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A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process 
introduced in Engle (1982) to allow for past conditional variances in the current conditional 
variance equation is proposed. Stationarity conditions and autocorrelation structure for this new 
class of parametric models are derived. Maximum likelihood estimation and testing are also 
considered. Finally an empirical example relating to the uncertainty of the inflation rate is 
presented. 

1. Introduction 

While conventional time series and econometric models operate under an 
assumption of constant variance, the ARCH (Autoregressive Conditional 
Heteroskedastic) process introduced in Engle (1982) allows the conditional 
variance to change over time as a function bf past errors leaving the uncondi- 
tional variance constant. 

This type of model behavior has already proven useful in modelling several 
different economic phenomena. In Engle (1982), Engle (1983) and Engle and 
Kraft (1983), models for the inflation rate are constructed recognizing that the 
uncertainty of inflation tends to change over time. In Coulson and Robins 
(1985) the estimated inflation volatility is related to some key macroeconomic 
variables. Models for the term structure using an estimate of the conditional 
variance as a proxy for the risk premium are given in Engle, Lilien and Robins 
(1985). The same idea is applied to the foreign exchange market in Domowitz 
and Hakkio (1985). In Weiss (1984) ARMA models with ARCH errors are 
found to be successful in modelling thirteen different U.S. macroeconomic 
time series. Common to most of the above applications however, is the 
introduction of a rather arbitrary linear declining lag structure in the condi- 
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tional variance equation to take account of the long memory typically found in 
empirical work, since estimating a totally free lag distribution often will lead 
to violation of the non-negativity constraints. 

In this paper a new, more general class of processes, GARCH (Generalized 
Autoregressive Conditional Heteroskedastic), is introduced, allowing for a 
much more flexible lag structure. The extension of the ARCH process to the 
GARCH process bears much resemblance to the extension of the standard 
time series AR process to the general ARMA process and, as is argued below, 
permits a more parsimonious description in many situations. 

The paper proceeds as follows. In section 2 the new class of processes is 
formally presented and conditions for their wide-sense stationarity are derived. 
The simple GARCH(1,1) process is considered in some detail in section 3. It 
is well established, that the autocorrelation and partial autocorrelation func- 
tions are useful tools in identifying and checking time series behavior of the 
ARMA form in the conditional mean. Similarly the autocorrelations and 
partial autocorrelations for the squared process may prove helpful in identify- 
ing and checking GARCH behavior in the conditional variance equation. This 
is the theme in section 4. In section 5 maximum likelihood estimation of the 
linear regression model with GARCH errors is briefly discussed, and it is seen 
that the asymptotic independence between the estimates of the mean and the 
variance parameters carries over from the ARCH regression model. Some test 
results are presented in section 6. As in the ARMA analogue, cf. Godfrey 
(1978), a general test for the presence of GARCH is not feasible. Section 7 
contains an empirical example explaining the uncertainty of the inflation rate. 
It is argued that a simple GARCH model provides a marginally better fit and 
a more plausible learning mechanism than the ARCH model with an eighth- 
order linear declining lag structure as in Engle and Kraft (1983). 

2. The GARCH(p,q) process 

The ARCH process introduced by Engle (1982) explicitly recognizes the 
difference between the unconditional and the conditional variance allowing the 
latter to change over time as a function of past errors. The statistical 
properties of this new parametric class of models has been studied further in 
Weiss (1982) and in a recent paper by Milhoj (1984). 

In empirical applications of the ARCH model a relatively long lag in the 
conditional variance equation is often called for, and to avoid problems with 
negative variance parameter estimates a fixed lag structure is typically im- 
posed, cf. Engle (1982), Engle (1983) and Engle and Kraft (1983). In this light 
it seems of immediate practical interest to extend the ARCH class of models 
to allow for both a longer memory and a more flexible lag structure. 

Let e t denote a real-valued discrete-time stochastic process, and ~b, the 
information set (a-field) of all information through time t. The GARCH( p, q) 
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process (Generalized Autoregressive Conditional Heteroskedasticity) is then 
given by 1 

~'tl~t-1 -- N ( 0 ,  h t )  , (1)  

q P 

h t  = or0 + E 2 OtiEt-i "}- E t~iht-i 
i=1 i ~ l  

where 

= Ot 0 + A ( t ) e 2 t  -t- O ( t ) h t ,  

p > 0 ,  q > 0  

a o > 0 ,  a i>_0, i = 1  . . . .  , q ,  

f l , > 0 ,  i = 1  . . . . .  p. 

