive investors and take positions, which are the 

opposite to those indicated by financial analysts. They would realize higher profits because 

they invest in undervalued stocks and short overvalued stocks.  

Contrarian investing. 

When choosing stocks for the strategy, good criteria are their market-to-book ratio and price-to-

earnings ratio. A low M/B indicates, that the market value of a firm is low in comparison to its most 

recent book value. The reasons for a low M/B are represented by a poor performance of the stocks in 

the past and/or pessimistic forecasts on the future earnings of the firm. Thus, a high (low) M/B or 

P/E ratio is taken as indicative that the firm’s stock is expensive (cheap). To form a value portfolio, 

contrarian investors are buying stocks whose prices are low and which are expected to underperform 

the market and selling the stocks whose prices are high.  

This strategy is riskier then momentum strategy, but it can also provide higher returns. It was proven 

empirically, that if not one, but several criteria are used in ranking of value stocks, the performance 

of portfolio improves significantly. 

2.3.3.INTERPLAY BETWEEN MOMENTUM AND CONTRARIAN STRATEGIES 

 

While evidence supports the success of contrarian and momentum strategies when practiced 

individually, there is the possibility that even better returns might be realized by combining them 

within a single investment strategy. With momentum we have a strategy that functions very well in 

trending markets, with contrarian, we have a strategy which performs very poorly when market 
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valuations reach excesses towards the end of a strong bull market but which come into their own 

when prices revert back to more sustainable levels. The fact that added value from momentum is 

pro-cyclical, while that from value tend to be counter-cyclical raises the possibility of either 

combining them within a single portfolio or running them as separate streams within the one 

investment strategy.  

Momentum and contrarian investing are very much part of the phenomenon with underreaction to 

individual pieces of information being an important aspect of trending markets while an overreaction 

to a series of similar announcements (e.g. good news) being an important contributor to the excesses 

in pricing which is what eventually gives rise to the conditions for contrarian investing to succeed.  

An explanation provided by Hong and Stein (1999) provides insights as to benefits from an 

investment strategy that combines both value and momentum investing. These authors assume that 

the world consists of two types of investors: fundamental investors who act on news announcements 

and momentum investors who follow trends. In response to the initial piece of good news, the news 

followers drive up the price slightly and would continue to do so after the release of subsequent good 

news announcements. Thus a trend in pricing is created which increasingly attracts the trend 

followers into the stock, and so drives up the price even more. When the first piece of bad news 

arrives, the trend followers completely ignore it but the fundamental investors do put a break on the 

upward movement in price and will continue to sell the stock in reaction to subsequent bad news 

announcements. A negative trend is eventually created which again attracts the trend followers to 

sell and so further precipitates the fall in price to what is likely to now prove an unsustainable low 

level. 

 

2.4. PERSPECTIVES IN BEHAVIOURAL FINANCE 

 

Although, there are many recent papers on behavioural finance, much of the work here is narrow. 

Models typically capture something about investors' beliefs, or their preferences, or the limits of 

arbitrage, but not all three. As progress is made, more theories will emerge, which will be able to 

incorporate more than one strand.  

For example, the empirical literature repeatedly finds that the asset pricing anomalies are more 

pronounced in small and mid-cap stocks than in the large cap sector. It seems likely that this finding 

reflects limits of arbitrage: the costs of trading smaller stocks are higher, and the low liquidity keeps 

many potential arbitrageurs uninterested. While this observation may be an obvious one, it has not, 
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found its way into formal models. Interplay between limits of arbitrage and cognitive biases may 

become an important research area in the coming years.  

Some of the institutional barriers, such as those regarding short selling, may also have behavioural 

explanations. Bringing institutions more directly into the behavioural model and applying the 

behavioural model to institutions will be hard but worth doing. 

Most of the research so far has been in the field of asset pricing; much less has been done on 

corporate finance recently. One example of the kind of research that it might be possible to do in the 

realm of behavioural corporate finance is Jeremy Stein’s (1996) article “Rational Capital Budgeting 

in an Irrational World.” Stein ponders how companies should make investment decisions if asset 

prices are not set rationally. Many other papers, both theoretical and empirical, are waiting to be 

written in this important area.  

Finally, more data on individual investors is necessary to better understand individual investors’ 

behaviour. Similarly, tracking the behaviour of investors in 401(k)-type pension plans is of growing 

importance. For both cases, the data exist in the files of private firms, which are reluctant to share 

the information. For sharing to become a reality, confidentiality will have to be adequately protected 

- confidentiality of the source of the data and of the identities of the individual investors.  
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3. STATISTICAL ARBITRAGE: TOOL TO EXPLOIT PREDICTABLE COMPONENT OF EQUITY 
RETURNS 

3.1. HEDGE FUNDS AND THEIR STRATEGIES 

3.1.1.THE HEDGE FUND INDUSTRY OVERVIEW 

 

A hedge fund is a special type of investment vehicle, primary used by wealthy institutions and 

individuals, who pool their capital in order to implement high-risk skill-based investment strategies, 

financial instruments, investment styles, which are usually unavailable to other funds, i.e. mutual 

funds, which are limited to long positions. These strategies are mostly based on heavy leverage, 

short selling, and use of derivatives. A manager of a hedge fund who commits a part of his net worth 

(property, belongings) into the fund is compensated based on the percentage of a hedge fund’s 

performance. The number of participants in a hedge fund is restricted by law to no more than 100 

per fund. Consequently, most hedge funds have set very high minimum participation investment 

amounts, which starts from over $250 thousands. 

Hedge fund industry can be viewed as being flexible to make money in all market conditions 

(increasing and decreasing), preserving capital in falling markets (due to low correlation with 

market), not constrained with benchmarks, tracking errors and regulations that are able to prevent 

maximizing returns, and are talent- and experience-concentrated. 

The idea to hedge against future price fluctuations belongs to the farmers in the United Stated who 

sold their crops and cattle against future delivery before harvesting them. Therefore, the farmers 

eliminated or reduced their market risk exposure by locking-in the price in advance. In the earlier 

1950’s, after gathering the materials about trends in investing and market forecasting, A.W. Jones 

came up with concept to use hedging techniques on equity markets. His idea was in order to reduce 

or eliminate the portfolio’s risk borne by the long position one should short other stocks that have 

similar risk-return profile as long stocks. To increase the upside potential of that strategy he used 

leverage. Later, Jones decided to switch from general partnership to limited partnership, and began 

to charge all partners with 20% incentive fee, while leaving the part of his net worth in his fund 

sharing all risks. These changes became standards in the hedge fund industry.  

The long/short strategy became very popular after the article about the Jones’ fund was published in 

the Fortune Magazine in 1966. That article caused a sensation in the finance world; the Jones’ fund 

outperformed “that year the best mutual fund by 44% and the best five-year performing mutual fund 
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by 85%”1. Many investors struggling for high risk-premium decided to invest in hedge funds. 

However, in reality most of the hedge funds at that time did not really hedge their heavy long side 

portfolio’s risk exposure supported by leverage with shortening other equity leaving them vulnerable 

to the equities price fluctuation. Such a risky position could not last long without any loss. 

According to Gary Spitz the number of the hedge funds decreased from 200 in 1968 to 85 in 1984.  

And only since 1990’s the industry became to grow very fast. Starting from around 230-odd funds in 

1990 with $6.5 billion assets under their management, their number increased drastically. Today, 

according to Hedgeeco database, the number of hedge funds increased in more than 30 times to 7000 

with estimated $400-500 billion in capital2. On the figure below one can see the evolution of the 

hedge fund industry. 

 

Figure 3.1.  Growth Of The Hedge Fund Industry3 

Although the mutual fund industry is much bigger and the total volume of assets under their 

management exceeds that of hedge funds, the level of growth of hedge fund industry reflects the 

tendency of institutions and wealthy individuals toward alternative investments, because of their low 

correlation or even uncorrelation with traditional investments. Therefore, it allows them to diversify 

their investment portfolios and improve their risk-return profile. According to the statistics presented 

by Friendland, hedge funds significantly outperformed mutual funds (as representatives of traditional 

                                                
1 Gary Spitz, HedgeFund-Index.com 
2 D. Friedland, the chairman of the Magnum Fund 
3 Altmann R. 2002. Lecture Notes 
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investments) in falling equity markets. From 1990 S&P and average U.S. equity mutual fund had 15 

and 14 negative quarterly returns respectively. Such a performance for almost 13 years leads them to 

have a total return of –108.12% and –111.8% respectively. Yet the average hedge fund experienced 

only with 9 quarterly negative returns, totalling a negative return of only –9.2%, proving its ability to 

perform well in falling equity markets.  

Over the period from 1990 to mid-2002 HFRI Fund Weighted Composite had around 15% 

annualised return with bond-like annual volatility around 7.2%, while such equity indices as S&P 

Composite, FTSE 100, and MSCI World Index had much lower average annual return and much 

higher average annualised volatility. S&P Composite with around 9.2% had the highest return 

among them, and FTSE with around 14.2% had the lowest volatility. 