(2) 

For p = 0 the process reduces to the ARCH(q) process, and for p = q = 0 E t is 
simply white noise. In the ARCH(q) process the conditional variance is 
specified as a linear function of past sample variances only, whereas the 
G A R C H ( p ,  q) process allows lagged conditional variances to enter as well. 
This corresponds to some sort of adaptive learning mechanism. 

The G A R C H ( p , q )  regression model is obtained by letting the et'S be 
innovations in a linear regression, 

= y ,  - x ; b ,  (3) 

where Yt is the dependent variable, x, a vector of explanatory variables, and b 
a vector of unknown parameters. This model is studied in some detail in 
section 5. 

If all the roots of 1 - B ( z ) = 0  lie outside the unit circle, (2) can be 
rewritten as a distributed lag of past e~ 's, 

ht = Oto(1 - B(1) ) - I  + A(L)(1  - B ( L ) ) - t e ~  

( = a o 1 - Bi + ~iE2-i, 
i~1 i=l 

(4) 

which together with (1) may be seen as an infinite-dimensional ARCH(oo) 
process. The 8i's are found from the power series expansion of D ( L ) =  

aWe follow Engle (1982) in assuming the conditional distribution to be normal, but of course 
other distributions could be applied as well. Instead of E 2_I in eq. (2) the absolute value of et- 
may be more appropriate in some appfications; cf. McCulloch (1983). 
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A(L)(1 - B(L))  -1, 

j = l  

= B s ' S , - j ,  
j = l  

i = 1  . . . . .  q, 

i = q + l  . . . . .  

(5 )  

where n = min( p, i - 1}. It follows, that if B(1) < 1, 6i will be decreasing for i 
greater than m = max{ p, q }. Thus if D(1) < 1, the GARCH(p,  q) process can 
be approximated to any degree of accuracy by a stationary ARCH(Q) for a 
sufficiently large value of Q. But as in the ARMA analogue, the GARCH 
process might possibly be justified through a Wald's decomposition type of 
arguments as a more parsimonious description. 

From the theory on finite-dimensional ARCH(q) processes it is to be 
expected that D(1) < 1, or equivalentlyA(1) + B(1) < 1, suffices for wide-sense 
stationarity; cf. Milhoj (1984). This is indeed the case. 

Theorem 1. The GARCH( p, q) process as defined in (1) and (2) is wide-sense 
stationary with E(e/)=0, var(e/)= a 0 ( 1 - A ( 1 ) -  B(1)) -1 and cov(e/, es)= 0 
for t -4: s if and only/ f  A(1) + B(1) < 1. 

Proof. See appendix. 

As pointed out by Sastry Pantula and an anonymous referee, an equivalent 
representation of the GARCH(p,  q) process is given by 

and 

where 

q P P 

e2 = OtO + E Otie2-i + E flje2--j- E fljl)t-j + l)t' ( 6 )  
i = 1  j = l  j = l  

2-h =(¢-1)h, ,  !,' t = E t 

i.i.d. 
- N ( 0 , 1 ) .  

(7) 

Note, by definition v t is serially uncorrelated with mean zero. Therefore, the 
GARCH( p, q) process can be interpreted as an autoregressive moving average 
process in e 2 of orders m = max(p,  q} and p, respectively. Although a 
parameterization along the lines of (6) might be more meaningful from a 
theoretical time series" point of view, (1) and (2) are easier to work with in 
practice. 
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3. The GARCH(I, 1) process 

The simplest but often very useful GARCH process is of course the 
GARCH(1,1) process given by (1) and 

h t  _ - -  a01Xl•t_ 1 2  + f l l h t _ l  ' ot 0 > 0, o/1 >_~ 0, f l l  >-~ 0. (8) 

From Theorem 1, a 1 +/31 < 1 suffices for wide-sense stationarity, and in 
general we have: 2 

Theorem 2. 
and suJ~cient condition for existence of the 2ruth moment is 

g (Oll, B1, m) = ~ [ m ~..~Ja'~-J < j=0 k j ] t4J'~l t" 1 1, 

where 

For the GARCH(1, 1) process given by (1) and (6) a necessary 

(9) 

J 
a 0 = 1 ,  a j = V I ( 2 j - 1 ) ,  j = l  . . . . .  (10) 

i=1 

The 2ruth moment can be expressed by the recursive formula 

-1  2n m - n  m E(e,2m) =a , .  a,, E(e t )a o (m_n)tZ(al,/31, n) 
kn=O 

X [1 -/~ (al, ill, m ) ] - 1  (11) 

Proof. See appendix. 

The conditions for existence of the first twelve moments are illustrated in 
fig. 1. 

It follows by symmetry that if the 2ruth moment exists, E(e 2m-1) = 0. 
For fll = 0, (9) reduces to the well-known condition for the ARCH(l) 

process, area ~ < 1; cf. Engle (1982). Thus if a 1 > (a,,) -1/m in the ARCH(l) 
~ 8  process, the 2mth moment does not exist, whereas even if ~s=t s= a l ( 1 -  

ill)-1 > (am)-l/m in the GARCH(1,1) process, the 2mth moment might very 
well exist because of the longer memory in this process. 

In the GARCH(1,1) process the mean lag in the conditional variance 
equation is given by 

~= ~=1i8, 8 , = ( 1 - / 3 ~ ) - ' ,  

2As in Engle (1982) we assume for simplicity that the process starts indefinitely far in the past 
with 2m finite initial moments. 
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Fig. 1. Moment conditions for GARCH(1,1). 

and  the med ian  lag is found to be 

p = - log 2 / l o g  B 1 ,  

whereWV 3 / W ~  3 = • - . ,=1  i / . - . i = l  , ~ and the 8i's are defined in (5); cf. Ha rvey  (1982). 
I f  3al  2 + 2 c q f l  1 + fll 2 < 1, the four th-order  mo men t  exists and by  Theorem 2 

E(e  2) = a o ( 1 - a  t -  fl~)-~, 
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and 

E(et 4) = 3a02(1 + az +/31)[(1 - a z -  13z)(1 - 132- 2al/31 - 3a2)] -1 

The coefficient of kurtosis is therefore 

x =  (E(e 4) - 3E(e])Z)E(e]) -2 

= - 2, 1t 1- - 1 ,  

which is greater than zero by assumption. Hence the GARCH(1,1)  process is 
leptokurtic (heavily tailed), a property the process shares with the ARCH(q)  
process; cf. Milhoj (1984). 

4. Autocorrelation and partial autocorrelation structure 

The use of autocorrelation and partial autocorrelation functions to identify 
and check time series behaviour of the ARMA form in the conditional mean is 
well established; cf. Box and Jenkins (1976). In this section, the autocorrela- 
tion and partial autocorrelation functions for the squared process are shown to 
be useful in identifying and checking time series behaviour in the conditional 
variance equation of the G A R C H  form. The idea of using the squared process 
to check for model adequacy is not new; cf. Granger and Anderson (1978) 
where it is found that some of the series modelled in Box and Jenkins (1976) 
exhibit autocorrelated squared residuabs even though the residuals themselves 
do not seem to be correlated over time. 

Consider the general GARCH(p ,  q) process as specified in (1) and (2), and 
let us assume the process has finite fourth-order moment. 3 Let the covariance 
function for e 2 be denoted 

= = (12) 

3 The general conditions for the existence of finite fourth-order moment are unknown. However, 
given a specific order of the model the conditions may be derived following the same line of 
arguments as lead to Theorem 2 for the GARCH(1,1) process. For instance the necessary and 
sufficient condition for the GARCH(1,2) process is found to be 

a 2 + 3a 2 + 3a~ +fl? + 2alfl  1 - 3a32 + 3a21a2 + 6ala2fl 1 + a2fl ? < 1, 

and for the GARCH(2,1)  the condition is 

B2 + 3al 2 + 1/? + B22 + 2al~Sx - B23 - a12B2 + 2a1//1~82 +/3?/32 < 1. 