Unlike mutual funds which have SEC regulation and disclosure requirements, hedge funds are much 

more flexible in their investment options. They can use short selling, leverage, derivative, and 

futures. Hedge fund industry attracts the best brains in the investment business because of the high 

remuneration award based on fund’s performance. 

There is no strict classification of the hedge funds within the industry based on the strategy the 

particular fund implements. This proves that these strategies are difficult to classify. Below we 

present Morgan Stanley’s classification, however CSFB/Tremont and HFI classifications are used 

more frequently. 

 

Table 3.1.  The MSCI Hedge Fund Classification Standard4 

Specialist Credit 
Directional 

Trading 
Relative Value Security Selection 

Multi-Process 

Group 

Distressed Securities 

 

 

Discretionary 

trading 

• Currencies 

• Equity 

• Diversified 

Arbitrage 

• Convertibles 

• Fixed-income (MBS, ex MBS) 

• Equity 

No Bias 

• Europe 

• North America  

• Diversified 

• Japan 

Event-driven 

Long-Short Credit Tactical Allocation Merger Arbitrage Short Bias Multi-process 

                                                
4 Morgan Stanley, Investable Hedge Fund Indices Methodology, June 2003 
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Private Placement Systematic Trading 

• Currencies 

• Diversified 

Statistical Arbitrage 

• Europe 

• North America 

Long Bias 

• Europe 

• North America 

• Diversified 

• Japan 

• Emerging 

Markets 

• Global Markets 

Asia 

• Asia ex Japan 

 

   Variable Bias 

• Europe 

• North America 

Diversified 

 

 

Table 3.2.  Hedge Fund’s Strengths And Weaknesses 

Strengths Weaknesses 

Sustainable good performance Lack of transparency in terms of strategies 

High risk adjusted returns Risk of failure due to high leverage 

Motivated bright managers Capacity constraints 

Greater flexibility of investment instruments Complex performance evaluation 

Pro-active approach to investing Large variations in individual performance 

 

3.1.2.HEDGE FUND STRATEGIES 

 

Hedge funds implement different strategies that are grouped according to the common features-
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specific characteristics. 

Table 3.3.  Hedge Fund Investment Styles 

Long/Short Equity Event Driven Relative Value/ Market 

Neutral 

Global Asset Allocation 

Description: 

Directional strategies 

involving equity oriented 

investing in both the long 

and short sides of the 

market 

Description: 

Strategies that can benefit 

from the occurrence of 

special situations 

Description: 

Strategies aiming to profit by 

capitalizing on the 

mispricing of related 

securities of financial 

instruments 

Description: 

Diverse mix of 

strategies/instruments that are 

generally momentum based 

over short holding periods 

Sub-strategies: 

• Value/Growth 

• Sector 

• Geographical 

• Opportunistic 

• Short Selling 

Sub-strategies: 

• Merger Arbitrage 

• Distresses Securities 

• Corporate 

Restructuring 

Sub-strategies: 

• Convertible Arbitrage 

• Fixed income Arbitrage 

• Statistical Arbitrage 

Sub-strategies: 

• Futures Trading 

• Global Macro 

• CTA 

Features: 

• Largest strategy 

• Generally low leverage 

Features: 

• Low market exposure 

• Probabilistic models 

Features: 

• Very low market 

exposure 

• Arbitrage anomalies 

Features: 

• No correlation with MSI 

• More volatile 

 

Long/short equity funds invest equally in long and short positions generally in the same sector of 

economy (for example, construction, aircraft, or hardware) or region, achieving market neutrality. 

They have the ability to shift from value to growth, from small-, mid-cap and to big-cap stocks, they 

can switch from a net long to a net short position. While implementing this strategy, hedge fund can 

use market index futures and options to reduce or eliminate systematic risks of its positions. 

Event driven strategies aim to benefit from special situations or significant restructuring events 

such as spin-offs, mergers and acquisitions, bankruptcy reorganizations, capital restructuring and 

share buybacks.  
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Global Macro funds are the biggest in the industry. Changes in global economies, driven by 

changes in government policy which influences interest rates, in turn affecting currency, stock and 

prices, are the targets of these funds. They are usually highly volatile. The most famous are George 

Soros’s Quantum Fund, Julian Robertson’s Jaguar Fund, Leon Cooperman’s Omega Overseas, Louis 

Bacon’s Moore Global, and Mark Kingdon’s Kingdon Fund. 

Market neutral strategy inscribes many sub-strategies designed to benefit both in bull and in bear 

markets, which allows them to generate positive return when market goes up or down. They bet on 

spread relationships between financial assets or commodities. 

Every investment manager in the hedge fund implementing an active trading strategy wants to 

achieve the return, which is higher than that of passive buy-and-hold investments. The additional 

return is sometimes referred to as alpha5 [Morgan Stanley, Quantitative strategies, 2000]. 

Table 3.4.   Hedge Fund Risk And Return Characteristics (January 1990-July 2002) 

Correlation 
Strategy Sub-strategy 

Annualised 

Return 
Volatility 

S&P 500 MSCI LBI 

Long/Short Equity Long/Short Equity 18.72% 9.44% 0.66 0.62 0.14 

 Sector Specialist 19.71% 14.55% 0.57 0.55 0.07 

 Short Selling 4.02% 23.01% -069 -0.67 -0.10 

Event Driven Merger Arbitrage 11.39% 4.54% 0.46 0.41 0.10 

 Distressed Securities 14.50% 6.38% 0.39 0.35 0.10 

Relative Value Convertible Arbitrage 11.51% 3.41 0.35 0.33 0.10 

 Fixed Income Arbitrage 8.75% 4.68% -0.06 0.00 -0.07 

 Statistical Arbitrage 10.36% 4.00% 0.53 0.43 0.34 

Global Asset 

Allocation 

Global Macro 17.24% 8.84% 0.42 0.42 0.36 

 

 

 
                                                
5 Morgan Stanley, Quantitative strategies, 2000 
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Figure 3.2.  Out-performance Of Hedge Fund Strategies6 

Adding alpha in all market conditions (January 1990-July 2002) 

Hedge fund indices primarily evolved in response to increased number of hedge funds and strategies 

they implement and the desire to have an industry- and strategy-specific benchmarks, against which 

it could be possible to compare or analyse the performance of the certain strategy (hedge fund 

manager) or the fund as a portfolio of strategies. The problem with using benchmarks in this industry 

stems from dependency of the fund’s performance upon individual skills of a manager, which no 

index could measure. The first hedge fund indices fail to capture strategy and sub-strategy-specific 

risk-return characteristics. As a response to the industry growth, main index providers began to 

separate the different hedge fund strategies and styles.  

Major hedge fund industry index providers7: 

1. Latest produces 14 indices based on the information provided by 2000 funds since 1993; 

2. CSFB/Tremont calculates 11 indices quarterly using TASS database, which includes 2600 US 

and offshore hedge funds; 

3. Evaluation Associates Capital Markets (EACM) calculates indices for five broad strategies and 

13 underlying sub-strategies, using the data since 1990; 

4. HedgeFund.net (Tuna) computes so called Tuna indices (33 indices) using the information 

                                                
6 Altmann R. 2002. Lecture Notes 
7 F.S. Lhabitant “Hedge Funds – Myths and Limits”, 2002 
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from 1800 hedge funds since 1979. 

5. Hedge Fund Research (HFR) produces monthly 33 indices using data from 1990, and since 

2000 it calculates daily five indices: convertible bond arbitrage, equity hedge, event-driven, 

merger arbitrage, and distressed securities arbitrage; 

6. Hennessey Group, LJH Global Investments, Van Hedge Fund Universe/Managed Account 

Reports LLC, ZCM/HFR Index Management, Zurich Capital Market; 

7. Newcomers: Deutsche Bank Asset Management, Morgan Stanley Capital International 

(MSCI). 

 

3.1.3.THE LEGAL ENVIRONMENT OF HEDGE FUNDS 

 

Normally, hedge funds are exempt from obeying the security acts, law and regulations that govern 

the issuance and trading of publicly traded securities passed by the Securities Exchange Commission 

(SEC).  