In Milhoj (1984) the condition for the ARCH(q)  process is derived and expressed in terms of the 
inverse of a q x q  matrix, 3 q C ( l - ¢ ) - l q o  < 1, where ¢ = ( a l  . . . . .  aq), rkiy=~Pi+j+q) i j ,  i , j =  
1 . . . . .  q, and q0k = 0  for k_<0 and k > q .  
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It follows then immediately from (6) and (7) that 

q P 
"In ~-- E Oti~[n-i "1- E ~i'~n-i 

i=l i=1  

= ~ ePiYn_i, n > p  + 1, 
i = 1  

(13) 

where m = max( p, q ), 

tPi =Oti + fli, i = 1  . . . . .  q, 

a i = 0 for i > q and fli =-- 0 for i >p .  From (13) we get the following analogue 
to the Yule-Walker  equations: 

On = "[.~[01 = ~ ~iPn-i, R > p  + 1. (14) 
i=1  

Thus, the first p autocorrelations for e 2 depend 'directly' on the parameters 
ot 1 . . . . .  atq, fll . . . . .  tip, but given 0p . . . . .  0p+a-m the above difference equation 
uniquely determines the autocorrelations at higher lags. This is similar to the 
result for the autocorrelations for an ARMA(m, p)  process; cf, Box and 
Jenkins (1976). Note also, that (14) depends on the parameters ot I . . . . .  aq, 
fll . . . . .  tip only through ~x,. .- ,  ~m" 

Let ~kk denote the kth partial autocorrelation for e~ found by solving the 
set of k equations in the k unknown ~kl, . . . ,  ~kk: 

k 

o . =  E , k , o . _ , ,  .=1 . . . .  , k. (15) 
i = 1  

By (14) ~** cuts off after lag q for an ARCH(q)  process 

~kk :~ O, k < q, 
(16) 

= 0 ,  k > q .  

This is identical to the behaviour of the partial autocorrelation function for an 
AR(q)  process. Also from (14) and well-known results in the time series 
literature, the partial autocorrelation function for e 2 for a G A R C H ( p ,  q) 
process is in general non-zero but dies out; see Granger and Newbold (1977). 

In practice, of course, the O,'s and Okk'S will be unknown. However, the 
sample analogue, say b,, yields a consistent estimate for p,, and Okk is 
consistently estimated by the kth  coefficient, say Ckk, in a kth-order autore- 
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gression for e2; see Granger and Newbold (1977). These estimates together 
with their asymptotic variance under the null of no G A R C H  1 / T  [cf. Weiss 
(1984) and McLeod and Li (1983)] can be used in the preliminary identifica- 
tion stage, and are also useful for diagnostic checking. 

5. Estimation of the GARCH regression model 

In this section we consider maximum likelihood estimation of the G A R C H  
regression model (1), (2), (3). Because the results are quite similar to those for 
the A R C H  regression model, our discussion will be very schematic. 

Let z,' = (1, e,_1,2 . . . ,  e2_q, h t _ l , . .  ., h t_p)  , 60' = (or0,  Otl, . . . ,  a q ,  f l l  . . . .  • tip) 
and 0 ~ {9, where 0 = (b', w') and O is a compact subspace of a Euclidean 
space such that e t possesses finite second moments. Denote the true parame- 
ters by 00, where 00 ~ int {9. We may then rewrite the model as 

et = Yt - x~b, 

etlhbt_ 1 - N(0, ht) ,  (17) 

h t = z;oa. 

The log likelihood function for a sample of T observations is apart from some 
c o n s t a n t ,  4 

T 

LT(O) = r E l,(o), 
t = l  

I t ( O ) = -  ½ 1 o g h ,  - ~tht12 - 1  

(18) 

Differentiating with respect to the variance parameter yields 

06 ~ 10h' { ~2' ) 
~--d = ih  ~ - - ~  I g - 1  

oo,, g  h;l °h' j 
2 

Oh t Oh t e t 

0to 0to' ht ' 

(19) 

(20) 

4 Fo r  s impl i c i ty  we are condi t ion ing  on  the pre-sample  values. This  does of course not  affect the 
a s y m p t o t i c  resul ts ;  cf. Weiss  (1982). 
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where 

Oh t P Oht_ i 

Ooa =zt+ Ef l i  Ooa (21) 
i=1 

The only difference from Engle (1982) is the inclusion of the recursive part in 
(21). 5 Note, B(1)< 1 guarantees that (21) is stable. Since the conditional 
expectation of the first term in (20) is zero, the part of Fisher's information 
matrix corresponding to ~0 is consistently estimated by the sample analogue of 
the last term in (20) which involves first derivatives only. 

Differentiating with respect to the mean parameters yields 

Olt etx,h[ 1 + - 1 (22) 
Ob = -~h,-~ -h7 ' , 

02lt ~ - - h t l x t x ~ - - l h t  2 0ht Oht(~2t t 
8b ab' Ob ab' l ht ] 

2 Oh t e2 t ) 0 x 1 Oh t 
- 2 h  i e t x , - ~ +  ~ - 1  ~ I ~ h i  ~ 1 ,  

where 

(23) 

Oh, q P Oht - j  (24) 
= -- 2 E ajXt--jEt--j + E J~j Ob 

3b j = l  j = l  

Again the single difference from the ARCH(q) regression model is the 
inclusion of the recursive part in (24). A consistent estimate of the part of the 
information matrix corresponding to b is given by the sample analogue of 
the first two terms in (23) but with e2ht x in the second term replaced by its 
expected value of one. This estimate will also involve first derivatives only. 

Finally, the elements in the off-diagonal block in the information matrix 
may be shown to be zero. Because of this asymptotic independence t0 can be 
estimated without loss of asymptotic efficiency based on a consistent estimate 
of b, and vice versa. 

To obtain maximum likelihood estimates, and second-order efficiency, an 
iterative procedure is called for. For the ARCH(q) regression model the 
method of scoring could be expressed in terms of a simple auxiliary regression, 
but the recursive terms in (21) and (24) complicate this procedure. Instead the 

5To start up the recursion we need pre-sample estimates for h t and et 2, t < 0. A natural choice is 
the sample analogue ,,--xr-r 2 1 Z~t_lE t . 
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Berndt, Hall, Hall and Hausman (1974) algorithm turns out to be convenient. 
Let 0 (i) denote the parameter estimates after the ith iteration. 0 ~+1) is then 
calculated from 

O( i+ l )=o( i )+~ i (  ~ Olt Olt 1-1~-~ ~ Ol._~t 
e=t 00 oo, j t=l oo '  

where 01,/00 is evaluated at 0 <i), and ~i is a variable step length chosen to 
maximize the likelihood function in the given direction. Note, the direction 
vector is easily calculated from a least squares regression of a T × 1 vector of 
ones on Olt/OO. Also, the iterations for w(i~ and b (i) may be carried out 
separately because of the block diagonality in the information matrix. 

From Weiss (1982) it follows that the maximum likelihood estimate 0r is 
strongly consistent for 00 and asymptotically normal with mean 00 and 
covariance matrix # - -1=  _E(O2l,/OOOO,)-x.  However, ~-=F,  where F =  
E(( Olt/O0)(Olt/OO')) , and a consistent estimate of the asymptotic covariance 
matrix is therefore given by T-l(T_.r=l(Olt/OO)(Olt/O0')) -1 from the last 
BHHH iteration. 

Replacing (1) with the weaker set of assumptions 

E(e, lq,,_l) =0 ,  

E(e~h~-Xl~b,_l) = 1, (25) 

E(e4h/El~pt_l) _<M < oo, 

t~ r is still strongly consistent for 00 and asymptotically normal with mean 00 
but with covariance matrix #'-1F~--1; see Weiss (1982) and White (1982). Of 
course, if the true conditional distribution is normal, F=o~- and therefore 
~ -  1F~--, = ~--  1. 

6. Testing for GARCH 

Because of the complication involved in estimating a GARCH process, it 
seems of interest to have a formal test for the presence of GARCH instead of 
just relying on the more informal tools developed in section 4. 

Consider the GARCH(p,  q) regression model (17). As in Engle and Kraft 
(1983) let us partition the conditional variance equation 

h t z'to~= ' + ' (26) = Zlt~O 1 Z2t~ 2 • 
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The Lagrange multiplier test statistic for Ho: ~o 2 = 0 is then given by 6 

, 1 t t - 1  t 
~LM = 2f6Zo( ZoZo) Zofo,  (27) 

where 

fo=(e~h;  1 -  1 . . . . .  eZrh~. 1 -  1)', 

c9hl Ohr]' 
Z o =  hi . . . . .  ) , 

(28) 

and both are evaluated under H 0. When H 0 is true, ~M is asymptotically 
chi-square with r, the number of elements in ~02, degrees of freedom. This test 
differs slightly from the standard results, Breusch and Pagan (1978), in that 
Oht/a~o does not simplify when the conditional variance equation contains 
lagged conditional variances; cf. eq. (21). 