 

Table 3.5. Legal Requirements And Exemptions For Hedge Funds 

Law Target Requirements Reasons for exemption 

Security Act of 

1933 

Publicly Security 

Issuers 

To register and to file reports with 

the SEC when publicly traded 

securities are issued 

Hedge funds are considered to be a 

private placements 

Security 

Exchange Act of 

1934 

Security Brokerage 

Funds 

To file reports and to maintain 

extensive records for broker dealers 

Hedge funds are not security 

brokerage firms 

Investment 

Company Act of 

1940 

Mutual Funds To register as an investment 

company, leverage, fees restriction, 

rules for investment diversification, 

obligatory information disclosure, 

profit distribution to shareholders 

each year 

Hedge fund limit the number of 

investors giving preferences to 

institutions and wealthy 

individuals  
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Law Target Requirements Reasons for exemption 

Investment 

Advisers Act of 

1940 

Investments 

Advisers 

Restriction on fees structure, limits 

on investor’s minimum wealth and 

investment portfolio value, 

compliance with SEC filing and 

registration requirements 

Hedge funds usually do not give 

any advises to the general public 

Commodity 

Exchange Act of 

1974 

Individuals and 

Firms giving 

advise on futures 

trading 

To register as commodity pool or 

CTA with the National Trading 

Commission, associated registration 

and information disclosure to CFTC 

is required 

Not all hedge funds have the same 

organizational and operational 

structure as commodity pools or 

CTAs 

 

After the collapse of LTCM in September 1998, it became clear that the hedge fund industry could 

avoid regulation despite its highly sophistication and understanding of the risk involved. According 

to the Katz’ systematic risk classification, LTCM collapse highlighted that hedge funds are subjects 

to two sources of risk: their default can cause losses on regulated entities, consequently these entities 

might be incapable to perform key economic functions, and the forced liquidation of collateral 

cannot compel third parties from involving in self-defence [Hedge Fund Regulation, Harvard Law 

School, 2002].  

Policy makers suggested several ways how to reduce or eliminate (manage) exposure to hedge 

funds: 

1. Regulation improvement of hedge fund’s counterparties, 

2. Transparency improvement about positions taken by hedge fund. 

 

At the beginning some proposed to implement direct regulation of the hedge fund industry, but that 

proposition was not supported by the majority. Therefore, energy was concentrated on improvements 

in third-parties regulation. For example, the International Organization of Securities Commissions 

(IOSCO) proposed voluntary information disclosure by large hedge funds, and the Basel Committee 

preferred to have a Central Register of leveraged positions. There were other proposals based on 

incentives to record and disclose data, but they proposals did not concern offshore hedge funds. The 

debates highlighted the need for a coordinated approach by national regulators. It would be perfect if 

hedge funds could reveal the information about notional amount of their positions in each market. In 

such a case third parties has information only about the scale and location of positions without 
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detailed specification of particular trades. Also disclosure of risk-return profile based on statistical 

analysis would be more effective and meaningful rather than listing specific security holdings and 

expecting that investors would perform risk analysis by their own. In addition to listed above, some 

solvency measures have to be established. Cash and capital relative to notional positions and the 

valuation of off-balance sheet assets and liabilities, using VaR methodology, proposed in the paper 

of Anthony H. Hanlon [Proposals for Reform of Hedge Fund Regulation, 2002], could measure 

solvency of a hedge fund. Hanlon predicts that it is probable that hedge fund managers will have to 

register with the SEC as investment advisors accreditation standards governing eligible investors 

may be raised. 

 

3.1.4.HEDGE FUNDS IN EUROPE 

 

Europe accounts for only about 15% of the world hedge fund market. The leading position in this 

industry belongs to the UK because of its strong asset management, local market research, and 

favourable regulatory environment. In addition, public investors in the UK have limited access to the 

hedge funds’ products, and therefore, hedge funds on this market have low risk. Luxemburg and 

Switzerland occupy the next position. Recently, hedge funds have been established in France, 

Sweden, Ireland, and Italy. In most Distribution barriers, caused by different regulatory 

requirements, fiscal regimes, saving preferences, different cultural barriers are the features of the 

European hedge fund industry. In European countries national regulatory authority controls onshore 

hedge funds and their onshore marketers and managers, who give advises to hedge funds about 

investments strategies. Usually prime brokers and investors in European hedge funds are located 

onshore, because demand mostly comes from not only wealthy individuals and institutions but also 

from small investors, pensions and life insurers. 

But in recent future the regulatory requirements will move toward American standards, which have 

less distribution barriers, so European hedge funds could compete with US funds. In September 2003 

the European Parliament started a preliminary debate on hedge fund and derivative regulation, which 

probably will result in the first European directive on hedge fund regulation [Statman Consulting, 

Inc. Hedge Fund Regulation, 2003]. There is a lot of hope that this document will change the 

European hedge fund industry by introducing a fund passport, which means ones the fund has been 

established in one of the European countries it would have to comply with the directive to one 

regulator and would then be allowed to market the fund to customers throughout EU. 
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3.2. STATISTICAL ARBITRAGE 

 

3.2.1.OVERVIEW 

 

Morgan Stanley, which was one of the biggest centres of statistical arbitrage in early 1980’s, defines 

statistical arbitrage as model-based investment process, which aims to build long and short portfolios 

whose relative value is currently different from a theoretically or quantitatively predicted value. The 

constructed portfolios should represent industry, sector, market, and dollar neutrality [Hedge Fund 

Research, Inc.]. Statistical arbitrageurs are trying to profit from temporary deviations of equity prices 

from their fundamental value. They combine science (value theory, statistical decision theory, game 

theory, statistical pattern recognition techniques, time series techniques: autoregression, vector error 

correction, cointegration), skills and experience when implement statistical arbitrage. It is widely 

used by hedge funds, Wall Street companies, and even sophisticated independent investors. Many 

managers implement this strategy with a directional, typically long, bias.  

D. Beunza and D. Stark define statistical arbitrage as an art of association. By association they mean 

the construction of equivalence (comparability) of properties across different assets. 

The statistical arbitrageurs (equity market neutral managers) use the information they gather very 

efficiently. For example, if arbitrageur takes a long position in some stock anticipating that its price 

will increase but it reality it does not or it does not perform that well, he can use that stock for short 

selling which would lead to smaller risk of the total portfolio the arbitrageur holds. The positive 

return of this strategy comes from two different sources. The first one is pretty obvious, it happens 

when the price of the stock from the long side of the portfolio goes up. The second one comes from 

the short position, but the strategy benefit if the price of shorted equities goes down, which means 

that arbitrageur can buy the stocks he owe at a lower price. 

Many hedge funds implement this strategy for the following reasons: 

• Returns of the strategy are independent and uncorrelated with the market, 

• Volatility is pretty low, 

• The strategy generates relatively high and constant return regardless of the economic 

downturns, 
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• The strategy complements other strategies used by hedge fund increasing portfolio 

diversification. 

A major drawback of the strategy is that it becomes costly due to short selling and transaction costs. 

Another concern is the limited availability of stocks for short sale and strict rules, which prohibit 

short selling if the stock does not experience the previous up-tick. Since arbitrageur is looking for 

the highly liquid stocks to be short, it may happen that there are not enough stocks on the market. 

Such a problem is called capacity issue within the portfolio. 

Statistical arbitrage is a more broad term than pure arbitrage, and unlike pure arbitrage that is 

riskless, statistical arbitrage bears the “risk to have negative payoff provided that the average payoff 

in each final state is nonnegative”8.  

S. Hogan, R. Jarrow, and M. Warachka extend the definition of statistical arbitrage. They emphasize 

that if the strategy is self-financing, zero-cost and generates cumulative discount profit that satisfies 

four conditions listed below, then such a strategy is statistical arbitrage.  

1. At t0 discounted profit is zero, 

2. When t goes to infinity, expected discounted profit is strictly positive, which means that 

strategy at least should generate return equal to risk-free rate. 

3. When t goes to infinity, the probability of having negative expected discounted profit equals 

zero, meaning that in the limit statistical arbitrage strategy converges to pure arbitrage. 

4. When t goes to infinity, a time averaged variance converges to zero when there is positive 

probability of a loss at every finite point in time, which could be achieved through portfolio 

rebalancing or controlling the value of long and short positions to avoid excessive net exposure 

either long or short. 

The fourth condition is crucial due to two reasons. Firstly, it distinguishes statistical arbitrage and 

pure arbitrage that satisfies the condition when the probability of loss at some point in time equals 

zero. Secondly, in the Black-Scholes economy statistical arbitrage defined only under 1-3 conditions 

is equivalent to buy and hold strategy. 

They also tell the difference between statistical arbitrage and Ross’ limiting arbitrage opportunity 

used in his APT model. “The difference between the two concepts is that statistical arbitrage is a 

                                                
8 Oleg Bondarenko, Statistical Arbitrage and Security Prices, The Review of Financial Studies, Fall 
2003, Vol.16, No.3, p. 875 
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limiting condition across time, while Ross’ APT is a cross-sectional limit at a point in time”. In the 

financial theory we distinguish between weak and strong form of market efficiency based on what 

kind of information is reflected in stock prices. In a weak form of market efficiency stock prices 

incorporate only publicly available information, while in a strong form, stock prices reflect both 

publicly and privately available information. Therefore, if arbitrageurs in their models use public and 

private information they implement strong-form statistical arbitrage, otherwise they carry out weak 

from. 

 

3.2.2.STATISTICAL ARBITRAGE TRADING STRATEGIES 

 

The variety of statistical arbitrage strategies is enormous and it’s impossible to give the whole 

overview of them in this paper. However, we would like to mention some groups of trading 

strategies, used by hedge funds to implement statistical arbitrage.  

1. Pair/Basket Trading 

Pair trading, also known as spread trading, is a statistical arbitrage strategy that allows the trader to 

capture anomalies, relative strength or even fundamental differences on two stocks or baskets of 

stocks while maintaining a market neutral position.  