It is well known that by normality an asymptotically equivalent test statistic 
is 

~LM = T" R 2, 

where R 2 is the squared multiple correlation coefficient between f0 and Z 0. 
From section 5 this corresponds to T. R 2 from the OLS regression in the first 
BHHH iteration for the general model starting at the maximum likelihood 
estimates under H 0. 

The alternative as represented by z2t needs some consideration. Straightfor- 
ward calculations show that under the null of white noise, Z6Z o is singular if 
both p > 0 and q > 0, and therefore a general test for GARCH(p,  q) is not 
feasible. In fact if the null is an ARCH(q) process, Z6Z o is singular for 
GARCH(r l ,  q + r2) alternatives, where r 1 > 0 and r 2 > 0. It is also interesting 
to note that for an ARCH(q) null, the LM test for GARCH(r ,q )  and 
ARCH(q + r) alternatives coincide. This is similar to the results in Godfrey 
(1978), where it is shown that the LM tests for AR(p)  and MA(q) errors in a 
linear regression model coincide and that the test procedures break down 
when a full ARMA(p,  q) model is considered. These test results are, of course, 
not peculiar to the LM test, but concern the Likelihood Ratio and the Wald 
tests as well. A formal proof of the above statements can be constructed along 
the same lines as in Godfrey (1978, 1981). 

6 Note,  because of the block diagonality in the information matrix in the G A R C H  regression 
model, the same test applies in this more general context. 
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7. Empirical example 

The uncertainty of inflation is an unobservable economic variable of major 
importance, and within the ARCH framework several different models have 
already been constructed; see Engle (1982), Engle (1983) and Engle and Kraft 
(1983). We will here concentrate on the model in Engle and Kraft (1983) 
where the rate of growth in the implicit GNP deflator in the U.S. is explained 
in terms of its own past. 

Let ~rt= 100. In(GDt/GDt_I) where G D  t is the implicit price deflator for 
GNP. 7 Standard univariate time series methods lead to identification of the 
following model for ~rt: 

.'B" t = 0.240 + 0.552~t 1 + 0.177 ¢r t 2 + .0.232~t-3 - 0.209¢rt 4 + et, 
(0.080) (0 .083)-  (0 .089 ) -  (0.090) (0 .080) -  

h t = 0.282 .  (29) 
(0.034) 

The model is estimated on quarterly data from 1948.2 to 1983.4, i.e., a total of 
143 observations, using ordinary least squares, with OLS standard errors in 
parentheses. 8 The model is stationary, and none of the first ten autocorrela- 
tions or partial autocorrelations for E t are significant at the 5% level. However, 
looking at the autocorrelations for et: it turns out that the 1st, 3rd, 7th, 9th and 
10th all exceed two asymptotic standard errors. Similar results hold for the 
partial autocorrelations for et 2. The LM test for ARCH(l), ARCH(4) and 
ARCH(8) are also highly significant at any reasonable level. 

This leads Engle and Kraft (1983) to suggest the following specification: 

¢rt= 0.138 + 0.423% x+ 0.222¢r t 2 + 0.377~,_ 3 -  0.175~/ 4 - ~ ' - g t ,  
(0.059) (0 .081) -  (0 .108) -  (0.078) (0 .104) -  

8 

ht = 0.058 ~_ 0.802 E ( 9 -  i)/36e~_ i. (30) 
(0.033)-(0.265) i=1 

The estimates are maximum likelihood with heteroskedastic consistent stan- 
dard errors in parentheses; see section 5. The choice of the eighth-order linear 
declining lag structure is rather ad hoc, but motivated by the long memory in 
the conditional variance equation. The order of the lag polynomial may be 
viewed as an additional parameter in the conditional variance equation. From 

7The values of GD, are taken from the Citibank Economic Database and U.S. Department of 
Commerce, Survey of Current Business, Vol. 64, no. 9, September 1984. 

gNote, in Engle and Kraft (1983) the estimation period is 1948.2 to 1980.3 accounting for the 
small differences in the estimation results. 
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Fig. 2. Lag distribution. 