The strategy may be implemented through matching a long position with a short position in two 

stocks in the exact same sector. This creates a hedge against the sector and the overall market that 

the two stocks are in. The hedge created is essentially a bet that you are placing on the two stocks; 

the stock you are long in versus the stock that you are short in. It's the ultimate strategy for stock 

pickers, because stock picking is all that counts. What the actual market does won't matter much. If 

the market or the sector moves in one direction or the other, the gain on the long stock is offset by a 

loss on the short. The profit comes from the changes in spread between the two. Therefore, the bet is 

being placed not on which direction the stock market will move, but on company-specific or sector-

specific correlations.  

2. Multi-factor models   

To this group of statistical arbitrage models belong strategies, which are based on correlations of 

stock returns with several factors chosen. The best example of such model is Arbitrage Pricing 
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Theory. The strategy consists in defining factors, which influence stock returns, running multiple 

regressions on those factors and picking the stocks for portfolio on the basis of their respective 

correlations. 

3. Mean-reverting strategies 

This type of strategies is based on the assumption, that the stock prices are mean-reverting. So, if the 

stock price deviates from its supposed average value, it’s expected to move in the future in the 

opposite direction.  According to the strategy, the outperforming stock (expected to decrease in the 

future) should be sold short while the underperforming stock (expected to increase) should be 

bought. One of the examples of this type of strategies is contrarian trading. 

4. Cointegration 

The applicability of the cointegration technique to asset allocation was pioneered by Lucas (1997) 

and Alexander (1999). Its key characteristics, i.e. mean reverting tracking error, enhanced weights 

stability and better use of the information comprised in the stock prices, allow a flexible design of 

various funded and self-financing trading strategies, from index and enhanced index tracking, to 

long-short market neutral and alpha transfer techniques. A number of trading strategies can be 

constructed based on cointegration relationships:  

1. Index tracking  

The first cointegration-based trading strategy investigated is a classical index tracking aiming to 

replicate a benchmark in terms of returns and volatility. An index tracking process entails two, 

equally important stages: first, selecting the stocks to be included in the tracking portfolio and 

second, determining the portfolio holdings in each stock based on a cointegration optimization 

technique. 

2. Enhanced index tracking and statistical arbitrage  

Having constructed the simple tracking strategy, a natural extension for exploiting the tracking 

potential of the cointegrated portfolios would be to replicate artificial indexes, 'plus' or 'minus', 

constructed as to linearly over-perform or under-perform the market index by a given amount per 

annum. Then, self-financing long-short strategies can be set up by being short on a portfolio tracking 

the 'minus' benchmark, and long on a portfolio tracking the 'plus' benchmark. This type of statistical 

arbitrage strategy should generate returns according to the 'plus'/'minus' spread (i.e. double alpha) 

with fairly low volatility and no significant correlation with the market returns.  
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The cointegration relationship between the market index and its component stocks has a solid 

rationale, but this is not necessarily the case for portfolios tracking artificial benchmarks, which may 

be chosen to over-perform the market index by 50%, for example. The difficulty in finding an 

appropriate cointegration relationship leads to an increased instability of the stock weights, higher 

transaction costs and higher volatility of returns. To avoid this, it is essential to ensure that all the 

portfolios tracking 'plus' or 'minus' benchmarks pass the cointegration test. 

Long and short portfolios formed under market neutral condition can be considered as a synthetic 

asset, which any price deviation from zero represents mispricing, and thus, possibility of statistical 

arbitrage strategy to be profitable. Profitability of this strategy arises because stock price deviates 

from random walk as supported by the empirical evidence. This deviation represents mispricing in 

statistical arbitrage sense and points out that there is predictable component in the price-dynamics 

[A.N. Burgess, 1999]. In his paper “Statistical Arbitrage Models of FTSE 100" Burgess proposes 

three-stage methodology to exploit statistical arbitrage: 

1. The portfolio of long and short positions is constructed and is tested for existence of 

predictable component in the price-dynamics, 

2. The error-correction mechanism is modelled between relative prices, 

3. The statistical arbitrage strategy is used to benefit from having predictable component in 

equities returns. 

Burgess improved the standard cointergation methodology in the following ways: 

1. Cointegration test for stationarity he replaced with variance test for predictability, which is 

more appropriate for identifying statistical arbitrage opportunities; 

2. Standard regression or principal component analysis he replaced with the stepwise regression, 

which is more reliable to deal with the highly dimensional samples. 

His statistical arbitrage model uses stock “mispricings” (cointegration residuals) and lagged returns 

to predict relative returns on a one-day basis. He found that his generalized cointegration approach 

works very well with statistical arbitrage. The model generates profit in 85% cases during the period 

between June 1996 and May 1993 without transaction costs, and in 67% cases after introducing 

transaction costs at a level of 50 bp (0.5%). In the first case the Sharpe ratio was 15.7, and in the 

second case it lowered twice. 

As one of the examples of practical application of mathematical models in statistical arbitrage 
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trading we would like to present market neutral relative value trading strategy from the 

Tradetreck company. This trading strategy is based on correlation analysis, pattern recognition, 

and stochastic control theory. The strategy generates on average an annualised return around 60%+/-

17%. The Marker-Neutral Pair Trade Model is a web-based model of the original trading system that 

is called Smart Trader 609. This system is better at job than conventional statistical arbitrage strategy 

since it defeats a couple of drawbacks that are statistical arbitrage-specific. It can reduce or eliminate 

confusing unexpected correlation, and dynamically recognize factors that influence predictability of 

drift using stochastic price signals. These are oscillation and mean-reversion. Such signal are 

generated by trading positions entered in a group of similar stocks on a buy lows and sell highs 

basis, eliminating the random component in stock price dynamic. Therefore, to profit one should 

follow optimal entry and exit strategies.  

Classical statistical arbitrage consists in constructing non-trending price signals based on correlation 

analysis through first identifying securities that are mispriced against the internal model’s 

benchmark (theoretically or quantitatively predicted), and then buying lows and sell highs with 

cutting losses if trades lose more than set targets. Its graphical representation is shown below. 

 

Figure 3.3.  Non-Trending Price Signals10 

 

                                                
9 The material is used from the official web-site of Tradetreck company 
10 www.tradetreck.com, 2001 

http://www.tradetreck.com
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4. BEHAVIOURAL STATISTICAL ARBITRAGE STRATEGY 

 

4.1. DATA DESCRIPTION 

 

We apply our models to the historical prices of the stocks constituting the German, French, and 

Swiss stock markets indices.  

From the international database DataStream we obtained the mid-week closing dividend and splits 

adjusted price data covering the period from 02.01.1985 to 09.07.2003 for the Swiss and French 

markets, and from 03.07.1991 to 09.07.2003 for the German market. Middle week prices are taken 

to ameliorate issues related to the beginning and end of the week noise. These lengths of the sample 

periods are determined by data availability. The following table contains general description of the 

indices we work with. 

Table 4.1. Data Description 

Country Index name Symbol Current number of stocks Sample period 

Germany DAX GDAXI 30 03.07.1991 - 09.07.2003 

France CAC 40 FCHI 40 02.01.1985 - 09.07.2003 

Switzerland SMI SSMI 27 02.01.1985 - 09.07.2003 

 

The sample periods had to be modified before implementing the models. The issue is that new stocks 

are periodically included into the market indices throughout the sample period. As a result, some 

constituents have relatively short histories. We would like to construct a sufficiently long sample of 

stocks with full price history. This way we can assure that if we end up with persistent statistical 

arbitrage profits, these come from the model rather than from exploiting varying investment 

opportunities. As a result, we are left with 19 stocks from SMI index covering the period from 

12.10.1988 to 09.07.2003, 29 stocks from CAC 40 index covering the period from 19.04.1989 to 

09.07.2003 and 18 stocks from DAX index covering the period from 10.07.1991 to 09.07.2003. The 

performance of our models on each market is then compared to the weighted averages of respective 

stocks since the original indices can no longer be our benchmarks (adjusted market index).  
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4.2. METHODOLOGY OF THE STRATEGY 

 

4.2.1. OVERVIEW OF PREVIOUSLY IMPLEMENTED MODELS 

Larson, Larson and Arberg [2002] are testing a market-neutral statistical arbitrage model using the 

most liquid stocks from Swedish market over the period from 30.06.1995 to 06.11.2001. First, on 

“signal generation” phase, they use momentum techniques to create the list of stocks that exhibit the 

strongest momentum. All stocks are ranked on the basis of the following criteria: cumulative return 

during prior 6-month period (with an extra weight put for the last week), book-to-market ratio, 

magnitude of price change during increase in trade volume, one year ahead expectations of cash flow 

changes, and market capitalization (small/large caps). Then, these rankings are used to construct 

equally weighted long and short portfolios (each including 10 stocks).  

Next, they move to the “risk control” phase. Four different categories of risk control are singled out. 