Milhej (1984) the condition for existence of the fourth-order moment of e t is 
just met. 9 None of the first ten autocorrelations or partial autocorrelations for 
e t h t  1/2 o r  e 2 h t  1 exceed 2/vCl~.  The LM test statistics for the linear 
restriction takes the value 8.87, corresponding to the 0.74 fractile in the X 2 
distribution. However, the LM test statistic for the inclusion of h t_ 1 in the 
conditional variance equation is 4.57, which is significant at the 5% level. 

9The condition as discussed in footnote 3 takes the value 0.989 for 0.802. 
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Let us therefore consider the alternative specification 

~r t = 0.141 + 0.433~" t_ 1 + 0.229yt_2 + 0,349 ~rt_ 3 - _ yr0.162 + et, 
(0.060) ( 0 . 0 8 1 ) ( 0 . 1 1 0 )  (0.077) ( 0 . 104 )  ̀ -4 

h t = 0.007 + 0.135 el 2 1 + 0.829 h t 1- 
(0.006) ( 0 . 0 7 0 ) -  (0.068) - 

(31) 

From Theorem 2 the fourth-order moment  of e t exists. Again none of the first 
ten autocorrelations or partial autocorrelations for tth t x/2 or eEh [ a exceed 
two asymptot ic  standard errors. The LM test statistic for the inclusion of the 
eighth-order linear declining lag structure is 2.33, corresponding to the 0.87 
fractile in the X 2 distribution. The LM test statistic for GARCH(1,2) ,  or 
locally equivalent GARCH(2,1) ,  equals 3.80 and therefore is not significant at 
the 5% level. Also the LM test statistics for inclusion of et_2,2..., et_52 takes 
the value 5.58 which is equal to the 0.77 fractile in the X 2 distribution. 
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Fig. 3. 95% confidence intervals for OLS. 



322 T. Bollerslev, Generalization of ARCH process 

It is also interesting to note that the sample coefficient of kurtosis for 
e,hl  1/2 from model (31) equals 3.81, which differs from the 'normal' value of 
3.00 by slightly less than two asymptotic standard errors, 2 2 ~ / T  = 0.82. For 
models (29) and (30) the coefficient of kurtosis equals 6.90 and 4.07, respec- 
tively. The sample coefficient of skewness for etht ]/2 from each of the three 
models, -0.13,  0.18 and 0.11, are all within one asymptotic standard error, 
V/6/T = 0.20. 

The mean and median lag in the conditional variance equation in (31) are 
estimated to be 5.848 and 3.696, respectively [cf. s~ction 3], whereas in (30) the 
mean lag is forced to 3~ and the median lag to 2½. Furthermore, the lag 
structure in the GARCH(1,1) model can be rationalized by some sort of 
adaptive learning mechanism. See also fig. 2, where the two different lag 
shapes are illustrated. In this light it seems that not only does the GARCH(1,1) 
model provide a slightly better fit than the ARCH(8) model in Engle and 
Kraft (1983), but it also exhibits a more reasonable lag structure. 

- - I n f l a t i o n  Bate 
-----Conf. Int, 
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Fig. 4. 95% confidence intervals for GARCH(1,1). 
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In figs. 3 and 4 the actual inflation rate, ~r,, is graphed together with 95% 
asymptotic confidence intervals for the one-step-ahead forecast errors for the 
two models (29) and (31). From the late forties until the mid-fifties the 
inflation rate was very volatile and hard to predict. This is reflected in the wide 
confidence intervals for the GARCH model. The sixties and early seventies, 
however, were characterized by a stable and predictable inflation rate, and the 
OLS confidence interval seems much too wide. Starting with the second oil 
crises in 1974 there is a slight increase in the uncertainty of the inflation rate, 
although it does not compare in magnitude to the uncertainty at the beginning 
of the sample period. 

Appendix 

A.1. Proof of Theorem 1 

The basic idea of the proof follows that of Theorem 1 in Milhoj (1984). By 
definition 

= ,n /,1/2 iid 
Et "'t"t ' $]t- N ( 0 , 1 ) .  ( A . I )  

Subsequent substitution yields 

q P 
h, = + E + E #,h,_, 

i=1 i=1 

q 2 ( q P ) 
= a0 + }-'. as~,_ j a0 + ~ 2 °li~t-i-jht-i-j + E j~iht-i-j 

j = l  i=1 i=1 

P (  q P ) 
+ E f l j  ao+  E 2 (A.2) oli~t-i-jht-i-j + E ~iht-i-j 

j = l  i=1 i=1 

=a o ~ M(t,k), 
k=O 

where M(t, k) involves all the terms of the form 

q P n 

1--I <,:' H ,87, r i ,g_,,, 
i=1 j = l  1:1 
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for 

and 

Thus, 

q P q 

E a , +  Eb j=k ,  Eai  =n, 
i = 1  j = l  i=1  

1 < S 1 < $ 2 <  . . .  <S,<max(kq, (k-1)q+p}.  

M(t,O) =1,  

q P 

M(t ,1)  = E ai~2-i + E fl,, 
i = 1  i = 1  

M(t,2)  E 2 Olj~t- j  E 2 = Oli'l~t-i-j + E fli 
j = l  i = 1  i = 1  

• + Oli#|t--i--j i , 
i 

and in general 

q P 

M(t, k + 1) = E afll~-iM(t- i, k) + E fliM( t - i, k). 
i = 1  i = 1  

(A.3) 

Since ,12 is i.i.d., the moments of M(t, k) do not depend on t, and in 
particular 

E(M(t ,  k)) = E(M(s,  k)) for all k, t, s, (A.4) 

From (A.3) and (A.4) we get 

q 

E(M(t ,k+l ) )= Y[ai+ ~=lfl i E(M(t,k)) 
i=1  i 

= a ,  + fli E(M(/,0)) 
i ~ l  i 

I l i +  i 
i i 

(A.5) 
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Finally by (A.1), (A.2) and (A.5), 

if and only if 

o~ 

E(e~) =aoE(k~_~=o M(t 'k ,)  

= a o Y'. E (M( t ,  k) )  
k = 0  

- 1  

= a o  1 - a i -  B i  , 
i ~  i = 1  

q P 

Eai  + E E < I ,  
i = 1  i = 1  

2 converges almost surely. and e, 
E(e,) = 0 and cov(e t, es) = 0 for t ~ s follows immediately by symmetry. 

A.2. Proof of Theorem 2 
By normality 

E(e 2m) = amE(h~'), 

where am is defined in (10). The binomial formula yields 

h~" = (~o + ~:,~_~ + ~ h , _ ~ )  ~ 

~ n ~ 0  ~ l b ' l  f ' t - t  t - l "  

Because 

E(e~Jtht-_~[~b,_2) = aj h"t_t, 
we have 

E(h:[~b,_2)--  ~ h",_ l(m)n aom-, "~ (nj.)aja~fl r J. 
n = 0  j = 0  

Let w, = (kin hm-1 , _ , ,  .., . . . . .  h,)', then by (A.8) 

(A.6) 

(A.7) 

(A.8) 

E(wti~b,_2) = d+ Cw,_~, (A.9) 
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where  C is an  m × m upper  t r iangular  mat r ix  with d iagonal  elements.  

JR(~I,~I,/) : ~ (l;] "1 r~jl~i-J" 
j - O  J / ' J ~ l t " l  , i =  1 . . . . .  m. (A.IO) 

Substituting in (A.9) yields 

E(w,l~,_k_l) = ( I +  C+  C2+ . . .  +Ck-X)d+ Cew,_k. 

Since the process  is assumed to start  indefini tely far in the pas t  with finite 2m 
momen t s ,  the  l imi t  as k goes to infini ty exists and  does not  depend  on t if and  
on ly  if  all the  eigenvalues of  C lie inside the unit  circle, 

l im E(wtl~bt_k_l) = ( I -  C ) - l d  = E(wt). 
k~m 

Because  C is upper  t r iangular ,  the eigenvalues are equal  to the d iagonal  
e l ements  as given in (A.10). Tedious,  bu t  ra ther  s t ra ight forward  calculat ions  

show tha t  ~(~1, El, i )  < 1 implies  /.t(Otl, i l l ,  i - 1) < 1 for ot 1 -4- E1 ~ 1, and  
t~(a, fll,  m) < 1 suffices for the 2 m t h  m o m e n t  to exist; cf. fig. 1. 

F ina l l y  (11) follows f rom (A.7) and  (A.8) by  rear ranging  terms. 
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