First category considers the portfolio volatility and portfolio correlation with other assets. Statistical 

arbitrage is generally considered to be a market neutral strategy, with low portfolio’s volatility and 

low covariance between long and short positions; however, sometimes the low covariance condition 

is relaxed to bet on directional movements in long and short positions. Thus, total portfolio’s beta is 

kept around zero, eliminating the risks that are correlated with the market. Even if this is achieved it 

is important to avoid having negatively correlated stocks in long and short portfolios. Following 

momentum effect phenomena, inclusion of growth versus value stocks and large caps versus small 

caps solves this problem. The growth stocks overweight value stocks in long and short portfolios and 

will therefore sustain portfolio stability. Portfolio systematic risk exposure is minimized with 

inclusion in the short portfolio large caps and in the long portfolio small caps. Ergo, the only 

problem that is left to be solved is the covariance problem within the portfolio. Larson, Larson and 

Arberg [2002] proposed the following solution: 4 best candidates for inclusion in the portfolio are 

tested by calculating the sum of the covariance matrix, one at a time, and the one that has the lowest 

sum is included. This way it is possible to find the stocks with strong momentum effect and 

favourable volatility. 

The other three categories of risk control are the stop-loss rule, a low cut-off price, and an indicator 

of extreme valuations. The transaction costs for the long and short position are set at 0.3% per 

transaction. Rebalancing of the long and the short positions is required each time when either long or 

short positions exceeds the other by more than 25% (to keep portfolio neutrality). The composition 
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of the portfolio is totally changed at the end of every 4-month holding period. 

Table 4.2. Results Of The Trading Strategy: 

Annualised return 21.8% 

Daily standard deviation 1.46% 

Annualised standard deviation 25.6% 

Beta -0.011 

Modified Sharpe ratio* 0.85 

 

This trading strategy was also tested on German, French and UK markets with the following 

settings: no transaction costs, no risk control, ranking is based exclusively on the basis of 6 month 

price change (without weighing the last week), rebalancing is done every fourth month. The results 

are shown in the table below. 

 

Table 4.3. Results of the model on European markets 

 Germany France UK 

Annualised return 8.25% 7.42% 10.9% 

Daily standard deviation 1.22% 2.24% 1.32% 

Annualised standard 

deviation 

22.5% 42.7% 27.7% 

Modified Sharpe ratio 0.37 0.17 0.39 

 

4.2.2.OUR APPROACH TO IMPLEMENTATION OF THE STRATEGY 

Our approach is similar to the one used by Larson, Larson and Arberg [2002] on German, French 

and UK markets. We are working with a slightly different time frame and Swiss rather than UK 

index. Also, since we are concentrating on indices with the small number of stocks, we operate with 

smaller portfolios. 

                                                
* Calculated as return per unit of volatility 
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The main contribution of our approach is that we consider behavioural statistical arbitrage models as 

constrained optimisation problems that would provide some desirable risk-return profile. The 

constraints include zero beta of the portfolio with respect to market and zero cost of the strategy. We 

are considering two different measures of risk: portfolio’s variance, and the covariance between long 

and short positions.  

Our methodology is based on the presumption that history is a good predictor of the future. 

Therefore, when portfolio’s variance is taken to be a measure of risk, our goal is to construct a 

portfolio that has the lowest feasible historical volatility at the beginning of the holding period. On 

the other hand, when covariance between long and short positions is taken to be a measure of risk, 

we are looking for a portfolio that would have the lowest correlation between the positions within 

the total portfolio. By this we would eliminate price co-movements between the taken opposite 

positions. In both approaches we concentrate on minimization of risk rather than explicitly look for 

optimal risk-return combination. This methodology is justified by the fact that our portfolio 

constituents are already the stocks with the strongest momentum, so portfolio’s return is expected to 

be high in any case. Besides, this allows us to avoid making assumptions about investor’s utility 

function, which is inevitable in mean-variance optimisation. 

We expect these approaches to give us the desired level of strategy profitability with some moderate 

level of risk. In addition, we hope that they will reach the performance of the statistical arbitrage 

index provided by Hedge Fund Research with its average annual risk-return profile presented in 

table 3.4. 

Our algorithms consist of two stages. The first stage is similar to the signal generating stage of 

Larson, Larson and Arberg [2002]. At the beginning of each holding period we rank the stocks 

according to their past performances (the informative prior observation periods are taken to be 6 and 

12 months). We rely on the momentum theory in that we expect stocks with relatively high (low) 

performance during prior 6 to 12 months to maintain the same lead (lag) over the next 4 to 12 

months. The performance is measured on the basis of cumulative return, which was proved to be the 

most important variable in seeking the momentum effect. In each market, we pick five winners 

(stocks with the highest realized return over the measurement period) and five losers (stocks with the 

lowest realized returns) to be constituents of the long and short parts of the arbitrage portfolio 

respectively. This approach guarantees us to have the stocks in the portfolio with the strongest 

momentum effect. However, we understand that since the cross-sectional dimension of our samples 

is small, the resulting portfolios will not be well diversified. 
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Next, we proceed with optimisation under investment restrictions to construct zero-cost portfolio 

such that it has the lowest variance, or the lowest covariance between long and short positions from 

the pull of possible weight combinations (optimisation stage). To avoid overexposure and 

underinvestment to any of the equities included in the portfolio, we impose an extra requirement that 

each stock’s weight should be within the lower bound of 10% and the upper bound of 60%. We 

assume that no rebalancing or any other adjustment to the portfolio is done during the holding 

period. We then measure the performance (return) of this portfolio assuming holding periods of 1, 4, 

and 6 months. These steps are repeated throughout the sample length. 

Ideally, when measuring performance of our strategy, we should take into account various 

transaction costs, as well as costs related to establishing and managing margin accounts. But to 

simplify modelling, we relaxed all the costs in our empirical research.  

 

4.3. PORTFOLIO SIMULATION 

 

4.3.1.PORTFOLIO VARIANCE MINIMIZATION UNDER INVESTMENT CONSTRAINTS 

 

The first approach that we consider is formalized as a variance minimization problem that reads as: 

max
W
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where N and M is the number of stocks in the long and short portfolio correspondingly, Σ is a 

variance-covariance matrix of the portfolio, wL indicates long portfolio allocation, wS indicates short 

portfolio allocation, and w represents total portfolio allocation. In our case, N=M=5. Below, we will 

loosely call the goal function as “utility function”. In this model we do not explicitly impose a 

market neutrality condition.  

We consider long and short position as separate sub-portfolios, and implement the following 
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procedure. 

1. We start with an equally weighted allocation that satisfies our self-financing constraint.  

2. Given that allocation, we compute the marginal utilities (MU = - 2*Σw) from changing holding 

each of the equities separately for the long and short positions. 

3. In the long and short parts we find the equities (candidates) with the lowest and the highest 

marginal utilities that are not on lower and upper bound correspondingly.  

4. For each sub-portfolio, the increase in the weight of candidate stock with the highest marginal 

utility is equal to the decrease in the weight of candidate stock with the lowest marginal utility. 

The increases in utility from changing the holdings of the long and the short sub-portfolios are 

compared, and the one that brings the bigger increase is accepted. 

5. We consider the optimal portfolio to be found when the difference between the highest MU 

and the lowest MU in each sub-portfolio is less than 0.0001. Otherwise we continue the 

procedure starting from step 2. 

We determined the optimal amount by which the equity’s weight with the highest MU should be 

increased and the weight of the equity with the worst MU should be decreased. The optimal change 

in the portfolio weights are found with respect to each position. New portfolio weights equal w+c*s, 

where c is the optimal change either in long or short portfolios, and s is a vector which has 1 for the 

equity which holdings are to be increased, -1 for the equity which holding are to be decreased, and 0 

otherwise.  

Therefore, we take first order conditions of the difference between new and old portfolio allocation 

∆V with respect to cL and cS. For the long portfolio we have 

∆VL = -[wL + cL sL; wS]′ Σ [wL + cL sL; wS] - (-w′Σw), 

and for the short portfolio we have 

∆VS = -[wL; (wS + cS sS)]′ Σ [wL; (wS + cS sS)] - (-w′Σw). 

While calculating a new allocation, we have to make sure that investments stay within the 

boundaries. The violation of boundaries happens if the value for cL or cS exceeds jU ww
J

−  or 

ILi ww − . Thus, cL and cS equal: 
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by 5 matrix taken from the upper-left corner of the variance-covariance matrix, Σ2 is 5 by 5 matrix 

taken from the lower-right corner of that matrix, and Σ3 is 5 by 5 matrix taken from lower-left or 

upper-right corner of that matrix. 

As mentioned above, this approach does not explicitly take into account the requirement of 

portfolio’s market neutrality inherent in statistical arbitrage approach. To understand how closely the 

above model satisfies this requirement, we compute realized beta of our strategy with respect to 

weighted-average index of all available stocks.  

To simplify beta estimation procedure, we used the standard regression estimator of the market 

return coefficient from11  

jMjj rr εβα ++= €~€~ . 

The standard regression estimator will be of the form 

2€~
€~€~

M

jM
j σ

σ
β = . 

We wrote the code in the Matlab to implement the above procedure. We tested our model with 

different signal generating periods lasted from 6 months to one year. We also estimated how the 

model’s profitability changes if the holding period changes. The motivation behind it was that the 

momentum persistence exists from 4 months to 1 year after a portfolio construction, and investors 

desire to react to changes in equity’s return as soon as possible. Therefore, we used as a holding 

period one month, four months, and six months. 

We performed six different strategies on Swiss, French, and German markets under portfolio 

                                                
11 Danthine,Donalson, Intermediate Financial Theory, 2002 
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variance minimization model. These models are classified according to the performance 

measurement periods: six-months and one year. For each of these groups we implemented above-

mentioned holding periods.  

The results of our first model tested on the Swiss market are displayed on figure 4.1., and the 

annualised statistics are shown on the table 4.4. 

These results show that our model is profitable for all strategies and has the best performance 

measured with the Sharpe ratio under six-months estimation period and four months holding period 

afterwards. This result is natural according to the researches performed by Jegadeesh and Titman 

[1993]. Moreover, this strategy (six months measurement period and four months holding period) 

has the lowest annualised volatility equal to 18.5% whereas for all other strategies volatility stays 

within the range of 22-24%, and the lowest realized beta (-0.05). Therefore, this strategy fully agrees 

with the statistical arbitrage definition. 

Under one-year measurement period the best performance has the strategy with one month holding 

period. This is not quite surprising since market preserves momentum effect on short-run (from 6 

months to one year) and after 1 year the trend can change. Therefore, one month holding period is 

the best response to change in trend. 

Measurement period extension is advisable for one-month holding period strategy, since the 

strategy’s return increased more than it’s volatility leading to higher Sharpe ratio.  

 

Figure 4.1. Distribution Of Returns On Different Strategies On Swiss Market 

(Variance Minimisation) 

6 months measurement period 1 year measurement period 
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Table 4.4. Performance Of The Variance Minimization Model On Swiss Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 7.93% 11.24% 8.94% 10.49% 5.04% 8.05% 

Annualised standard deviation 22.32% 18.5% 22.75% 23.7% 26.68% 21.95% 

Beta -0.26 -0.05 -0.09 -0.37 -0.21 -0.24 

Modified Sharpe ratio 0.36 0.61 0.393 0.4425 0.1889 0.3667 

Skewness -0.2028 -0.1272 0.1324 0.221 0.154 0.617 

Kurtosis 4.508 3.118 2.229 4.7338 3.498 3.6255 

 

The performance of Swiss market adjusted index over the periods the above strategies were 

implemented is shown on the figures 5 – 8, and the annualised characteristics are displayed in the 

table 3.4. We introduced the performance of the Swiss adjusted index and other market indices over 

the time periods the model’s strategies are implemented to make adequate comparison analysis. 
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Figure 4.2. Distribution Of Swiss Adjusted Market Index Returns Over Different Periods 

6 months measurement period 1 year measurement period 

   

  

 

Table 4.5. Performance Of The Swiss Adjusted Market Index  

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 4.02% 2.99% 2.15% 3.73% 3.42% 1.7% 

Annualised standard deviation 22.65% 24.14% 27.01% 23.9% 27.998% 27.45% 

Modified Sharpe ratio 0.1774 0.1236 0.08 0.1562 0.1223 0.06 

Skewness -0.55 -1.25 -0.71 -0.45 -1.24 -0.669 

Kurtosis 5.15 4.89 3.17 4.76 5.0 3.05 

 

It is easy to notice that our model outperforms the market index. It has lower volatility and higher 
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return.  

The same strategies are implemented on French and German markets. The results of the model 

performance on these markets are displayed below.  

 

Figure 4.3. Distribution Of Returns On Different Strategies On French Market 

(Variance Minimisation) 

6 months measurement period 1 year measurement period 

 . 

  

 

Table 4.6. Performance Of The Variance Minimization Model On French Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return -2.43% 2.11% 2.96% 6.11% 11.29% 8.99% 

Annualised standard deviation 25.3% 23.44% 29.37% 24.75% 28.2% 31.09% 

Beta -0.44 0.02 -0.27 -0.3 -0.238 -0.55 
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Modified Sharpe ratio -0.10 0.09 0.10 0.25 0.4 0.29 

Skewness 0.041 -0.854 -0.515 0.64 0.757 0.01 

Kurtosis 5.633 4.673 2.573 5.21 3.877 3.44 

On the French market, the model in five out of six strategies is profitable, and the strategy with one-

year measurement period and four months holding period has the best performance. It has the Sharpe 

ratio of 0.4 and the second best strategy, with one-year measurement period and six months holding 

period, has it equal to 0.29.  

The strategies with one-year measurement period outperform the corresponding strategies with six-

month measurement period. Negative sign of the first strategy (six-month measurement period and 

one-month holding period) suggests that contrarian (value) approach instead of momentum should 

be used. This means that stocks, which outperformed the market over the last six months, should be 

short, and the stocks, which underperformed the market, should be long. This way we could achieve 

positive return on our model under that strategy.  

 

Figure 4.4. Distribution Of French Adjusted Market Index Returns Over Different Periods 

6 months measurement period 1 year measurement period 
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Table 4.7. Performance Of The French Adjusted Market Index  

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 4.46% 4.77% 2.89% 5.05% 4.67% 3.26% 

Annualised standard deviation 18.85% 18.71% 22.8% 19.91% 18.29% 23.19% 

Modified Sharpe ratio 0.2367 0.2549 0.1268 0.2538 0.2552 0.1407 

Skewness -0.49 -0.197 -0.467 -0.58 -0.11 -0.495 

Kurtosis 4.31 3.32 2.57 5.32 3.08 2.52 

 

On French market, our model outperforms the market based on the Sharpe ratio only under the 

strategies with one-year measurement period. This result was achieved because of the much higher 

realized return on these strategies whereas the realized volatility of these strategies is higher than 

that of the market.  
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Figure 4.5. Distribution Of Returns On Different Strategies On German Market 

(Variance Optimisation) 

6 months measurement period 1 year measurement period 

  

  

 

Table 4.8. Performance Of The Variance Minimization Model On German Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return -2.63% 0.19% -1.04% -6.37% 1.8% 5.77% 

Annualised standard deviation 21.75% 23.1% 18.04% 22.97% 17.31% 19.01% 

Beta -0.2343 -0.2145 -0.1427 -0.4378 -0.4523 -0.3646 

Modified Sharpe ratio -0.12 0.01 -0.06 -0.2774 0.105 0.03 

Skewness -0.159 1.044 -0.136 0.401 0.69 0.019 

Kurtosis 4.492 4.672 2.744 5.11 3.588 2.927 
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On German market our model has the worst performance. It has equal number of positive and 

negative strategies. Therefore, momentum and contrarian strategies are equally likely to be 

successful. The best performance has the strategy with one-year measurement period and four 

months holding period. It also has the smallest volatility. But if the contrarian approach were 

implemented for the strategy with one-year measurement period and one-month holding period, this 

strategy would have the best performance.  

 

Figure 4.6. Distribution Of German Adjusted Market Index Returns Over Different Periods 

6 months measurement period 1 year measurement period 
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Table 4.9. Performance Of The German Adjusted Market Index  

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 3.67% 2.78% 3.6% 3.03% 1.104% 2.75% 

Annualised standard deviation 22.09% 25.04% 20.52% 21.5% 20.6% 20.77% 

Modified Sharpe ratio 0.166 0.111 0.175 0.141 0.054 0.1323 

Skewness -1.06 -0.92 -0.61 -0.67 -1.1 -0.538 

Kurtosis 6.38 4.22 3.1 4.14 4.25 3.02 

 

Most of the time the German adjusted market index outperforms the model. Only one-year 

estimation period and four-month holding period strategy has twice as high the Sharpe ration as that 

of the index. 

 

 

4.3.2.COVARIANCE MINIMIZATION UNDER INVESTMENT CONSTRAINTS 
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where wL represents portfolio weights of the long position, wS represents the portfolio weights of the 

short position, N and M is the number of stocks in the long and short portfolios respectively, and 

covL,S is the covariance between the long and the short portfolios. In our case, N=M=5. Our goal is 

to make covariance as low as possible in absolute terms since it can take both positive and negative 

values. 
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The optimisation procedure is same as the one described above with the “marginal utilities” for the 

long and short portfolios as shown below: 

MUlong =   

 

MUshort =   
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On the Swiss, French, and German markets this strategy produces the following results with respect 

to different holding periods and six-month and one-year estimation periods.  

 

Figure 4.7. Distribution Of Returns On Different Strategies On Swiss Market  

(Covariance Minimisation) 

6 months measurement period 1 year measurement period 
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  covL,S’*wS, if wL'covL,SwS<0. 
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Table 4.10. Performance Of The Covariance Minimization Model On Swiss Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 6.21% 6.54% 1.57% 7.04% 1.6% 10.64% 

Annualised standard deviation 33.23% 21.05% 27.4% 26.96% 26.18% 26.5% 

Beta -0.186 0.096 -0.06 -0.2789 -0.116 -0.3582 

Modified Sharpe ratio 0.1867 0.3109 0.057 0.2611 0.062 0.4016 

Skewness -0.196 -0.298 0.03 -0.14 0.183 0.788 

Kurtosis 16.06 2.613 1.99 4.675 2.405 4.13 

 

This model is profitable under all strategies and has the best performance if one year is used as an 

estimation period and six months are used as a holding period. But since only a part of the total 

portfolio risk was minimized, this model has higher volatility in all cases than that in the previous 

models. Comparing with the results of the previous model on the Swiss market, we can conclude that 

not only the way of stock selection is important but also the optimization approach matters. The 

realized beta of the model can be acceptable for considering it to be statistical arbitrage only under 

halve of the strategies, their results are shown in the 3rd, 4th, and 6th columns. In addition, the 

performance of the model is much better than that of the Swiss adjusted index besides two strategies 

with six-month measurement and six-month holding periods and one-year measurement and four-

month holding periods. 
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Figure 4.8. Distribution Of Returns On Different Strategies On French Market 

(Covariance minimisation) 

6 months measurement period 1 year measurement period 

  

 
 

 

Table 4.11. Performance Of The Covariance Minimization Model On French Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return -6.34% -7.64% -2.08% 9.58% 9.74%% 6.63% 

Annualised standard deviation 27.76% 31.36% 33.52% 26.12% 33.28% 35.17% 

Beta -0.30 -0.21 -0.18 -0.204 -0.05 -0.447 

Modified Sharpe ratio -0.228 -0.2437 -0.062 0.367 0.29 0.189 

Skewness -0.01 -0.614 0.07 0.258 -0.672 -0.677 

Kurtosis 3.95 2.608 3.23 4.25 4.873 3.384 
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Unlike variance minimization approach, this model has three strategies with negative return and 

three strategies with positive return. The results from the table 4.11 are quite interesting since they 

show that depending on estimation period either momentum (one-year) or contrarian (six-month) 

strategy should be implemented to achieve positive return. The realized volatility is higher than in 

the previous model in all cases. This is not surprising since we only partly minimized total portfolio 

risk. Under this approach only the strategy with one-month holding period outperforms the 

corresponding strategy under variance minimization approach, having higher the Sharpe ratio equal 

to 0.367 versus 0.25. But if contrarian approach were used for six-month estimation period, the 

covariance approach would have outperformed the variance approach in one-month and six-month 

holding period strategies. 

However, the return in positive-return strategies is almost twice as much as the one generated by the 

market index over the period these strategies were implemented. This result leads only to higher 

Sharpe ratios for those strategies. 

 

Figure 4.9. Distribution Of Returns On Different Strategies On German Market 

(Covariance Minimisation) 

6 months measurement period 1 year measurement period 
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Table 4.12. Performance Of The Covariance Minimization Model On German Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return -11.04% -2.63% -6.42% -6.59% 3.7% 6.79% 

Annualised standard deviation 22.29% 17.81% 18.94% 24.9% 19.1% 23.08% 

Beta -0.256 -0.11 -0.1735 -0.405 -0.5 -0.445 

Modified Sharpe ratio -0.495 -0.147 -0.339 -0.265 0.194 0.294 

Skewness -0.06 0.147 -0.214 0.667 0.899 0.3112 

Kurtosis 5.86 2.479 2.524 6.42 4.17 3.102 

 

As in the case of variance minimization, the covariance minimization on the German market 

performs better with contrarian approach, since under momentum we have four out of strategies with 

negative return. The model has the best result under one-year estimation period and six-month 

holding period strategy. But this strategy deviates from the statistical arbitrage definition, since its 

realized beta is equal to –0.445. 

 

4.3.3.OPTIMISATION WITH ZERO-BETA 

 

The next portfolio problem that we consider involves market-neutrality condition (zero total 

portfolio’s beta with respect to market). Theoretically, if statistical arbitrage strategy were optimal 

from investor’s point of view, he would look for some optimal tradeoff between portfolio’s beta, its 

risk, and return. The issue is that investor’s utility function (expressed in terms of these variables) is 

unknown. Therefore, we formulate our problem as having an extra constraint of beta strictly equal to 

zero. The total portfolio risk consists of two parts: systematic and unsystematic risk. By setting zero-

beta condition we eliminate the market (systematic) risk in the portfolio, and covariance 

minimization allows us to eliminate partly unsystematic component. The problem is  

max
W

 -|wL′covL,SwS|,  
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Using all these constraints we can express four out of ten portfolio weights using other six weights. 

First, w5 and w10 are found from self-financing constraint.  
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From zero portfolio’s beta constraint w4 can be expressed as 
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For the rest of the portfolio allocations we use iteration procedure, which as before considers upper 

bound at 60% and low bound at 10% level. We take R equal to the return of the portfolio as if it were 

constructed under variance minimization model. This way we attempt to understand the influence of 

the market risk component elimination on the performance of the behavioural statistical arbitrage 

models.  

While applying iteration procedure we check whether all the constraints are satisfied. If yes, the 

program computes and stores the resulted correlation coefficient between long and short parts of the 

portfolio. When procedure is finished, we pick from the pull of computed covariances the allocation 
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that generates the lowest one. 

The described procedure is repeated until the end of the sample is reached. Then, the beta is simply 

the weighted average of betas of the stocks included in the portfolio 

j

N

j
jP w ββ ∑

=

=
1

. 

Under the same conditions we solved the problem with variance of the whole portfolio being our 

goal function. 

The results of both models are shown below. We tested these models only on the strategies with one-

year and six-month estimation periods and four-month holding period, and in iteration procedure we 

used 5% as a step because of the time constraint.  

 

Figure 4.10. Distribution Of Returns On Different Strategies On Swiss Market 

(Zero-Beta Strategy) 
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Table 4.13. Performance Of The Zero-Beta Minimization Models On Swiss Market 

6-month measurement period 1-year measurement period 
Characteristics 

Min covariance  Min variance Min covariance  Min variance 

Annualised return 18.18% 17.81% 13.7% 6.35% 

Annualised standard deviation 20.26% 19.21% 26.1% 22.97% 

Beta -0.027 0.01 -0.056 0.074 

Modified Sharpe ratio 0.8975 0.9274 0.525 0.277 

Skewness 0.109 -0.004 0.688 0.016 

Kurtosis 2.641 3.176 4.924 2.737 

From table 4.13 we can observe that measurement period is crucial for the use of optimisation 

method. If in case of six-month estimation period the min variance model only slightly outperforms 

the corresponding strategy under min covariance approach according to Sharpe ratio, then in case of 

one-year estimation period min covariance that coefficient is twice as big as the one of min variance. 

However, under six-month estimation period both models have much better performance than under 

one-year. The same conclusion was made after implementation the first two models on the Swiss 

market. Since all the constraints, besides zero-beta of the portfolio, were the same, we can deduce 

from the results that systematic risk component elimination was the key of achieving this better 

performance. Following Markovitz, we could achieve about the same performance of the first two 

models, if we had constructed more diversified portfolios (at least 20 stocks). But if small number of 

stocks is used in the portfolio, market risk reduction is a must to obtain its optimum risk-return 

profile. The realized beta is much less than in previous models and therefore this model is in line 

with the required market-neutrality condition. 
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Figure 4.11. Distribution Of Returns On Different Strategies On French Market 

(Zero-Beta Strategy) 
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Table 4.14. Performance Of The Zero-Beta Minimization Models On French Market 

6-month measurement period 1-year measurement period 
Characteristics 

Min covariance  Min variance Min covariance  Min variance 

Annualised return 9.87% 8.63% 15.66% 14.47% 

Annualised standard deviation 26.65% 25.33% 25.69% 25.53% 

Beta -0.017 -0.049 -0.226 -0.008 

Modified Sharpe ratio 0.37 0.34 0.618 0.567 

Skewness -0.449 -0.423 0.289 0.622 

Kurtosis 3.389 3.173 2.994 3.91 
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From the table 4.14 we see that min covariance approach performs better that min variance approach 

under either estimation periods. But as in the first two models, one-year estimation period works 

better on the French market. The better results were achieved because of systematic risk elimination 

on the portfolio formation stage. The realized beta of the models stays around zero in almost all 

cases besides one where min covariance approaches was used under one-year estimation period. 

Figure 4.12. Distribution Of Returns On Different Strategies On German Market 

(Zero-Beta Strategy) 
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Table 4.15. Performance Of The Zero-Beta Minimization Models On German Market 

6-month measurement period 1-year measurement period 
Characteristics 

Min covariance  Min variance Min covariance  Min variance 

Annualised return 6.28% 5.81% 9.66% 10.05% 

Annualised standard deviation 20.74% 21.84% 18.61% 18.93% 
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Beta -0.1296 -0.1495 -0.279 -0.231 

Modified Sharpe ratio 0.303 0.2662 0.519 0.531 

Skewness -0.32 0.39 1.076 0.97 

Kurtosis 2.34 3.43 4.273 4.0 

From the above table we can conclude that as on the French market zero-beta models perform better 

in terms of Sharpe ratio under one-year measurement period for both min variance and min 

covariance approaches. However, if six-month measurement period is used to select losers and 

winners, min covariance works better than min variance. If one-year was used, min variance 

approach has better performance. The realized beta of these last two models is much higher than on 

the Swiss and French market. However, the realized volatility is smaller. The same is annualised 

return. The performance of these models is the worst on German market. 

 

4.3.4.COMPARISON WITH THE PRICE MOMENTUM (NAÏVE) STRATEGY 

 

At the end of our empirical research part we would like to compare all our behavioural statistical 

arbitrage models with the Price Momentum Strategy. We would like to find out how different 

optimisation approaches affect performance of the momentum strategies.  

The simplistic momentum strategy, which is widely used in the academic research papers, represents 

basically a static portfolio rebalancing after some fixed interval (holding period), ranking based only 

on the prior price change (over estimation period), and all stocks selected for inclusion in the 

portfolio have equal weights. In our thesis, we apply the same holding and estimation periods in the 

momentum strategy as we did in all our models.  

The results of the price momentum strategy performance on the Swiss, French, and German markets 

are shown in the tables 4.16, 4.17, and 4.18 correspondingly.  
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Figure 4.13. Distribution Of Returns On Naïve Strategy On Swiss Market 

6 months measurement period 1 year measurement period 

  

  

 

Table 4.16. Performance Of The Naïve Strategy On Swiss Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 10.04% 13.2% 9.94% 10.31% 7.31% 11.87% 

Annualised standard deviation 23.95% 19.37% 22.31% 25.36% 28.94% 22.16% 

Beta -0.328 -0.1168 -0.1526 -0.396 -0.310 -0.24 

Modified Sharpe ratio 0.419 0.68 0.4455 0.406 0.2527 0.5359 

Skewness -0.388 0.1 -0.05 0.09 1.05 -0.115 

Kurtosis 6.18 3.13 2.07 4.54 4.29 2.457 
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Looking at the results of the naïve strategy presented in the table 4.16 and comparing them with the 

results of our models shown in the tables 4.4, 4.10, and 4.13, we can conclude that the na ïve strategy 

outperforms min variance and min covariance approaches based on the Sharpe ratio. There is only 

one exception. Under min variance model the strategy with one-year measurement period and one-

month holding period slightly outperforms the Sharpe measure because of the smaller volatility. 

Overall, volatility of the min variance approach in smaller than that of naïve strategy, and this is not 

surprising. However, volatility of the min covariance approach is higher and in some strategies is 

much higher than volatility of the naïve strategy. This happened because on the stage of portfolio 

formation we have not controlled the total risk of the portfolio, but only a pert of it. The bet that 

independent movements in the long and short parts of the total portfolio would lead to much higher 

return than the return of the min variance approach. Unfortunately, it did not work.  

The zero-bate approach is the only one that shows much better results than the naïve strategy. It has 

higher return and smaller volatility. This fact represents necessity of market risk minimization on the 

portfolio formation stage. Therefore, inclusion of bigger number of stocks in the portfolio will be a 

solution to better performance of the min variance and min covariance models. We did not test zero-

beta approach on all of the strategy, but we can expect that it will also outperform the price 

momentum strategy.  

 

Figure 4.14. Distribution Of Returns On Naïve Strategy On French Market 

6 months measurement period 1 year measurement period 
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Table 4.17. Performance Of The Naïve Strategy On French Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return 0.16% 3.97% 2.97% 6.87% 12.25% 11.31% 

Annualised standard deviation 27.7% 26.11% 30.52% 27.52% 30.5% 34.87% 

Beta -0.502 0.01 -0.2354 -0.36 -0.277 -0.5891 

Modified Sharpe ratio 0.006 0.152 0.1 0.2496 0.40 0.3243 

Skewness 0.41 -0.69 0.15 0.24 0.405 0.53 

Kurtosis 5.77 5.38 3.81 5.25 4.12 4.497 

 

Comparing results on the naïve strategy on the French market shown in the table 4.17 with results of 

our models presented in the tables 4.6, 4.11, and 4.14, we can conclude that as on the Swiss market, 

the price momentum strategy has better performance than min variance and min covariance 

approaches, and does not have any strategies with negative return. However, volatility of min 

variance approach is less, but volatility the of min covariance approach is slightly higher. The reason 

is explained above.  

Zero-beta approach on the French market also beats the price momentum as on the Swiss market. It 

has higher realized return and smaller realized volatility. We would also expect this approach to 

outperform the naïve strategy in other cases of measurement and holding periods. 
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Figure 4.15. Distribution Of Returns On Naïve Strategy On German Market 

6 months measurement period 1 year measurement period 

  

  

 

Table 4.18. Performance Of The Naïve Strategy On German Market 

6-month measurement period  1-year measurement period  
Characteristics 

1 month  4 months 6 months 1 month  4 months 6 months 

Annualised return -3.08% -3.16% -1.45% -5.52% 1.88% 1.95% 

Annualised standard deviation 21.22% 21.16% 16.68% 22.87% 16.83% 18.86% 

Beta -0.346 -0.24 -0.1764 -0.4622 -0.475 -0.361 

Modified Sharpe ratio -0.145 -0.149 -0.087 -0.2412 0.112 0.1035 

Skewness 0.228 0.64 -0.063 0.415 1.12 0.216 

Kurtosis 4.55 3.62 2.99 5.62 4.61 3.142 

Performance of the price momentum on the German market is the worst. The results are shown in 
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Returns on naive
strategy with 4 months
holding period
(German market)

Mean     0.006258
Median -0.003200
Maximum  0.297500
Minimum -0.134900
Std. Dev.   0.097153
Skewness   1.117512
Kurtosis   4.610152

Jarque-Bera  10.43339
Probability  0.005425

0

5

10

15

20

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Returns on naive
strategy with 1 month
holding period
(German market)

Mean    -0.002413
Median -0.003950
Maximum  0.205500
Minimum -0.168200
Std. Dev.   0.059425
Skewness   0.227782
Kurtosis   4.554731

Jarque-Bera  16.40454
Probability  0.000274 0

10

20

30

40

-0.2 -0.1 0.0 0.1 0.2

Returns on naive
strategy with 1 month
holding period
(German market)

Mean    -0.004162
Median -0.002000
Maximum  0.274800
Minimum -0.193900
Std. Dev.   0.064233
Skewness   0.414802
Kurtosis   5.622671

Jarque-Bera  45.08460
Probability  0.000000
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the table 4.18. It has four out of six strategies with negative returns whereas on the Swiss and French 

markets it has none. Comparing these results with the results of the min variance, min covariance, 

and zero-beta approaches that are presented in the tables 4.8, 4.12, and 4.15 respectively, we can 

conclude that in those periods where price momentum has positive returns it outperforms two first 

models having smaller volatility because of the smaller realized volatility. Only in one case min 

variance approach outperforms the price momentum. It happened when six-month measurement and 

four-month holding period were used. This strategy has 0.19% realized return whereas the price 

momentum has it –3.16%. However, if we used contrarian instead of momentum methodology in 

those cases when the price momentum has negative returns, we would have much better 

performance of the min covariance model. 

The results of the last (zero-beta) model on the German market are consistent with results of this 

model on the Swiss and French markets. These results were achieved because of much higher 

realized return, since realized volatility in most cases is slightly higher than that of the price 

momentum strategy. 
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5. CONCLUSIONS 
 

Below we summarise the results that we have obtained during the simulations under different 

investment constraints.  

As it was explained above, in our behavioural statistical arbitrage strategy we used three portfolio 

optimisation models: 

1. Variance minimisation 

2. Covariance minimisation 

3. Minimization of portfolio variance and covariance between long and short portfolios under zero-

beta condition. 

 

Our results prove, that it is possible to outperform the market using behavioural statistical arbitrage 

strategy and portfolio optimisation techniques explained above. The best results are observed on the 

Swiss market, where the degree of outperformance of the strategy comparing to index is the largest. 

Then follows French market and the lowest degree of outperformance of the strategy is observed on 

the German market.   

The best results our strategy generated for the Swiss market, where the number of successful 

outcomes is the largest and the best measurement and holding periods are the same as for the 

classical momentum – 6 months and 4 months respectively. For French and German markets the best 

measurement period is longer than for the Swiss market and is equal to one year, while holding 

period is 4 months. Our strategy gives the worst results for the German market with the smallest 

number of positive outcomes.  

For all markets the portfolio optimisation technique, which generates the best results is the zero-beta 

minimisation strategy. As above, the best result for Swiss market is generated on 6-month 

measurement period, while for French and German markets the best measurement period is again 1 

year. For Swiss and German markets we got the best results when we minimised the portfolio 

variance, while for French market – when we minimise the covariance between long and short 

positions.  

Thus, we can make a conclusion, that there is no common model that can be applied on all of the 

chosen markets. This can be explained by national specifics of the markets, number of active 

participants on the markets and stocks available. 
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